南京金融城Tower Block Complex gmp Architekten

合集下载

南京苏宁睿城超高层办公楼结构设计

南京苏宁睿城超高层办公楼结构设计
能耗
环保性能:减少 对环境的污染,
提高生态效益
经济效益:通过 节能和环保措施,
降低运营成本
社会效益:提高 城市形象,促进
可持续发展
添加标题
添加标题
添加标题
添加标题
汇报人:
建筑高度:416 米,为华东地区 第一高楼
结构设计:采用 矩形钢管混凝土 框架+核心筒+伸 臂桁架+环带桁 架的结构体系
抗震设防:按照7 度抗震设防要求 进行设计
绿色建筑:采用 绿色建筑技术, 如太阳能、风能 等可再生能源利 用,建筑节能等
基础类型:采用桩基与扩基相结合的基础类型 桩基设计:根据地质勘察报告确定桩长、直径和间距 扩基设计:通过增加基础面积来减小基底应力 基础埋深:根据抗震设防烈度和地质条件确定基础埋深
,A CLICK TO UNLIMITED POSSIBILITES
汇报人:
目录
CONTENTS
位于南京市建 邺区河西新城 中部
紧邻地铁2号 线和10号线换 乘站元通站
周边配套设施 完善,交通便 利
0
0
0
1
2
3
建筑高度:约为240米
总建筑面积:约为28.9万 平方米
楼层数:地上47层,地下3 层
结构形式:采用钢筋混凝土框架-核心筒结构体系 抗震设防烈度:7度 基础类型:桩基+扩基 楼面设计:采用大跨度梁板结构,满足大空间需求
结构体系:采用钢筋混凝土框架-核心筒结构体系,具有较高的抗震性能。
抗震设防烈度:根据中国地震动参数区划图,该地区的抗震设防烈度为6度。
抗震措施:在框架和核心筒的连接处采用特殊的抗震构造措施,如增加构 造柱、加强楼板连接等。 抗震加固:对于既有建筑,可以采用抗震加固技术,如碳纤维加固、粘钢 加固等,提高其抗震性能。

科技金融大厦方案汇报

科技金融大厦方案汇报

水平子系统 管理间子系统
工作区子系统
垂直子系统
建筑群子系统 8
设备间子系统
智能化系统规划|综合布线系统
✓信息点合计 3835 ✓数据点1262(外)+1209(内) ✓语音点1293 ✓无线AP 71
原则:办公区域 按每5㎡布置一组 信息点(1个内网 +1个外网+1个电 话点)
智能化系统规划|计算机网络系统
14
智能化系统规划|公共广播系统
每层楼设一个分区,共32个分区,地下室设计成吸顶音箱和壁挂音箱,在地上楼层设计成吸顶音箱(2#1层区域也设计了4个 15 挂壁音箱),在室外设计成草坪音箱。
智能化系统规划|会议系统
会议室名称
一号楼5层多功能厅
一号楼5层互动培训室 一号楼5层报告厅
一号楼5层培训室普通配置 二号楼7、10、13层高管会议室
RS232 RS232 Audio
RS232
RGBorCV
显示系统 扩声系统 灯光系统 机电控制设备
其它控制设备
会议室3
RGBorCV Audio DMX
触点或开关 特殊接口或协议
本地会务管理终端 网络中控系统
网络编解码设备
本地会务管理终端 网络中控系统
网络编解码设备
RS232 RS232
RS232 RS232 Audio
建筑设备管 理系统
楼宇自动化系统
能耗计量系统
公共安全系 统
视频安防监控系统 入侵报警系统 电子巡更系统 门禁系统 消费管理系统 考勤管理系统
停车场(库)管理系统
客房控制系 统
客房控制和管理
酒店总服务台计算 机监控
机房工程
消防、安防监控中 心机房

南京金鹰天地广场超高层三塔连体结构分析与设计3篇

南京金鹰天地广场超高层三塔连体结构分析与设计3篇

南京金鹰天地广场超高层三塔连体结构分析与设计3篇南京金鹰天地广场超高层三塔连体结构分析与设计1南京金鹰天地广场超高层三塔连体结构分析与设计南京金鹰天地广场位于南京市鼓楼区将军山路8号,是南京市中心地带的重要商业中心。

该建筑由三栋不同高度的塔楼及中央商业裙房组成,总建筑面积约20万平方米。

其中,西塔是55层、高290米的超高层建筑,是南方地区高度最高的超高层建筑之一。

该建筑的设计与施工由国内知名的建筑师与工程师团队完成。

本文将对其超高层三塔连体结构进行分析与设计。

一、整体结构设计南京金鹰天地广场的超高层三塔连体结构采用了异型空心钢结构。

设计师们在设计中融入了抗震、自重与风压等因素,力求将建筑的安全性与美观性兼顾。

其中,钢结构采用了空心和实心两种构造形式,使得三栋塔楼可以在高度上呈现出流畅的曲线。

这样的设计方案不仅增强了整个建筑的空间感,同时在光影角度也起到了一定的作用。

二、各个建筑结构的区别南京金鹰天地广场的三栋塔楼高度不同,造型各异,因此其结构设计也各有特点。

其中,西塔是最高的一栋,整个建筑高度与重量均超出其他两个塔楼。

为了增强西塔的刚度与稳定性,设计师们在其周围设计了一个六组合边形,有效地降低了弯曲应力。

同时,在设计中还采用了钢结构构件,使得整个建筑的重量能够更加均匀地承受荷载,并减轻施工难度。

另外,东塔和南塔的结构设计比较类似,主要采用了楼板上覆盖式钢梁,使得整体结构更加均匀。

同时,在防风、减震等设计方面也采用了相似的技术手段。

三、建筑师的设计意图在南京金鹰天地广场的设计中,建筑师们主要考虑到了人文与环境因素。

因此,除了结构的优化设计之外,他们还在外立面的设计上体现了大量的文化元素。

其中,金鹰的“鹰”造型,使得建筑结构非常凸显,同时静态与动态的结合呈现了一种融合之感。

同时,东塔、南塔、中间裙房的造型也分别采用了不同的建筑元素,如砖墙、玻璃幕墙等,呈现出一种多彩多姿的视觉效果。

四、总结南京金鹰天地广场的超高层三塔连体结构,既具有良好的建筑结构与安全性能,又体现了人文与环境意义。

平安南塔项目建筑内冷却塔群设计与分享

平安南塔项目建筑内冷却塔群设计与分享

平安南塔项目建筑内冷却塔群设计与分享发布时间:2021-09-01T08:32:56.774Z 来源:《城镇建设》2021年4月第12期作者:张李智[导读] 论证冷却塔群布置在建筑体内的半封闭空间是可实施的,同时解决了半封闭条件下冷却塔群排风与进风回流影响冷却塔换热效率问题。

张李智悉地国际设计顾问(深圳)有限公司. 深圳,518000摘要:论证冷却塔群布置在建筑体内的半封闭空间是可实施的,同时解决了半封闭条件下冷却塔群排风与进风回流影响冷却塔换热效率问题。

根据实际项目案例,对冷却塔进行“有组织排风”排风方案。

应用CFD数值模拟分析,得出“有组织排风”方案下,半封闭建筑内冷却塔排风在季风或是无风环境下运行良好,减少了送风与排风回流及气流涡旋影响,更好保证了冷却塔高效稳定工作。

