航空发动机原理与构造
航空航天工程师的航空发动机技术
航空航天工程师的航空发动机技术航空航天工程师的航空发动机技术对于现代航空工业的发展和飞行安全至关重要。
本文将从航空发动机的基本构造、工作原理、技术发展以及未来趋势等方面,深入探讨航空航天工程师在航空发动机技术领域的重要作用。
一、航空发动机的基本构造航空发动机通常由燃烧室、涡轮、压气机和燃料供应系统等多个基本部件组成。
燃烧室是燃烧燃料并释放能量的关键组件,涡轮通过从废气中提取能量来驱动压气机,而压气机则用于将外界空气压缩以提供给燃烧室。
二、航空发动机的工作原理航空发动机的工作原理可以简单概括为:通过吸气和燃烧提供动力。
压气机将外界空气压缩后,压缩空气进入燃烧室与燃料混合并燃烧,释放出的燃气通过涡轮推动涡轮旋转,涡轮将剩余能量传递给压气机,实现发动机的自我驱动。
同时,燃烧过程产生的尾气则经喷管排出,推动飞机向前飞行。
三、航空发动机技术的发展随着科技的进步,航空发动机技术也在不断演进和改进。
从传统的涡轴发动机到现代的涡轮风扇发动机,技术的进步使得航空发动机的推力提高、噪音减少、燃油效率提升。
涡扇发动机采用了双流策略,提高了进气流速,使得压气机提供更大的压比,而喷管的改进则使得排气速度更高,推进效率更大。
四、未来航空发动机技术的趋势未来航空发动机技术的发展趋势主要包括三个方面的创新:高温材料的应用、新型燃料的使用以及混合动力技术的发展。
高温材料的应用可以提高发动机的热效率和推力,进而实现更高的速度和载重能力。
新型燃料的使用则可以减少对化石能源的依赖,降低排放,实现更环保的飞行。
而混合动力技术则将电动机与传统发动机相结合,提高整体效率和可靠性。
总结起来,航空航天工程师在航空发动机技术的研发中起着重要的作用。
他们致力于优化发动机的性能、效率和可靠性,从而为航空工业的发展提供技术支持。
随着技术的不断进步,未来的航空发动机将更加高效、环保,并为航空工业带来更广阔的发展空间。
(字数:657字)。
航空发动机原理与构造
航空发动机原理、构造与系统(Aviation Engine Principle , Structure and Systems)教学大纲本课程与其它课程的联系:主要先修课程:航空概论、大学物理主要后续课程:航空发动机维修一、课程的性质本课程是航空机电设备维修专业的一门主要专业课。
二、课程的地位、作用和任务本课程旨在帮助学生掌握航空燃气涡轮发动机的基本工作原理和特性,掌握航空燃气涡轮发动机的基本结构,了解各主要工作系统的组成、工作原理。
为学生将来从事航空维修打下必要的理论基础。
三、课程教学的基本要求1. 理解工程热力学、气体动力学的基本概念及在航空发动机上的应用。
2. 掌握涡喷发动机各主要部件的工作原理、基本结构和工作特性3. 理解常用发动机(涡扇发动机)的工作特点、主要系统工作原理。
4. 掌握航空发动机的维修和使用的基本知识。
四、课程教学内容1. 航空燃气涡轮发动机热工气动基础1.1 工程热力学部分1.2 气体动力学部分重点:热力学第一定律,焓形式的能量方程式,机械能形式的能量方程式。
难点:机械能形式的能量方程式思考题:10个2. 燃气涡轮发动机基本工作原理2.1 工作循环2.2 产生推力的原理2.3 主要性能参数重点:燃气涡轮发动机的理想循环;难点:主要性能参数。
-1 -思考题:5个,计算题:2个3. 涡喷发动机主要部件3.1 进气道3.2 压气机3.3 燃烧室3.4 涡轮3.5 尾喷管重点:压气机增压原理,涡轮工作原理;收敛喷管的工作状态。