关键词:鼓风塔;平安金融中心南塔;有组织排风;冷却塔气流组织 ;防白雾;中图分类号:TU 文献标识码:A 文章编号: Design And Sharing Of The Cooling Towers In PingAn South Tower Project Zhang LizhiBy CCDI Group Abstract:It is feasible to install cooling towers in semi enclosed space of building, at the same time, the problem that the heat transfer efficiency of cooling towers is affected by the backflow of exhaust air and inlet air under semi closed condition is solved. According to the actual project case, the "organized exhaust" exhaust scheme is carried out for the cooling tower. The CFD numerical simulation analysis shows that under the scheme of "organized exhaust", the exhaust air of the cooling tower in the semi closed building runs well in the monsoon or no wind environment, which reduces the influence of the return flow of supply air and exhaust air and the airflow vortex, and better ensures the efficient and stable operation of the cooling tower..Key words:Blast tower; South Tower of Ping An Financial Center; Organized Ventilation; Air Distribution Of cooling Towers; Anti white fog;引言伴随着我国开启全面建设社会主义现代化国家新征程,城市现代建筑的设计也越来越复杂多样化,设计理念越来越超前。

金融大厦施工组织设计方案

金融大厦施工组织设计方案

1、工程概况X1-7地块金融大厦位于陆家嘴金融开发区临江地段X1-7地块,与正大广场、香格里拉大酒店、震旦国际大楼并列,西侧为滨江景观绿地,东侧为银城西路,北侧与震旦大厦相对,南侧为花园石桥路。

本工程2002年9月28日开工,计划2004年12月30日竣工。

大厦结构属钢筋混泥土框架-筒体结构,占地面积11892m2,建筑总面积约120000m2,地下三层,地上四十层,塔楼二层,建筑总高度180m。

地下三层到地下一层为设备机房及停车库,地上1~4层为裙房、大堂、银行营业厅、餐厅及厨房;5~38层为办公室;39~40层为金融家会所,其中13层和27层为避难层及设备用房。

X1-7地块金融大厦的建设将为陆家嘴地区增添一颗亮丽的明珠。

相关单位:业主:上海巴鼎房地产发展有限公司建筑师:日本国日建设计株式会社设计顾问:上海建筑设计研究院有限公司工料测量师:伟历信建筑工料测量师事务所监理单位:上海市建筑科学研究院建设工程咨询监理部总承包单位:上海建工(集团)总公司土建单位:上海第一建筑工程有限公司安装单位:上海市安装工程有限公司工程承接内容:(a) 电气系统(b) 给排水系统(c) 空调及通风系统(d) 弱电系统(包括消防报警等)(负责预埋套管、安装公共桥架、配合土建预留洞)(e) 消防栓及水喷淋系统(f) 室外总体给排水、电气工程(g) 配合总包系统调试1.1 机电安装工程概况1.1.1电气系统大楼由电业提供三路独立的10KV电源,其中一路为备用电源,以电缆埋地形式进户。

备用线切换为单路停电时自动切换,复电时手动切换;本工程保护接地采用TN-S制,并采用联合接地系统,接地电阻不大于1Ω。

10KV电源均采用电缆敷设,由低压配电室引出的电缆均沿桥架敷设,水平部分采用槽式电缆桥架,进入强电竖井后垂直部分采用梯级式桥架。

本工程按二类防雷建筑设计。

采用共用接地系统,设置总等电位联结。

总接地电阻不大于1欧姆。

1.1.2管道系统自基地南侧及西侧城市道路下各引入一根DN300的给水管,沿建筑物四周设置环状给水管网供室内、外消防用水。

苏陕国际金融中心方案设计说明

苏陕国际金融中心方案设计说明

苏陕国际金融中心方案设计说明建筑部分一、项目概况:苏陕国际金融中心位于西安浐灞生态区现代金融商务区,北临灞河西路、西临金融路,南侧为半岛环路。

东临灞河,与生态景观区隔河相望。

该地块地势平坦,环境优美,总用地面积约40,110平方米。

主体由两栋超高层(35层)塔楼、5层裙房、2层地下室组成。

塔楼为写字楼,裙房为酒店、银行、配套商业、餐饮等,地下室为机动车库、设备用房及酒店配套用房。

苏陕国际金融中心是陕西中登投资有限公司在西安市投资的标志性建筑。

作为我国大型综合性企业,始终秉承“以人为本,创造和谐,追求完美”的企业目标。

为区域经济发展起到了巨大推动作用。

苏陕国际金融中心作为城市标志性金融办公商业建筑,将承载着企业的新形象。

我院在中国建筑设计研究院中标方案的基础上,修改深化建筑方案设计。

主要技术经济指标:建设用地面积40,110.13m2总建筑面积260,490.00 m2计入容积率面积200,800.00m2其中:裙房及配套面积80,800.00 m2塔楼建筑面积 120,000.00m2不计容积率面积 59,690.00 m2其中:骑楼建筑面积 1,630.00 m2架空层(避难层)面积 6,060.00 m2地下室建筑面积 52,000.0 m2建筑容积率 5.0建筑覆盖率 48.39%绿地率 15.67%建筑层数 35层(地下2层)建筑高度塔楼 144.35米(女儿墙顶:153.60米)裙房23.95米停车数 1008辆(地面/地下 88 / 920 )二、设计依据:1、建设用地规划许可证2、苏陕国际金融中心投标方案修改意见3、国家及省、市有关的建筑设计规范及技术规程2.1建筑设计防火规范(GB 50016-2006)2.2高层民用建筑设计防火规范(GB50045-95)2005版2.3汽车库、修车库、停车场设计防火规范(GB 50067-97)2.4民用建筑设计通则(GB 50352-2005)2.5办公建筑设计规范(JGJ 67-2006)2.6商店建筑设计规范(JGJ48-88)2.7旅馆建筑设计规范(JGJ62-90)三、建筑设计:1、设计理念(1) 体现“以人为本,创造和谐,追求完美”的理念,表现中登作为大型企业的气魄和大家风范。

南京紫峰大厦超高层结构设计与防震南京绿地紫峰大厦是一幢屋顶

南京紫峰大厦超高层结构设计与防震南京绿地紫峰大厦是一幢屋顶

南京紫峰大厦超高层结构设计与防震南京绿地紫峰大厦是幢屋顶南京紫峰大厦超高层结构设计与防震南京绿地紫峰大厦是一幢屋顶高度达381m的超高层结构,采用嵌岩灌注桩和最大厚度达3(4m的基础底板,选择了带有加强层的框架-核心筒混合结构体系。

结构体系:紫峰大厦采用了带有加强层的框架-核心筒混合结构体系,采用型钢混凝土柱、钢梁和钢筋混凝土核心筒,在层10,35, 60处共设置了三个加强层。

核心筒位于结构三角形平面的中心位置,见图-久丿其面积大约占整个结构平面面积的27,,剪力墙厚度在1 500mm到400mn范围内变化,各片剪力墙通过连梁连接构成一个封闭的简体,为结构提供了大部分的抗侧刚度和抗扭刚度。

型钢混凝土组合柱的直径在 1 750mm到900mn范围内变化。

外围抗弯钢梁一般为W600< 180X10X16。

在每个加强层处放置了高8(4m的伸臂桁*03 1(2m;在层36处,核心筒三角形底边内收一格减小,见图 + *+ 4 ♦*C3l*怙4" 4 ClOl w *c»cm *eKT7 *OMc,>cir a 架把周边型钢混凝土柱与核心筒连接在一起,并且配合伸臂桁架还设置了周边带状桁架,把周边型钢混凝土柱连接在一起,从而使柱子受力更加均匀,见图外伸桁架与带状桁架的设置显著增强了结构的抗侧移能力。

周边的型钢混凝土 柱与周边钢梁刚性连接,构成抗弯矩框架,形成了主楼的第二道抗侧力体系。

基础底面到层22的高度范围内,核心筒外围剪力墙厚度一般为1m 核心筒三角形顶部剪力墙厚度一般为1(2m,最顶部的一片剪力墙厚度为1(5m;从层23到层60高度范围内,核心筒外围剪力墙厚度一般为0(8m ,核心筒三角形顶部剪力墙厚度一般为1(0m,最顶部的一片剪力墙厚度为*■ C6l C4l 4 C33C2Z CISq向楼层剪力和倾覆弯矩沿高度的分布。

flJI 在层61以上,核心筒外围剪力墙厚度一般为 0(4m,核心筒三角形顶部剪力墙 厚度为0(6m 。

南京绿地广场紫峰大厦项目研究报告

南京绿地广场紫峰大厦项目研究报告
施工进度延误可能导致项目不能按时完成,从而影响项目的销 售和收益。
管理风险评估
Hale Waihona Puke 总结词人员素质管理风险涉及到项目的人员、 组织、协调等方面。
项目团队成员的素质和能力 可能影响项目的执行效果, 需要保证团队成员具备相应 的专业知识和经验。
组织协调问题
项目团队的组织和协调问题 可能导致工作效率低下,影 响项目的进度和质量。
技术风险评估
总结词 工程技术难题 施工质量问题 施工进度延误
技术风险涉及到项目的工程技术、施工质量和进度等方面。
项目可能面临一些工程技术难题,如复杂的地质条件、高难度 的结构设计等,需要采取相应的技术措施来解决。
施工质量问题可能导致项目的质量不达标,需要进行修复或重 建,从而增加项目的成本和工期。
选择适宜的植物种类,进行合理的 配置,形成丰富的植物景观。
03
02
人文景观
结合南京的历史文化元素,打造具 有人文气息的景观节点。
灯光照明
采用节能环保的灯光设计,营造出 舒适、美观的夜间景观。
04
06
项目投资估算和效益分析
投资估算
建设成本估算
根据设计方案和工程量清单,南京绿地广场紫峰大厦的建设成本包括土地购置、基础工程、主体结构 、装修工程、设备购置及安装等费用,总计约人民币10亿元。
竞争对手分析
主要竞争对手包括其他在南京市内运营的商业地产项目,如其他写字楼、 商业中心等。在竞争过程中,南京绿地广场紫峰大厦需要发挥自身优势, 如地理位置、品牌影响力等,以吸引客户。
市场趋势与机会
随着科技和创新的发展,商业地产市场正朝着智能化、绿色环保等方向 发展。南京绿地广场紫峰大厦应关注市场趋势,把握机会,创新发展模 式,以保持竞争优势。

南京河西CBD介绍PPT学习教案

南京河西CBD介绍PPT学习教案
第29页/共70页
雨润国际广场
项目位于梦都大道、江东南路交界处, 由雨润 集团投 资,江 苏地华 房地产 开发建 设,项 目占地 面积2.2 万㎡, 总建筑 面积18 万㎡, 规划建 设两座 高100 米L型塔 楼,地 下3层 地上27 层,集 商务、 娱乐、 休闲、 运动、 办公居 住于一 体。
第14页/共70页
河西新城CBD二期发展概况
河西新城CBD二期工程,北起河西大街, 南至江 山广场 ,总长 约2公 里,用 地面积 约55公 顷。总 建筑面 积约110 万平方 米,规 划27个 地块, 规划平 均建筑 高度大 于100 米,最 高超过2 00米。
会展中心
河西二期开发建设在秉承CBD一期工程超 前的规 划理念 、强大 的商务 功能的 基础上 ,内涵 提档升 级,突 出以商 务、金 融和信 息等现 代服务 业为主 要功能 ,逐步 形成跨 国公司 、集团 总部机 构集聚 的格局 。
第17页/共70页
CBD二期2011九月资讯
最新公示的规划方案显示,南京金融城项目位于嘉陵江东街以南,雨润大街以北,东至 庐山路,西至江东中路,是四条路合围起来的一个四方形地块,这也是河西中央商务区 二期工程45号地块。该项目定位为具有国际水准的金融企业集聚地,主要建设内容为 商务金融以及相关的配套设施。
宋都奥体名座
第24页/共70页
占地面积:6690.9平方米 总建面积:77263.87平方米 开发商:南京紫金地产开发建设。、 产品: 本项目 建筑层 数为地 上20层 ,
地下1层。主要分为商务办公、 商务公寓及商业三部分。项目1 号楼1~11层为办公,13~19层为 单身公寓;2、3号楼为90平米 跃层公寓;西面4号楼多层商务 办公,底层沿街布置商铺。 进程:项目05年6月销售,06年10月份 交付。目前完全投入使用。

南京紫峰大厦英文介绍

南京紫峰大厦英文介绍

南京紫峰大厦英文介绍南京紫峰大厦,又称绿地广场·紫峰大厦,原南京绿地金融中心,位于江苏省南京市鼓楼区中山北路,是江苏省第一高楼,也是南京市的地标性建筑之一。

Nanjing Zifeng Building, also known as Greenland Square ·Zifeng Building, formerly known as Nanjing Greenland Financial Center, is located on Zhongshan North Road in Gulou District, Nanjing City, Jiangsu Province. It is the tallest building in Jiangsu Province and one of the landmarks of Nanjing City.紫峰大厦于2004年动工兴建,至2009年完工,高达450米,共有89层。

其设计充满现代感,外立面采用大面积的玻璃幕墙和深灰色石材,简洁大方而不失高贵典雅。

建筑形态呈现一个巨大的三角锥体,由三座不同高度的塔楼组成,寓意“三山聚顶”之势。

最高的主塔高450米,与南京城标志—紫金山的海拔高度相呼应。

The Zifeng Building started construction in 2004 and was completed in 2009, with a height of 450 meters and a total of 89 floors. Its design is full of modernity, with a large area of glass curtain wall and dark gray stone on the exterior, simple and elegant yet noble. The architectural form presents a huge triangular pyramid, consisting of three towers of different heights, symbolizing the trend of "three mountains gathering at the top". The highest main tower is 450 meters high, which corresponds to the elevation of the landmark of Nanjing City - Zijin Mountain.紫峰大厦内部功能复合多样,既有商业区,又有写字楼,也有高级酒店。

平安集团江苏总部南京平安国际金融中心项目简介

平安集团江苏总部南京平安国际金融中心项目简介

平安集团江苏总部南京平安国际金融中心项目简介本项目地块位于秦淮区,秦淮区为南京传统的四大中心城区之一。

本地块距离南京市中心新街口商圈1.3公里,地块区位价值高。

西侧有汉中门遗址公园,周边城市面貌繁华,区域配套成熟,生活便利。

高层办公楼北侧退台处理、公寓楼东南侧与住宅相邻的区域高度降低都是为了减少对周围住宅的日照遮挡。

办公楼与公寓楼分开布置,减少相互的干扰且便于消防车道穿过基地内部,方便消防扑救。

标签:老城区;日照;消防;环境1、环境分析与基地状况本项目位于南京市秦淮区汉中路与汉西门大街道路交叉口,西侧为汉中门遗址公园。

基地东临鸿运大厦、鸿邺大厦,南面为石鼓路,西面为汉西门大街,北面为汉中路。

基地呈梯形,南北向最长处约108米,东西向最宽处约122米。

地块总用地面积为12013.39平方米。

基地原始高程在14.2~12.2之间。

2、规划布局充分利用基地西侧的汉中门遗址公园,在地块西南角最大面积设置绿化休闲广场,将汉中门遗址公园延伸至基地内,充分提升了地块的文化休闲价值,又打破了周边老旧、高密度的城市布局。