难点:压气机流量特性思考题:20 个,计算题:4 个,4. 燃气涡轮发动机共同工作4.1 稳态共同工作4.2 过渡态共同工作4.3 单转子涡喷发动机特性4.4 双转子涡喷发动机特性4.5 涡轮螺旋桨发动机4.6 涡轮风扇发动机4.7 涡轮轴发动机重点:稳态工作,转速特性,涡桨发动机特性,双转子涡扇发动机组成和工作原理,涡轴发动机部件的特点,难点:高度特性, 速度特性,涡扇发动机特性思考题:15 个5. 发动机总体结构5.1 转子支承机构5.2 联轴器5.3 支承结构重点:各种类型发动机的转子结构,轴承,典型封严装置难点:多转子发动机转子支承结构思考题:5 个6. 发动机工作系统6.1 燃油控制系统6.2 滑油系统6.3 起动系统;6.4 点火系统6.5 指示系统6.6 操纵系统6.7 排气系统重点:各工作系统的组成、功用和典型系统思考题:15 个7. 辅助动力装置7.1 概述7.2 APU 工作系统7.3 典型辅助动力装置重点:结构和典型机型思考题:2 个8. 发动机使用维修8.1 发动机维修8.2 发动机健康管理重点:维修要求和常见的方法思考题:4个五、课内实践教学要求在整个教学过程中安排4个学时的实习,主要内容是有关发动机构造的演示性实验,地点在- 2 -工程技术训练中心。
航空发动机原理与构造
航空发动机原理与构造航空发动机作为现代飞机的核心动力装置,扮演着至关重要的角色。
本文将介绍航空发动机的原理与构造,从热力循环到关键部件,为读者全面解读航空发动机的工作原理和组成结构。
一、航空发动机的热力循环航空发动机的热力循环是指在发动机内部由空气和燃料组成的混合气体经过一系列热力学过程的循环。
常见的热力循环包括Otto循环、Diesel循环和Brayton循环。
航空发动机一般采用的是Brayton循环,也称为常压循环。
Brayton循环的基本原理是:空气经过压缩过程提高压力,然后加燃料燃烧产生高温高压气体,进一步通过膨胀过程输出功,最后经过排气过程将废气排出。
整个循环过程中,航空发动机通过压缩、燃烧和膨胀等过程将燃料的化学能转化为动力能,推动飞机前进。
二、航空发动机的构造航空发动机由许多关键部件组成,每个部件都承担着特定的功能,共同构成了一个高效、可靠的动力系统。
下面将重点介绍几个常见的航空发动机部件。
1. 压气机(Compressor)压气机是航空发动机中的核心部件之一,其主要功能是将来自进气口的气流压缩,提高气压和密度。
航空发动机一般采用多级压气机,每级都由叶轮和定子组成,并通过不断旋转的叶轮将空气压缩,使其具备足够的压力进入燃烧室。
2. 燃烧室(Combustor)燃烧室是航空发动机中完成燃烧过程的部件。
它是一个密封的空间,将压缩机提供的高压空气与燃料充分混合并点燃,产生高温高压的燃烧气体。
燃烧室内的燃烧需要考虑燃料和空气的适当比例,以及高效的燃烧稳定性。
3. 涡轮(Turbine)涡轮是将燃烧室中产生的高温高压气体释放能量的关键部件。
航空发动机中常见的涡轮有高压涡轮和低压涡轮。
高压涡轮由高压工作介质驱动,通过轴向和径向叶片将气体能量转化为轴功。
低压涡轮则从废气中提取能量,驱动压气机。
4. 推力增加装置(Thrust Reverser)推力增加装置用于改变航空发动机排出气流的方向,将气流向后推进,产生反向推力。
2023年度航空发动机原理
2023年度航空发动机原理航空发动机原理是航空工程的关键性理论基础,主要涉及热力学、流体力学等学科。
本文将介绍航空发动机的基本工作原理、内部组成结构及其影响因素等。
一、航空发动机的基本工作原理航空发动机是一种将燃料与空气混合燃烧产生高温高压气体,利用其推动涡轮或风扇产生动力的装置。
航空发动机是由压气机、燃烧室和涡轮机等结构组成,其基本工作原理包括:1.压气机航空发动机中的压气机主要由多级叶轮组成,其作用是将外部空气压缩并送入燃烧室。
压气机的结构分为轴向式和离心式,轴向式压气机一般用于低涵道比的发动机,离心式压气机一般用于高涵道比的风扇发动机。
多级叶轮流量、转速及叶片角度等参数的设计是决定压气机工作效率和机动性能的重要因素。
2.燃烧室燃烧室又称为燃烧器,其作用是将压缩后的空气与燃料混合并点燃,发生高温高压燃烧反应,产生高温高压气体,从而驱动涡轮和风扇产生动力。
燃烧室内部的燃烧过程受到燃料选择、混合质量、燃烧室大小及形状等因素的影响。
燃烧室壳体的冷却及热膨胀等问题也是考虑的重点。
3.涡轮机涡轮机是航空发动机的核心部件,主要作用是将高温高压气体转换为旋转动能送至飞机的推进器,从而产生推力。
涡轮机由多级涡轮组成,从高温高压气体获得能量驱动涡轮转动。