面对局促的用地与功能面积要求之间的矛盾冲突,本项目考虑办公和公寓分开布置,减小相互的干扰。

办公楼在基地西北角,沿汉中路和汉西门大街,有良好的形象展示面和可达到性。

公寓塔楼位于基地东侧和南侧,下部裙房相连布置了公寓的配套功能,提升公寓的品质。

商业围绕基地周边及内街布置,减小对办公和公寓人流的干扰。

基地沿石鼓路设置机动车出入口,沿汉中路以及汉西门大街设置人流主要出入口。

由于地块处于老城区,北侧住宅建筑较密集,办公楼北侧二十层以上做了退台处理。

公寓楼东南侧靠近住宅,且此住宅为塔楼,东西南三朝向均为卧室,为了减少对住宅的日照影响,此区域的公寓楼高度控制在24米以内。

3、建筑功能的布置依据秦淮区发展和改革局及业主的要求,本项目旨在打造集办公、商业、居住为一体的“新都市主义综合体”。

建设内容:由两栋高层建筑办公楼、公寓楼及其地下四层车库组成,总建筑面积103184.85㎡。

金融城2VAV系统技术要求

金融城2VAV系统技术要求

重庆江北嘴金融城2号工程变风量VAV空调及楼宇自动化安装工程技术要求一、楼宇自控系统1、金融城2#工程说明1.1、概述重庆市江北嘴金融城2号工程用地面积为:平方米。

包罗 3栋超高层建筑和一栋商业单体建筑。

此中:1号楼高米;2号楼高米;3号楼高米;4号楼高米。

1、2、3号楼的功能为写字楼,4号楼为商业楼。

四栋建筑在地下连通,功能为车库、食堂以及设备房等。

总建筑面积:平方米。

1号楼地上25层,2号楼地上37层,地下均为5层。

3号楼地上29层,地下3层;4号楼地上5层,地下4层。

4栋建筑均属于一类高层建筑。

车库泊车位为947辆,室外泊车位为38辆。

共设置了3个地下车库出入口,此中包含一个货运车辆出入口。

建筑抗震设防分类类别为一般设防类〔丙类〕,抗震设防烈度:6度,主要布局类型:框架-核心筒、框架剪力墙和框架布局。

设计使用安然年限为50年。

人防设防等级为五级。

本工程耐火等级为一级,防水等级为二级(含地下室),此中地下室中的物管用房、档案室、配电间和开闭所的防水等级为一级。

1.2、现场条件1、1.2.1 室外设计参数:重庆地域2、夏季:▪室外大气压力:973.1(hpa)▪室外干球温度(空调):℃▪室外干球温度(通风):℃▪室外湿球温度(通风):℃▪日平均温度:℃▪室外平均风速2.1(m/s)▪室外最多风向:NW 〔西北〕▪相对湿度(空调):82%冬季:▪室外大气压力:993.6 (hpa)▪室外干球温度(空调):3.5℃▪室外干球温度(通风):5.2℃▪室外湿球温度(通风):℃▪日平均温度:℃▪室外平均风速0.8(m/s)▪室外最多风向:N 〔北〕▪相对湿度(空调):82%3、现场条件:▪室内温度:0℃~40℃▪室内最大相对湿度:日平均不大于95%〔25℃时〕,月平均不大于90%〔25℃时〕▪额定电压为380V/220V,TN-S制,电压波动率:±7%▪额定频率为50Hz,频率波动率:±2%2、楼宇自控系统〔BAS〕范围江北嘴楼宇自控系统监控设备包罗但不限于以下设备与系统:空调换热站、变风量空调机组、新风换气机、并联型FPB、单风道型V A V、送风机、排风机、排风〔烟〕机、定风量空调机组、风幕机、空调冷却循环水系统〔精密空调用〕、无风管诱导型通风主机、公共照明、电梯与消防电梯、自动扶梯、柴油发电机、智能管网叠压供水设备、可调式减压阀组、排水〔污〕等设备。

从南京十大写字楼建筑看南京写字楼

从南京十大写字楼建筑看南京写字楼

从南京十大写字楼建筑看南京写字楼标签:从南京十大写字楼建筑看南京写字楼从南京十大写字楼建筑看南京写字楼景的场发展前市(同步市场研究部出品)目录3 :前言3 楼办务大、南京高层一十公商情盘详3 地广、1场绿5 南中际心京金2融、国6 场京国际3南、广7 主新京百楼4、南7 广器场宁口电5新苏、街8 二场期6德、基广9 场苏广7体奥、宁0 大奥金1 8厦、1 地1 、新中9心1 国、雨润0广11场际3 场格市析现分二公局京办状1南、三、南京写字楼市场供销分析及近期发展趋势预测155 楼预分供写京字1销南及、场1析测市6 及金租1预市场字京写楼分价、南2析测售四、南京甲级写字楼发展现状及发展趋势预测177 诠级楼释写字位别、1定18 析分及字预测1级写京甲南供、2销楼9 及析1预楼率置空分估字写级甲、302 测预景前展发及征特展发年近楼字写京南、五02 征特展发年近楼字写京南、1.2、南京写字楼市场发展预测21结束语:22前言:近年南京建筑高度屡次被刷新,这些建筑多为办公、商住综合用途楼盘,外立面新颖现代,定位高端,主要集中于城中和河西两区域,部分楼盘体量庞大,将在近期或未来几年内给南京市场提供大量的办公、商业、高档酒店、高档商务用房,这是否能改善南京办公、商铺物业销售不温不火的局面,能否大幅提升南京高档办公、商铺物业的售价,甚至影响南京现有办公、商铺物业的租金?情楼一公、详南办京十商大盘高务层场、绿广1地工程简介:绿地广场总建约30万平M,集区域内生态、顶级酒店、高档办公、学院、商业为一体,囊括紫峰摩天洲际总部、云峰国际商务首席、翠峰生态商务中心三大杰作,建成后将成为南京档次最高、影响力最大的城市新地标和现代服务业集聚区。

紫峰大厦建筑高度约450M,地上89层,总建筑面积约18万平方M,地下4层,总建筑面积6万平方M。

主要功能设有六星级洲际酒店(约7.9万㎡)、超5A办公楼(可销售面积约6.2万㎡)以及顶级购物中心(约4.8万㎡)。

南京金融城—2、4、6号楼超限审查

南京金融城—2、4、6号楼超限审查

2.结构设计依据
2.1.执行的国家标准
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 名称 《建筑结构可靠度统一标准》 《建筑抗震设防分类标准》 《建筑结构荷载规范》 《建筑抗震设计规范》 《混凝土结构设计规范》 《混凝土结构工程施工质量验收规范》 《建筑地基基础设计规范》 《高层民用建筑设计防火规范》 《地下工程防水技术规范》 《混凝土结构耐久性设计规范》 《钢结构设计规范》 《钢结构工程施工质量验收规范》 《砌体结构设计规范》 编号或出版日期 GB50068-2001 GB50223-2008 GB50009-2001(2006年版) GB50011-2010 GB50010-2010 GB50204-2002 GB50007-2002 GB50045-95(2005版) GB50108-2008 GB/T50476-2008 GB50017-2003 GB50205-2002 GB50003-2001 √ √ √ √ √ √ √ √ √ √ √ √ √
南京金融城建筑结构工程超限设 计可行性论证报告 (2、4、6栋)
东南大学建筑设计研究院
1.内容简介
1.工程概况 2.结构设计依据 3.勘察报告基本数据 4.基础设计概况 5.结构概念设计及结构布置和选型 6.结构性能化抗震目标及设计要求 7.结构分析主要内容 8.多遇地震(小震)作用下结构分析主要结果 9.设防中震作用和罕遇大震的分析 10.关键构件验算 11.结论
2,4,6号楼
Y
5.结构概念设计及结构布置和选型
5.2.结构超限情况
不规则类型 1a 1b 2a 2b 3 4a 4b 5 6 7 结论 扭转不规则 偏心布置 凹凸不规则 组合平面 楼板不连续 刚度突变 尺寸突变 构件间断 承载力突变 其他不规则 涵义 考虑偶然偏心的扭转位移比大于 1.2 偏心距大于 0.15 或相邻层的质心相差 较大 平面凹凸尺寸大于相应边长30%等 细腰形或角部重叠形 有效宽度小于 50%,开洞面积大于 30%, 相邻层刚度变化大于70%或连续三层变 化大于80% 缩进大于25%,外挑大于10%和4m 上下墙、柱、支撑不连续,含加强层 相邻层受剪承载力变化大于65% 如局部穿层柱、斜柱、夹层、个别构件 错层或转换 序号a、b不重复计算 现值 1.23 0.216 无 无 无 无 35,39,43,顶层挑10m 无 无 无 是否超限 超限 超限 不超限 不超限 不超限 不超限 超限 不超限 不超限 不超限

南京绿地超高层(英文)

南京绿地超高层(英文)