涡轮机的效率与组成结构、叶片角度以及叶轮材质、温度等有关,其中温度是限制涡轮机效率和使用寿命的一个重要因素。
二、航空发动机内部组成结构1.压气机航空发动机中的压气机包括进气道、压缩机、旋转部件(转子或叶轮、叶片)、众多驱动部件等。
其中,进气道主要是引导大气气流进入压缩机,压缩机可分为轴流式和离心式,前者用于高空高速飞行,后者用于航空发动机的大涵道比风扇。
2.燃烧室航空发动机中的燃烧室主要由壳体和燃烧室内部构件组成,如点火器、燃料喷嘴、燃烧滤网等。
其中点火器用于点燃压气机压缩的空气和燃料混合物。
3.涡轮机航空发动机中的涡轮机是由组成涡轮部件、静止部件、支持系统等组成。
航空发动机及其部件工作原理
航空发动机及其部件工作原理航空发动机,那可是现代航空技术的核心所在,它的工作原理相当复杂且充满了科技的魅力。
咱们先来说说喷气式发动机吧。
喷气式发动机主要由进气道、压气机、燃烧室、涡轮和尾喷管等部件组成。
进气道就像是发动机的嘴巴,它的任务是把外界的空气顺利地引进来。
你看啊,飞机在高速飞行的时候,进气道得把大量的空气以合适的速度和压力送进发动机内部呢。
就好比我们跑步的时候,大口大口呼吸新鲜空气一样,进气道要确保发动机有足够的“空气食粮”。
压气机可是个大力士。
它负责把进气道进来的空气进行压缩,让空气的压力和密度都大大提高。
这就像把松散的棉花使劲儿压缩成一个紧实的小团一样。
压气机通常由多级叶片组成,每一级叶片都像一个小小的风扇,一级一级地对空气进行加压。
这样做的好处可多了呢,一方面可以让空气在燃烧室里更好地燃烧,另一方面也能提高发动机的效率。
比如说,在一些高性能的战斗机发动机中,压气机的压缩比非常高,这就能为燃烧室提供强劲的气流。
燃烧室就像是发动机的心脏,是燃烧发生的地方。
经过压气机压缩后的高温高压空气和燃料在这里混合并燃烧。
这一燃烧过程可不得了,会释放出巨大的能量。
想象一下,就像在一个封闭的小房间里点燃了一堆熊熊大火,火焰迅速蔓延,释放出的能量推动着发动机继续运转。
燃料在燃烧室里像个听话的小助手,根据发动机的需求精确地和空气混合燃烧,产生高温高压的燃气。
涡轮呢,它和压气机是紧密相连的。
燃烧室产生的高温高压燃气首先冲击涡轮,使涡轮高速旋转。
涡轮的旋转又带动压气机旋转,就像一个循环的链条一样。
涡轮在这个过程中要承受极高的温度和压力,所以它的制造材料和工艺要求都非常高。
比如说,一些先进的涡轮叶片采用了特殊的合金材料,还使用了复杂的冷却技术,来确保在高温环境下能够正常工作。
最后就是尾喷管啦。
从涡轮出来的燃气通过尾喷管高速喷出,产生反作用力,推动飞机向前飞行。
尾喷管的形状和设计也很有讲究呢。
它可以根据发动机的工作状态进行调整,比如在飞机起飞和加速的时候,尾喷管会调整到合适的状态,让燃气以最大的速度喷出,提供最大的推力;而在飞机巡航的时候,又会调整到另一种状态,以保证燃油效率。
航空发动机原理与构造
航空发动机原理与构造
航空发动机是飞机的核心动力装置,是实现飞行的关键部件。
它的原理和构造包括以下几个方面:
1. 空气进气系统:航空发动机通过空气进气系统将大量空气引入发动机内部,提供所需的氧气。
空气进气系统通常包括进气道、进气口和进气滤清器。
2. 压气机:压气机是航空发动机的核心部件之一,负责将进气的空气进行压缩,增加其密度和压力。
常见的压气机有离心式压气机和轴流式压气机两种类型。
3. 燃烧室:燃烧室是航空发动机中进行燃烧反应的地方,通过将燃料和空气混合并点燃,产生高温高压的燃烧气体。
燃烧室通常包括燃烧室壁、燃烧室蓄压器、喷嘴等组成部分。
4. 高压涡轮:高压涡轮是航空发动机中的重要组成部分,负责驱动压气机和燃烧室。
它通过从排气气流中获得的能量,将其转化为机械能驱动发动机的其他部件。
5. 排气系统:排气系统将燃烧后的废气排出发动机,通常包括排气管和喷口。
排气系统的设计能够减少噪音和排放,提高发动机的效率。
航空发动机的构造复杂,设计精密,能够根据不同的飞行要求提供合适的推力。
它由众多的零部件组成,如涡轮盘、轴承、涡管、压气机叶片、燃烧器等。
这些部件经过严格的工艺加工
和精密装配,以确保发动机的正常工作和高效性能。
总之,航空发动机的原理和构造是复杂而精密的,它是现代航空技术的关键之一。
通过不断的技术创新和改进,航空发动机的效率和可靠性不断提高,为飞机的飞行提供强大的动力支持。
航空发动机原理构造
航空发动机原理构造第一章、燃气涡轮发动机的工作原理1、燃气涡轮喷气发动机:将燃油燃烧释放的热能转化为机械能的装置。
它既是热机(将燃油化学能转化为热能),又是推进器(将热能转化为机械能)。
冲压式2、发动机涡喷涡轮式涡扇(包含桨扇)涡轴涡桨3、发动机分类依据:氧化剂来源;氧化剂形态;有无压气机4、燃气涡轮喷气发动机(Turbojet Engine):以空气作为工质。
与航空活塞发动机相比这种发动机具有结构简单、重量轻、推力大、推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加。
5、涡轮螺旋桨发动机(Advanced Turbojet-propeller Engine):组成:燃气轮机、螺旋桨、减速器工作原理:空气通过进气道进入压气机;压气机以高速旋转的叶片对空气做功压缩空气,提高空气的压力;高压空气在燃烧室内和燃油混合,燃烧,将化学能转化为热能,形成高温高压的燃气;高温高压的燃气在涡轮内膨胀,推动涡轮旋转输出功去带动压气机和螺旋桨,大量的空气流过旋转的螺旋桨,其速度有一定的增加,使螺旋桨产生相当大的压力;气体流过发动机,产生反作用推力。
优点:综合了涡喷和涡桨的优点,而且在较低的飞行速度下,具有较高的推 进效率,所以它在低压音速飞行时具有较好的经济性。
6、涡轮风扇发动机(Turbofan Engine ):组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压 涡轮、喷管工作原理:工作情况与涡喷发动机相同。
推力来源是风扇和内涵道推力。
涡 轮、燃烧室、尾喷管与涡喷发动机相同,压气机还可以提高发动 机性能。
优点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低等 特点。
7、涡扇发动机有内外连个涵道。
8、涵道比:外涵流量与内涵流量的比值,用符号B 表示。
q q m m 21/B 。
9、涵道比越大,推力越大。
10、直升机主要使用涡轮轴发动机;涡轮风扇发动机主要用于民机;涡轮喷气发 动机主要用于军机。
航发原理总结
航发原理总结一、引言航空发动机是飞机的核心动力装置,能够将燃料燃烧产生的热能转化为推力,推动飞机在空中飞行。
航发原理作为航空工程的基础,是飞行器安全可靠性的重要保障。
本文旨在对航发原理进行总结,介绍其基本构造和工作原理。
二、航发结构航空发动机由气源系统、燃油系统、点火系统、润滑系统和机体附件等部分构成。
1. 气源系统气源系统主要由进气道、压气机和燃烧室组成。
进气道负责将空气引入航发,经过压气机的压缩作用,提高气体压力和温度,使混合气更容易燃烧。
2. 燃油系统燃油系统负责将燃油输送到燃烧室,以供燃烧产生能量。
燃油系统由燃油泵、燃油喷嘴和燃油控制系统组成。
燃油泵负责将燃油从燃油箱抽取,并以一定的压力送入燃烧室。
燃油喷嘴将燃油雾化喷入燃烧室,与空气混合燃烧。
3. 点火系统点火系统负责在燃烧室中点燃燃油与空气的混合物。
点火系统包括点火塞、高压变压器和点火线圈等部件。
当点火塞接收到高压电流时,产生火花,引燃燃料,从而启动发动机。
4. 润滑系统润滑系统用于减少航发内部零部件之间的摩擦和磨损,提高发动机的运行效率和寿命。
润滑系统由润滑油泵、润滑油箱和润滑油滤清器等组成。
5. 机体附件机体附件包括空气起动器、发动机控制装置和辅助动力装置等,对航发的控制和运行起到重要作用。
三、航发工作原理航空发动机的工作原理可以总结为四个过程:进气、压缩、燃烧和喷气。
1. 进气过程进气过程是指空气通过进气道进入航发的过程。
进气道具有一定的导向和增压功能,将外界空气引导进入压气机。