PERFORMANCE-BASED EVALUATION FOR THE 450m NANJING GREENLANDFINANCIAL CENTER MAIN TOWERCharles M. Besjak, SE. PE. Director, Skidmore, Owings and Merrill, LLP.Brian J. McElhatten, SE, PE. Associate Director, Skidmore, Owings and Merrill, LLP.Preetam Biswas, PE. Associate, Skidmore, Owings and Merrill, LLP.I NTRODUCTIONIn order to obtain seismic review approval for the Nanjing State-Owned Assets & Greenland Financial Center's Main Tower, one of tallest structures in the world to date, enhanced design measures and performance-based evaluations were utilized. The critical parts of the lateral system were designed for earthquake forces between two and six times that typically required by Chinese code. In addition a full 3-Dimensional Non-Linear Elasto-Plastic analysis for a 2500-year earthquake was completed to determine the structures response and serviceability. A multi-stage axial shortening, creep and shrinkage analysis was also performed to evaluate the long-term load sharing between the central core and the perimeter of the Tower via the outrigger truss system.O VERVIEWThe Nanjing State-Owned Assets & Greenland Financial Center Project (A1 Site) is a mixed-use development consisting of a 450-meter tall (1476'), 70-story office and hotel Main Tower; a 100-meter tall (328'), 22-story Accessory Office Tower; and a 7-story podium building linking the two towers and containing retail space, cinemas and hotel conference center. The total area above grade is approximately 197,000 square meters (2.1 million square feet). The 450-meter tower contains approximately 65,000 square meters of office space on levels 11 through 34 and 60,000 square meters of hotel, club, and restaurant space on levels 36 through 65. The project has 4 below-gradelevels under the entire site with a partial mezzanine between the first basement floor and the ground floor. Total(A) Architectural Rendering(B) Construction PhotographFigure 1: Nanjing Greenland Financial Center Main TowerD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .below-grade area is approximately 64,000 square meters. These floors contain retail, mechanical systems, hotel support, loading docks, car parking, and bike parking.Across the street from the A1 Site is the Nanjing Greenland International Commercial Center Project (A2 Site), which is a thirteen-story multi-use building containing office, retail, dining and parking facilities. Surface parking is contained at basement Level B2. Retail, dining and atrium spaces occur from Level B1 to Level 3. Following are nine floors of office space with a partial mechanical floor and atrium at the top. Typical floor-to-floor heights are 6.3m at the retail floors and 4.2m at the office floors. The overall height of the building is 66.2m (217') above grade with a total area of 46,000 square meters (495,000 square feet).Structural topping-out of the Main Tower was completed in September 2008. Cladding installation has been completed and interior fit-out is currently underway. When finished the Main Tower will be the 5th tallest building in the world according to the CTBUH criteria.The overall project was a competition that was awarded to the Chicago office of Skidmore, Owings and Merrill (SOM) in 2004. The schematic design and design development phases along with the seismic review process for the A1 Site were completed by SOM by the middle part of 2005 and then turned over to the Local Design Institute (LDI), East China Architectural Design and Research Institute (ECADI), for completion of the construction documents and construction administration phases. Schematic design for the A2 Site was completed by SOM in January 2005, and then turned over to ECADI to complete the remainder of the design phases. ECADI is the engineer of record for both the A1 and A2 sites.Given the height of the Main Tower and the requirements for super-tall buildings which are well beyond the limits of the Chinese code, an extensive performance-based evaluation approach was employed. Particular emphasis and effort was put into the seismic design, analysis and review process including an elasto-plastic analysis on one of the tallest buildings in the world to date. The steps taken for the seismic design and approval of the Main Tower will be the primary focus of this paper.S TRUCTURAL S YSTEM FOR THE M AIN T OWERThe Main Tower consists of a composite system utilizing both structural steel and reinforced concrete elements to resist both gravity and lateral loads. Typical floor-to-floor heights are 6m to 7m in the podium zone, 4.2m in the office zone and 3.8m in the hotel zone. Mechanical floors are generally double-height spaces at 8.4m tall. The lateral-load resisting structural system provides resistance to both seismic and wind loading. Refer to Figure 2 for graphic of overall lateral system. The primary lateral system is comprised of an interior reinforced concrete “super-core” shear wall system and exterior composite columns. Shear wall thicknesses range from 300mm to 1500mm over the height of the building with reinforced concrete link beams joining adjacent sections of shear wall around door openings and major mechanical penetrations. The closed form of the "super-core’s" perimeter provides a large amount of the overall torsional stiffness of the building. The core wall thicknesses were optimized in order to better balance the triangular-shaped core for both bending stiffness and torsional rigidity. This resulted in thicker walls near the "tip" of theFigure 2: Main Tower Lateral SystemSteel Braced Frame and Shear WallOutrigger andBelt Truss System Perimeter Moment Frame “Super-Core” to Primary RoofOutrigger and Belt Truss System Perimeter Moment FrameOutrigger andBelt Truss SystemD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .core for the trapezoid-shaped closed form and slightly thinner walls for the rest of the core. Figure 2 shows a photo of the core construction. The exterior composite columns are linked to the "super-core" by structural steel outrigger trusses at the 8.4 meter tall mechanical floors at Levels 10, 35, and 60. Outrigger trusses typically align with theweb walls in the core and extend from the perimeter column through the core to the other perimeter column on the opposite side of the building. Figure 4 shows a typical outrigger and belt truss configuration at a major mechanical floor. Figure 4 is typical elevation of one of the outrigger trusses showing the proposed detailing. Note that the outrigger truss was carried through the core walls as an added layer of redundancy at the request of the seismic review panel. Embedded steel columns near the edges of the core walls were extended for a minimum of three floors above and below the outrigger trusses to aid in transferring the force couples developed under lateral loading. Figure 5 shows a photo of one of the outrigger trusses being erected. The exterior composite columns at these levels are linked together by a structural steel belt truss system at the perimeter to provide a more uniform load distribution in the columns. A portion of the belt truss system can be seen in the photo of Figure 6. Composite column sizes range from 900mmdiameter to 1750mm diameter over the height of theFigure 3: Photograph of Core Wall ConstructionFigure 4: Outrigger and Belt Truss Configuration D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .building. From Level 63 to 67 a portion of the reinforced concrete core continues up in combination with a braced steel frame to form the lateral system. Above Level 67 to the Roof at 381m, the lateral system consists of small reinforced concrete core and a perimeter moment frame structure. A structural steel spire continues to 450m. The secondary lateral system for the Main Tower consists of a moment-resisting frame at the perimeter of the building. The perimeter moment frame system provides additional torsional stiffness, structural integrity, and redundancy for the overall building.Figure 5: Typical Outrigger Truss ElevationFigure 6: Photograph of Outrigger Truss ConstructionD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .The gravity load-resisting structural system consists of structural steel floor framing supporting a 155mm thick composite metal deck floor slab. Typical floor framing is spaced at 3 meters on and welded, headed shear studs are used to provide composite behavior between the slab and supporting beams (see Figure 8). Floor framing inside the "super-core" consists of reinforced concrete beams supporting a reinforced concrete one-way slab. The central reinforced concrete "super core" and the exterior composite columns then transmit the floor framing loads to the foundations. Refer to Figures 8 and 9 for typical floor framing plans in the office and hotel portions of the building, respectively.The below grade levels where constructed of reinforced concrete using a temporary, internally-braced slurry wall retention system. A permanent reinforced concrete foundationwall was then constructed insideFigure 7:Photograph of Belt Truss ConstructionFigure 8: Photograph of Typical Floor ConstructionD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .of the slurry wall system. Figure 10 shows the basement level excavation with temporary cross-lot bracing. The foundation system for the Main Tower consists of a 3500mm thick, cast-in-place reinforced concrete mat under the entire footprint of the building supported by cast-in-place reinforced concrete belled caissons in the underlying rock.L ATERAL L OADINGR EQUIREMENT AND E VALUATIONBoth wind and seismic loading were evaluated in the analysis and design of the Main Tower.Figure 9 (B): Typical Hotel FloorFigure 9 (A): Typical Office Floor Figure 10: Photograph of Basement Excavation and Temporary Internal BracingD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .A 100-year return period wind was required for this project due to the height of the building. Wind tunnel testing was performed by RWDI Laboratories in Ontario, Canada to determine more accurately the actual wind pressures applied to the building as well the translational and torsional accelerations experienced at different levels. In general, the loads determined by the wind tunnel were substantially lower than those required by the Chinese code and were used for both serviceability checks. Per Chinese Code requirements, the interstory drift ratio under the 100-year wind load could not exceed 1/500. Strength design was done using forces calculated from the code. Seismic requirements in the Chinese Code are somewhat different that that encountered in many other building codes around the world. There are three separate levels of earthquake that are considered depending on the type, height and complexity of the structure:1. Frequent Earthquake - 63% chance of being exceeded in 50 years (50-year return period)2. Moderate Earthquake - 10% chance of being exceeded in 50 years (~ 500-year return period)3. Major Earthquake - 2% chance of being exceeded in 50 years (~ 2500-year return period)For small to medium buildings without irregularities, only the Frequent earthquake is generally used for all strength and serviceability checks.Nanjing is defined as Seismic Intensity VII which is roughly equivalent to a Zone 2A per the UBC Code. A site-specific seismic evaluation study was done on the site, and it was found that a fault line ran through it. This led to an increase in the parameters provided for use in creating Response Spectrum and Time History curves. As an example, the peak value on the site-specific response spectrum curve for the Frequent earthquake was 50% higher than that required by the basic code values for Nanjing. From a serviceability standpoint, interstory drift ratios under the Frequent earthquake were also not to exceed 1/500 per code.Comparing the wind tunnel loads with the site-specific response spectrum for the Frequent earthquake, it was found that wind load controlled in the weak direction of the Tower (narrow direction of the core) while seismic controlled for the strong direction.S EISMIC D ESIGN AND R EVIEW P ROCESSThe Main Tower at 450m in height is substantially over the code limit of 190m for a concrete core-steel frame structure. In addition there were vertical and horizontal irregularities created by transfer elements at the major mechanical floors, diaphragm cutouts at various floors over the height of the building and torsional movements near the base of the Main Tower where it supported the majority of the lateral loads on the Podium structure. As a result of the height and the irregularities, the Main Tower was defined as an Over-Limit and Complex structure per the Chinese Code. This resulted in additional measures required for analysis and design and for the seismic review process. A performance-based evaluation approach would be required to satisfy the seismic experts and building authorities that the Tower would be safe and behave appropriately.One of the primary structural requirements for the Tower was the implementation of "Super Grade I" design and detailing for major components of the lateral system. This involved amplification factors on the seismic loads for the core walls and the perimeter moment frame system as well as large increases in the size and reinforcing details for boundary elements within the core wall system.Beginning with the Jin Mao Tower in Shanghai in the mid-1990's, SOM has completed numerous projects in China which were super-tall and beyond the limits of the Chinese code. Additional design and analysis measures are always required on these projects to prove their behavior and gain approval from seismic review panels and building authorities.The seismic review process for the Main Tower first began in the April 2005 in the early part of design development. Due to the size and nature of the Tower, a national panel of experts from universities and design institutes from various parts of China was assembled. SOM presented the structural system and behavior with theD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .assistance of ECADI, who was required by Chinese Code to develop their own separate, concurrent structural model for comparison with SOM's ETABS model. Knowing that the structure was beyond the code limits and that additional measures would surely be required, SOM suggested in this initial meeting that all structural members of the lateral system should be designed to remain elastic under the site-specific response spectrum for a Moderate earthquake rather than the code-prescribed Frequent earthquake. The seismic experts agreed this was an appropriate approach but suggested the use of the Code-prescribed response spectrum for the Moderate earthquake in lieu of the site-specific values. Discussions during this meeting led to several additional measures:1. An elasto-plastic time history analysis for the Major earthquake would be performed to verify overallstructural behavior and determine any weak points in the structure.2. The core walls would be designed for the shear forces resulting from the Major earthquake.3. The outrigger trusses and belt trusses would be designed to remain elastic under the Major earthquake. SOM developed the following table to summarize the performance-based evaluation approach that would be utilized including the purpose of and requirements for the Frequent, Moderate, and Major earthquakes as well as the Elasto-Plastic analysis. This served as a useful tool for guiding the process as well as summarizing the approach for review by the seismic experts at subsequent meetings.Reviewing Table 1 Parts A and B, it is seen that all members of the lateral system were designed for the larger of:1. The Frequent earthquake using the site-specific Frequent response spectrum, factored load combinations,reduced material design values, and all "Super Grade I" amplification factors;2. The Moderate earthquake using the code-specified Moderate response spectrum, factored loadcombinations, reduced material design values, but no "Super Grade I" amplification factors. In addition to the seismic forces, all members were checked against the 100-year Code-prescribed wind loads for strength. The overall structure was then checked for serviceability interstory drift ratios for both 100-year wind tunnel loads and the site-specific response spectrum for the Frequent earthquake.In Part C, the additional measures taken for the shear walls and outrigger/belt truss systems are documented. Because of the importance of the outrigger and belt trusses in transferring load between the interior and exterior systems and in controlling the drifts of the building under seismic loads, the forces in the trusses were designed for the Major earthquake using the code-specified Major response spectrum with service-level load combinations, unreduced material design values and no "Super Grade I" amplification factors. Similarly, since the majority of the shear forces on the structure are taken by the core walls and an alternate load path to carry these shear forces does not exist, the shear forces in the walls were designed for the Major earthquake using the code-specified Major response spectrum with service-level load combinations, unreduced material design values and no "Super Grade I" amplification factors.Lastly in Part D, an elasto-plastic analysis was performed to further confirm the structure's behavior assuming that hinges could form in some members of the lateral system and that the forces in the outrigger and belt trusses and the shear in the core walls did not exceed the elastic design values accounted for in the response spectrum analysis for the Major earthquake. The interstory drift ratios were also checked to verify that acceptable movements were occurring. Three separate time-history curves were used that had been scaled up by six times that provided by the local geotechnical engineer for the Frequent earthquake to simulate the Major earthquake event. Two of the time history curves were scaled versions of actual earthquake records while the third was a simulated earthquake record. The methodology and results of the elasto-plastic analyses will be described in greater detail below.The next seismic review meeting was held in early July 2005 a few weeks before the end of the design development phase to present the progress of the design approaches noted above incorporating the expert's requirements from the first meeting. For the most part everything was satisfactory to them with a few additional requests related to clarifying certain design procedures used and some additional information on particular detailing elements.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .SOM's design continued until the end of the design development phase at the end of July 2005 at which time a formal seismic review calculation report was assembled and presented at the third seismic review meeting. This report was several hundred pages and documented the overall design of the structure as well as addressing all of the expert's recommendations and requirements from the previous meetings. Concurrently, SOM performed a Staged Construction and Creep-Shrinkage Analysis to determine long-term load transfer between core wall and the perimeter column via the outrigger truss system. At the conclusion of this meeting, seismic design approval was granted for the project. A handful of comments were made related to additional design considerations to be incorporated by ECADI during the construction document phase. Given the size and complexity of the project, the seismic review process went very smoothly with a limited number of review meetings. The performance-based evaluation approach taken by SOM including the enhanced design measures, creep and shrinkage analysis, and elasto-plastic analysis resulted in a very efficient and successful structure.Table 1: Summary of Analysis and Design Approach for Seismic and Wind LoadingD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .N ONLINEAR E LASTO -P LASTIC T RANSIENT D YNAMIC A NALYSIS USING T IME H ISTORY C URVESA three dimensional Transient Dynamic Analysis with material nonlinearity was performed to determine the rare earthquake (2% in 50 year probability) demand on the building’s structural system. The Nonlinear Time History Analysis was carried out in order to evaluate the maximum drifts and verify that they were less than the allowable code maximum elasto-plastic drift ratio limit as per Chinese code. Work done by outriggers and belt-truss members were analyzed and compared to member capacity designed by elastic analysis so as confirm that they remain elastic during the Major earthquake event.Nonlinear Static Pushover Analysis versus Nonlinear Elasto-Plastic Time History AnalysisIn the case of nonlinear static pushover analysis, usually the response spectrum curve representing the occurrence of a Major earthquake is applied to the elastic model and the generated story shears are used for loading purposes. A static load equal to the above mentioned story shears are applied in increments to the model to generate hinge formations and corresponding stress redistribution in the lateral system. After the entire load has been applied, the building interstory drift is plotted and compared to the allowable limit as per code. Another method is incremental loading of the structure until target deflection is exceeded; resulting in forces generated in the members appropriate to a major earthquake and; observe hinge formation and corresponding stress redistribution in the lateral system. This method is an approximation of the seismic response since it’s a static load and not actual forces generated by accelerations from a time history curve.One the other hand a more exact method for seismic response is nonlinear elasto-plastic analysis, where accelerations from at least three time-history curves are applied to the model to generate hinge formations and corresponding stress redistribution in the lateral system. The structure is analyzed for each of the 3 time-histories in very small time step increments (50steps/second) for a total duration of 3-4 times the primary building period. With up to 10 iterations at every step in order to achieve equilibrium, this is a very intense analysis and requires significant computational time. At the conclusion of the required duration of the time history, building interstory drift for each time step is recorded and the maximum at any given time is plotted and compared to the allowable limit as per code.For the performance based evaluation of Nanjing Greenland Financial Center Main Tower the more accurate ‘Nonlinear Elasto-Plastic Time History Analysis’ was employed.Three Dimensional Nonlinear ModelingOnly the elements that were part of the lateral system of the structure i.e. reinforced concrete shear wall supercore, perimeter moment resisting frames comprising of steel beams and composite columns; and built-up structural steel outriggers and belt-truss connecting the supercore to the perimeter moment frame were modeled with nonlinear properties. The nonlinear model was built in SAP2000 V8 Non-Linear product of CSI (Computer and Structures, Inc.).Mass and Rigid DiaphragmsNodes at every level were linked with rigid diaphragms. A rigid diaphragm slaved the lateral displacement and the in-plane rotation of the nodes connectedto it. The seismic mass was calculated from the self weight of the structure and applied superimposed loads.Figure 11: Simplified Frame Modelin SAP2000D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .Gravity LoadsFor an elasto-plastic time history analysis the effect of the dead load on the modeled elements was important. The dead load was used to “pre-load” the structure before applying the earthquake time history, resulting in initial stressing of the members. Loads in the model were applied as area loads on shell elements (slabs) and line loads on horizontal linear elements (beams).Software, Model, Material Properties, Elements Description and HingesSoftwareThe software used for modeling was SAP2000 V8 Nonlinear, a finite element software product of Computer and Structures Inc. In order to run a non-linear analysis the software requires the elastic elements to be defined with nonlinear hinges; and since nonlinear hinges can only be applied to frame elements, all shear wall elements were modeled as vertical frame elements and connected together using rigid links. At each time step of the elasto-plastic analysis, the software solves equations for the entire structure, locating the formation of nonlinear hinges and redistributing the force level accordingly before proceeding to the next time step.Simplified Frame ModelFor the purpose of elasto-plastic analysis, a simplified frame model of comparable structural properties was built and compared to the ETABS elastic model in which the shear walls were modeled as shell elements. The two models were found to be comparable to each other in terms of their net reactions at base, building modes, modal mass participation ratios etc.Concreterelationship is related to the reinforcement and theconfinement of the section. To represent the different concrete material possibilities, six different concrete models were set up: they were with properties for confined and unconfined C50, C60 and C70 respectively. The stress-strain curves are based on Mander’s model for concrete behavior with confining stresses computed from the detail properties. As an example C60 material property and corresponding inputs into XTRACT are shown in Figures 12Typical Material Properties assigned in the analysis program – XTRACT are based on the following assumptions. Asan example material properties of C60 arelisted below:Figure 12: C60 Concrete Model Stress-Strain Curve Figure 13: XTRACT Input for Concrete (a) Confined Concrete (b) Unconfined Concrete D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。