由于航发运行时需要大量空气参与燃烧,进气道在设计时要保证足够的空间和气体流动性,以提供所需的气体供应。
2. 压缩过程压缩过程是指压气机将进气空气进行压缩,提高气体压力和温度的过程。
压气机通过在转子内迅速旋转的转子叶片,将进气气体进行反复压缩,提高气体的密度和温度。
3. 燃烧过程燃烧过程是指燃料在燃烧室中与压缩空气混合并燃烧的过程。
燃烧室内通过控制燃油的喷射速度和角度,使得燃油与空气充分混合,然后点火点燃。
航空发动机原理与构造
七、涡轮喷气发动机的特性
转速特性 在保持飞行高度和飞行速度一定的条
件下,发动机的推力和燃料消耗率随转 速变化的规律,叫发动机的转速特性。 1、一般涡轮喷气发动机的转速特性 a、推力随转速变化的原因 b、燃料消耗率随转速变化的原因
七、涡轮喷气发动机的特性
转速特性 2、涡轮喷气发动机的基本工作状态 a、最大工作状态 b、额定工作状态 c、巡航工作状态 d、慢车工作状态
七、涡轮喷气发动机的特性
速度特性 2、燃料消耗率随飞行M数的变化 3、涡轮喷气发动机的高度—速度特性
八、发动机的发展
涡轮螺浆发动机 一、结构特点 二、性能特点 1、起飞推力大 2、低亚音速范围经济性好 3、结构复杂,重量重 三、当量功率的计算 四、涡轮螺浆发动机实例
八、发动机的发展
涡轮风扇发动机 一、结构特点 二、性能特点 1、叶尖M数不大,风扇效率较高 2、结构简单、重量轻 3、推进效率高,经济性好 4、可以采用加力风扇来增大推力 5、排气噪音小 6、直径大,发动机短舱阻力大
第十章 发动机自动调节元件分析
三、压力比敏感元件 1、工作原理 2、性能分析
第十章 发动机自动调节元件分析
放大随动装置 一、分油活门式放大随动装置 二、回油活门式放大随动装置
感谢观赏
2020
航空发动机原理与构造
3、燃烧室
燃烧室是燃料和空气混合并燃烧的 机件。从压缩器来的压缩空气在这里被 加热,获得热能,具备了膨胀做功使发 动机产生推力的必要条件。
4、涡轮
涡轮是在燃气的作用下旋转做功的 机件。从燃烧室来的高温、高压燃气流 过涡轮时,使工作叶轮高速旋转做功, 带动压缩器和一些附件工作。
1、概述
组成 进油泵、滑油滤、主回油泵、油气分
制作简单航空发动机原理
制作简单航空发动机原理导言:航空发动机是飞机的核心动力装置。
它将燃油转化成气体动能,推动飞机的运行。
本文将详细介绍航空发动机的工作原理及其组成部分。
一、航空发动机的工作原理1.空气吸入:航空发动机通过进气口吸入空气。
进气口前通常装有空气滤清器,以防止杂质进入发动机内部。
2.燃烧过程:发动机内部有一个燃烧室,燃油和空气在这里进行混合并燃烧。
通过燃烧过程产生的高温高压气体推动涡轮旋转。
3.涡轮产生动力:航空发动机内部有一个涡轮,其由高温高压气体推动旋转。
涡轮叶片上具有相对位置可调的导向叶片,可控制气体流向以增加涡轮转速。
4.推力输出:通过涡轮的旋转,将动力传输至机身后方的喷气口。
高速喷出的气流产生反作用力,从而推动飞机向前飞行。
二、航空发动机的组成部分1.进气系统:进气系统主要由进气口、空气滤清器、进气管道等组成。
它的主要作用是将空气引入发动机内部。
2.压气机:压气机是发动机的核心部件之一、它通过旋转的涡轮叶片将气体压缩,增加气体的密度和压力。
3.燃烧室:燃烧室是将燃料和空气混合并点燃的地方。
它通常位于压气机和涡轮之间,用于转换燃料的化学能为气体动能。
4.涡轮:涡轮是发动机的另一个核心部件。
它由一组固定和可转动的叶片组成,通过气体的冲击和压力推动涡轮旋转。
5.推力装置:推力装置包括喷管和尾喷口等组件。
它通过高压气体在喷管内膨胀产生高速气流,进而产生推力。
三、航空发动机的分类1.喷气发动机:喷气发动机通过喷射高速气流产生推力,常见的有涡轮风扇发动机和涡轮喷气发动机。
2.螺旋桨发动机:螺旋桨发动机通过螺旋桨带动空气产生推力,常见的有活塞式发动机和涡轮螺旋桨发动机。
结论:简单航空发动机的工作原理是通过压缩空气,与燃烧室内的燃料混合后点燃并推动涡轮旋转,进而通过喷出高速气流产生推力。
航空发动机的组成部分包括进气系统、压气机、燃烧室、涡轮和推力装置等。
不同类型的航空发动机根据其工作原理和推力方式进行分类。
这些发动机的设计和改进对于提高飞机的性能和效率具有重要意义。
航空发动机原理
航空发动机原理简介航空发动机是飞机的核心部件之一,它的工作原理决定了飞机的飞行性能。
航空发动机的主要任务是将燃料的化学能转化为动力,推动飞机前进。
本文将介绍航空发动机的工作原理和主要组成部分。
工作原理航空发动机的工作原理基于热力学循环原理,它通过燃烧产生的高温高压气体推动涡轮转动,进而驱动飞机飞行。
一般来说,航空发动机根据工作原理可以分为喷气式发动机和涡轮螺旋桨发动机。
喷气式发动机原理喷气式发动机是目前大多数商用飞机所采用的发动机类型。
它的工作原理基于Joule-Brayton循环原理。
主要的组成部件包括压气机、燃烧室和涡轮。
1.压气机:压气机负责压缩进入发动机的空气,提高其压力和温度。
压缩空气被分为高压和低压两个级别,分别通过不同的压气机级实现压缩。
2.燃烧室:燃烧室是将燃料与压缩空气混合燃烧的地方。
燃料在燃烧室中燃烧产生高温高压气体,驱动涡轮旋转。
3.涡轮:涡轮由高温高压气体驱动,并通过轴将动力传递给压气机和其他系统。
涡轮旋转产生的动力推动了发动机的工作。
涡轮螺旋桨发动机原理涡轮螺旋桨发动机主要应用在小型飞机和直升机上。
它的工作原理基于Brayton循环原理。
主要的组成部件包括涡轮、燃烧室和螺旋桨。
1.涡轮:涡轮由燃烧室中的燃料燃烧产生的高温高压气体驱动。
涡轮旋转产生的动力推动飞机前进。
2.燃烧室:燃烧室是将燃料与压缩空气混合燃烧的地方。
燃料在燃烧室中燃烧产生高温高压气体,驱动涡轮旋转,进而推动飞机前进。
3.螺旋桨:涡轮螺旋桨发动机通过螺旋桨来提供推力。
螺旋桨通过轴与发动机的涡轮相连,涡轮驱动螺旋桨旋转,产生推力。
主要组成部分不论是喷气式发动机还是涡轮螺旋桨发动机,它们都包括以下几个主要的组成部分:1.压气机:负责压缩进入发动机的空气,提高其压力和温度。
2.燃烧室:将燃料与压缩空气混合燃烧,产生高温高压气体。
3.涡轮:由高温高压气体驱动,并通过轴将动力传递给压气机和其他系统。
4.出口喷管:将高温高压气体排出,产生推力。
常用航空发动机的结构与原理
常用航空发动机的结构与原理展开全文一、活塞式航空发动机为航空器提供飞行动力的往复式内燃机称为活塞式发动机。
发动机带动空气螺旋桨等推进器旋转产生推进力。
活塞式发动机由汽缸、活塞以及把活塞的往复运动转变为曲轴旋转运动的曲柄连杆机构等主要部分组成。
曲柄连接着螺旋桨,螺旋桨随着曲柄转动而转动,曲轴则支承在轴承上。
汽缸上装有进气门和排气门" 进气门是控制空气和汽油的混合气进入的零件,汽油燃烧完以后有排气门排出。
活塞式航空发动机是一种四冲程、电嘴点火的汽油发动机。
曲轴转动两圈,每个活塞在汽缸内往复运动4次,每次称1个冲程。
4个冲程依次为吸气、压缩、膨胀(作功)和排气,合起来形成1 个定容加热循环。
从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。
20 世纪40年代中期,在军用飞机和大型民用机上,燃气涡轮发动机逐步取代了活塞式航空发动机,但小功率活塞式航空发动机比燃气涡轮发动机经济,在轻型低速飞机上仍得到应用。
二、燃气涡轮发动机由压气机、燃烧室和燃气涡轮组成的发动机称为燃气涡轮发动机。
它的优点是重量轻、体积小和运行平稳,广泛用作飞机和直升机的动力装置。
核心机:在燃气涡轮发动机中,由压气机、燃烧室和驱动压气机的燃气涡轮组成发动机的核心机。
空气在压气机中被压缩后,在燃烧室中与喷入的燃油混合燃烧,生成高温高压燃气驱动燃气涡轮作高速旋转,将燃气的部分能量转变为涡轮功。
涡轮带动压气机不断吸进空气并进行压缩,使核心机连续工作。
从燃气涡轮排出的燃气仍具有很高的压力和温度,经膨胀后释放出能量(称为可用能量)用于推进。
核心机不断输出具有一定可用能量的燃气,因此又称燃气发生器。
现代燃气涡轮发动机压气机的增压比(压气机出口空气总压与进口总压之比)范围为4-28,消耗功率可高达数十兆瓦(几万马力)。