10101847_好淡指数

10101847_好淡指数

简称信托公司日期单位净值最近一月回报(%)近一年回报(%)京福创富3期中海信托10.01.8 1.0008大成灵活配置2期中外贸信托10.01.8 1.3877-1.6256.15浦江之星8号2期中海信托10.01.8 1.4133-3.20大成灵活配置中外贸信托10.01.8 1.0004-1.5027.90睿信深圳国际信托10.01.8145.0000-1.8392.74富临门1号中融国际信托10.01.8 1.1085-1.41京福创富1期陕西省国际信托10.01.80.93850.62金股优选1号中融国际信托10.01.80.9926-1.79理财宝1号中海信托10.01.8 1.0005价值联成梦想7号山东省国际信托10.01.8 1.0346-1.89瑞智1期平安信托10.01.842.8000-5.5428.61同亿富利1号陕西省国际信托10.01.80.7776-10.58尊享权益(积极策略2号)中外贸信托10.01.8 1.0013-1.15尊享权益(积极策略3号)中外贸信托10.01.8 1.0553-1.26基业长青2期华宝信托10.01.80.9116-2.4234.02奕金安1期中外贸信托10.01.8 1.1164-2.44飞天3号国投信托10.01.8 1.0083-1.96京福2号北京国际信托10.01.8 1.0081-5.41柘弓1期中信信托10.01.898.5600-0.89首联鑫河1号山东省国际信托10.01.81.3240-4.40星石19期中信信托10.01.8102.9700-0.03星石18期中信信托10.01.8102.4800-0.01瑞僖稳健收益2期国投信托10.01.8 1.00670.22基业长青华宝信托10.01.80.8454-3.0635.39稳健增值1号中铁信托10.01.80.8481-4.01星石15期中信信托10.01.8103.9900-0.04星石12期中信信托10.01.8112.0000-0.04中咨东方2号(特定)交银国际信托10.01.8 1.0003浦江之星27号中海信托10.01.80.9902价值联成梦想5号山东省国际信托10.01.80.8848-2.21·精选资料·投资人是买股票,不是买整个股票市场,因此最好把注意力放在个别股票和企业上。

南京金融城TowerBlockComplexgmpArchitekten

南京金融城TowerBlockComplexgmpArchitekten

南京金融城TowerBlockComplexgmpArchitekten南京金融城所在的第45号地块,位于河西区新会展中心和江东中路东侧的显著位置,处于河西新城的中轴线上,嘉陵江东街以南,雨润大街以北,东至庐山路、西至江东中路,紧邻地铁1、2号线,项目用地面积近8万平方米,拟设置10座高层建筑,地上总建筑面积近70万平方米。

南京金融城规划设计充分借鉴了国外先进城市金融中心建设发展成功经验,按照现代化金融服务功能要求,着力完善高端功能配置和公共支撑平台。

作为地标将成为具有国际水准的金融企业的聚集地,在重点吸引金融机构总部或区域总部的基础上,同时引进各类金融服务机构,金融交易市场、金融监管机构、创投机构入驻。

金融城还将借鉴华尔街、浦东、天津配套建设金融博物馆。

南京金融博物馆将征集、保护、研究、交流和展示南京金融业发展的足迹与成果。

为金融界人士提供一种格调高雅的高端沟通场所。

目前南京金融城已经完成了一批金融机构的入驻签约。

江苏第一家内资保险机构法人总部紫金财产保险股份有限公司、江苏第一家外资银行机构法人总部首都银行有限公司均已入驻办公。

项目地块呈正方形,北侧有红旗河穿过,42米宽的弧线形空间走廊下面有地铁2号线穿过,另外还有一条28米宽的城市景观绿轴穿过地块中央,构成了该地块基本特色。

根据城市规划要求,建筑应贴地块边线布置。

地块北侧可建设部分是一块设有两座高层建筑的非直角形基底地块。

这一基底形式以“风车叶翼模式”按顺时针方向再现于地块另一侧,因此在由地块边线构成的正方形之中又形成一个扭转角度的正方形。

七座最高为200米的高层建筑构成南京金融城建筑群的“外环”。

在地块内部,沿循扭转正方形的形式布置了由三座高层建筑构成的“内环”,这些建筑亦按照风车叶翼模式以正方基本平面形式进行布局。

地块内侧的高层建筑与外侧高层建筑的规划边线协调一致。

因此内环建筑和外环建筑构成了一个规划的整体。

红旗河和跨地块景观绿轴形成“峡谷”和新的景观区,蜿蜒穿过高层建筑群,与建筑的严谨几何形式形成对比反差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京金融城所在的第45号地块,位于河西区新会展中心和江东中路东侧的显著位置,处于河西新城的中轴线上,嘉陵江东街以南,雨润大街以北,东至庐山路、西至江东中路,紧邻地铁1、2号线,项目用地面积近8万平方米,拟设置10座高层建筑,地上总建筑面积近70万平方米。

南京金融城规划设计充分借鉴了国外先进城市金融中心建设发展成功经验,按照现代化金融服务功能要求,着力完善高端功能配置和公共支撑平台。

作为地标将成为具有国际水准的金融企业的聚集地,在重点吸引金融机构总部或区域总部的基础上,同时引进各类金融服务机构,金融交易市场、金融监管机构、创投机构入驻。

金融城还将借鉴华尔街、浦东、天津配套建设金融博物馆。

南京金融博物馆将征集、保护、研究、交流和展示南京金融业发展的足迹与成果。

为金融界人士提供一种格调高雅的高端沟通场所。

目前南京金融城已经完成了一批金融机构的入驻签约。

江苏第一家内资保险机构法人总部紫金财产保险股份有限公司、江苏第一家外资银行机构法人总部首都银行有限公司均已入驻办公。

项目地块呈正方形,北侧有红旗河穿过,42米宽的弧线形空间走廊下面有地铁2号线穿过,另外还有一条28米宽的城市景观绿轴穿过地块中央,构成了该地块基本特色。

根据城市规划要求,建筑应贴地块边线布置。

地块北侧可建设部分是一块设有两座高层建筑的非直角形基底地块。

这一基底形式以“风车叶翼模式”按顺时针方向再现于地块另一侧,因此在由地块边线构成的正方形之中又形成一个扭转角度的正方形。

七座最高为200米的高层建筑构成南京金融城建筑群的“外环”。

在地块内部,沿循扭转正方形的形式布置了由三座高层建筑构成的“内环”,这些建筑亦按照风车叶翼模式以正方基本平面形式进行布局。

地块内侧的高层建筑与外侧高层建筑的规划边线协调一致。

因此内环建筑和外环建筑构成了一个规划的整体。

红旗河和跨地块景观绿轴形成“峡谷”和新的景观区,蜿蜒穿过高层建筑群,与建筑的严谨几何形式形成对比反差。

南京金融城因地处河西区中央商务区中心区域,交通十分便利。

地块北侧和东侧的两个地铁站以及江东中路为进出地块提供了优越的公共和个人交通条件。

共设有2700个停车位的三个地下停车库的进出口分别设在嘉陵江路、庐山路和雨润大街一侧。

另外地上还设有约300个停车位。

公司领导人员和贵宾的下客区设在地下停车库中,由此可直接抵达各个高层建筑和贵宾专用客梯。

景观设计方案将红旗河和中心景观绿轴融入到一个统一的整体设计之中。

跨地块的绿轴形成“峡谷”,蜿蜒穿过高层建筑群,与建筑的严谨几何形式形成对比反差。

南京金融城项目由德国GMP事务所和东南大学建筑设计研究院设计联合体完成方案投标并中标,目前已进入初步设计阶段,并预计于2014年完成项目主体施工。

打造南京金融城,是加快河西金融集聚区建设,推动南京现代服务业高端发展的重大举措,对于建设南京区域金融中心城市,提升城市综合竞争力都具有重大意义。

相关文档
最新文档