燃气涡轮前的温度可达1200-1700K。
压气机分为离心式和轴流式两类,前者增压比低、直径大,仅用于小功率发动机;后者流量大、增压比高,应用广泛。
航空发动机原理与构造知识点总结
航空发动机原理1 概论航空动力装置的功能是为航空器提供动力,推进航空器前进,所以航空动力装置也称为航空推进系统。
它主要包括航空发动机,以及为保证其正常工作所必需的系统和附件,如燃油系统、滑油系统、起动系统和防火系统等,通常简称为航空发动机。
1.1航空燃气涡轮发动机的基本类型目前航空燃气涡轮发动机有五种基本类型:涡轮喷气发动机、涡轮螺桨发动机、涡轮风扇发动机、涡轮轴发动机和供垂直/短距离飞机用的发动机。
涡轮喷气发动机简称涡喷发动机(WP)。
从结构上讲,它由压气机、燃烧室、燃气涡轮和尾喷管四个主要部件组成(见图1-1),其特点是:涡轮只带动压气机压缩空气,发动机的全部推力来自高速喷出的燃起流所产生的反作用力。
涡轮喷气发动机经济性差高温、高速燃气由尾喷管排出,能量损失大,因此经济性差。
图1-1 涡轮喷气发动机涡轮螺桨发动机简称涡桨发动机(WJ)。
在这类发动机中,涡轮除带动压气机供给发动机所需的空气外,还带动螺桨,产生飞机前进的拉力。
由尾喷管喷出的燃起流所产生的推力只占飞机前进力的很少一部分(10%)。
从结构上讲,这类发动机还多一个部件——减速器。
涡轮风扇发动机简称涡扇发动机(WS),又称内外涵发动机。
它是介于涡喷和涡桨之间的一种发动机。
它由两个同心圆筒的内涵道和外涵道组成,在内涵道中装有涡喷发动机的部件——压气机、燃烧室和涡轮,在外涵道中装有由内涵转子带动的风扇(见图1-2)。
发动机的推力是内、外涵道气流反作用力的总和。
- 2 -外、内涵道空气流量之比称为流量比,又称涵道比。
涡扇发动机的优点是,推力大了,排出的能量小了,耗油率低。
图 1-2 涡轮风扇发动机若在涡桨发动机中,发动机输出轴不带动螺桨,而用来输出功率,例如带动直升机的旋翼、舰艇的推进器、或地面的发电机和油泵等,则这种燃气涡轮发动机称为涡轮轴发动机,简称涡轴发动机(WZ)。
1.2 航空燃气涡轮发动机性能指标涡轮发动机和涡扇发动机都是将燃气发生器的可用功用于增加流过发动机气流的动能并产生反作用推力。
航空发动机原理与构造-精选文档
起动系统的工作 1、地面起动 2、冷开车 3、油封冷开车 4、空中开车
六、压缩器与涡轮的共同工作
稳定工作状态下压缩器与涡轮 的共同工作 1、发动机稳定工作条件 2、用压缩器通用特性曲线研究压缩器 与涡轮的共同工作
六、压缩器与涡轮的共同工作
过渡工作状态下压缩器与涡轮 的共同工作 1、如何使加速时间短 影响加速时间的因素 怎样增大剩余功率 2、减速状态下压缩器与涡轮的共同工作
航空发动机原理与构造
飞机工艺教研室
主要内容
主要机件 滑油系统 燃料系统 工作状态操纵系统 起动系统 压缩机与涡轮的共同工作 涡论喷气发动机的特性 发动机的发展 发动机自动调节概述 发动机自动调节元件分析 发动机自动调节系统分析 喷嘴理论
一、主要机件
3、主燃料系统
供油量调节部分 用来调节发动机各种工作状态下的供油 量,保证发动机在各种条件下都能正常 工作。 包括:低压转子转速调节器、液压延迟 器、油量调节器、升压限制器和 启动供油调节装置等。
3、主燃料系统
放油活门和放气活门
4、加力燃料系统
加力供油部分 加力供油量调节部分 高压转子最大转速限制器 放气活门
概述 滑油系统的功用是将足够数量和适当 黏度的清洁滑油连续不断地喷到轴承和传 动齿轮的齿合处进行润滑和散热。
主要附件 滑油系统的维护
1、概述
组成 进油泵、滑油滤、主回油泵、油气分 离器、离心通风器和燃料滑油附件(包 括滑油箱、滑油散热器和燃料滤)等。 工作路线 滑油循环使用。 供油、回油、通气、放油。 主要数据
2、压缩器
压缩器是用来压缩进入发动机的空 气提高空气的压力,供给燃烧室以大量 高压空气的机件。压缩器提高空气压力 的目的是为燃气在发动机内部膨胀创造 有利条件。
航空发动机原理与构造
航空发动机原理与构造
航空发动机是飞机的心脏,是飞机能否顺利起飞、飞行和着陆的关键设备。
它
的性能直接关系到飞机的安全性、经济性和环保性。
航空发动机的原理与构造是航空工程领域中的重要课题,下面我们将对航空发动机的原理与构造进行详细介绍。
首先,航空发动机的原理是基于热力学和流体力学的基本原理。
航空发动机利
用燃料的燃烧产生高温高压的燃气,通过喷嘴将燃气喷入涡轮,推动涡轮旋转,再通过轴将动能传递给飞机,推动飞机飞行。
这是航空发动机的基本工作原理。
其次,航空发动机的构造包括压气机、燃烧室、涡轮和喷管等部分。
压气机负
责将大气中的空气压缩,提高空气的密度,增加燃料燃烧时释放能量的效率;燃烧室是燃烧燃料的地方,燃烧后的高温高压燃气推动涡轮旋转;涡轮是由燃气推动的旋转部件,通过轴传递动能给飞机;喷管是将燃气喷出,产生推力,推动飞机飞行。
再者,航空发动机的构造还包括燃料系统、润滑系统、起动系统等辅助部件。
燃料系统负责将燃料输送到燃烧室,保证燃料的正常燃烧;润滑系统负责给发动机各个部件提供润滑油,减少部件之间的摩擦,延长使用寿命;起动系统负责启动发动机,使其正常运转。
最后,航空发动机的原理与构造是相辅相成的。
只有深刻理解了发动机的工作
原理,才能设计出合理的构造;而合理的构造又能更好地发挥发动机的工作原理,提高发动机的性能和效率。
总之,航空发动机的原理与构造是航空工程领域中的重要内容,对于飞机的性
能和安全具有至关重要的意义。
只有不断深入研究发动机的原理与构造,不断提高发动机的技术水平,才能更好地满足飞机的发展需求,推动航空事业的发展。
航空工程师中的航空发动机原理
航空工程师中的航空发动机原理航空工程师在航空发动机的设计和维护中扮演着至关重要的角色。
航空发动机是飞机发动机的一种,负责产生推力以推动飞机前进。
了解航空发动机的原理对于航空工程师来说是至关重要的。
本文将深入探讨航空工程师中的航空发动机原理。
一、航空发动机的基本构成航空发动机由多个关键组件组成,包括压气机、燃烧室、涡轮和喷气管。
压气机负责将空气压缩,燃烧室则将压缩的空气与燃料混合并点燃。
涡轮通过高速旋转,带动压气机和喷气管运作,从而产生推力。
二、航空发动机工作原理航空发动机的工作原理可以概括为以下几个步骤:1. 空气进气:飞机在飞行时,空气通过进气道进入压气机。
进气道会放大和加速空气,确保足够的空气进入发动机。
2. 压缩:当空气进入压气机后,压气机中的转子将空气压缩到较高的压力和温度。
压缩过程使空气分子更加密集,为后续的燃烧提供充足的氧气。
3. 燃烧:经过压缩之后的空气进入燃烧室,与燃料混合并点燃。
燃料的燃烧产生高温高压的燃气流,释放能量。
4. 膨胀:高温高压的燃气流经过涡轮膨胀,驱动涡轮旋转。
同时,涡轮通过轴将旋转的动能传递给压气机,使压气机保持正常运转。
5. 推力产生:经过压缩、燃烧和膨胀后的燃气流进入喷气管,通过喷气管迅速喷出。
喷气产生的反作用力,即推力,驱动飞机向前推进。
三、航空发动机的类型航空发动机可分为喷气发动机和涡轮螺旋桨发动机两大类。
喷气发动机广泛应用于商用飞机和军用飞机,而涡轮螺旋桨发动机则主要用于小型飞机和直升机。
1. 喷气发动机:喷气发动机通过喷气产生推力,噪音相对较大,但功率大,速度快。
常见的喷气发动机包括涡轮喷气发动机和高涵道比涡扇发动机。
2. 涡轮螺旋桨发动机:涡轮螺旋桨发动机通过螺旋桨产生推力,噪音相对较小,但速度相对较慢。
涡轮螺旋桨发动机具有高海拔性能和良好的短距离起降性能。
四、航空发动机的技术发展趋势随着技术的不断进步,航空发动机也在不断发展和改进。
以下是一些航空发动机的技术发展趋势:1. 高效能:通过减小摩擦、提高压缩比和改进燃烧室设计等手段提高航空发动机的效能,实现更高的推力和更低的燃料消耗。
北航航空发动机原理总结
北航航空发动机原理总结航空发动机是一种将燃料燃烧产生的高温高压气体转化为推力的设备,是飞机飞行的关键组件之一。
北航航空发动机作为中国国内领先的航空发动机制造商,其发动机原理总结具有重要的意义。
本文将对北航航空发动机的原理进行总结和分析。
一、航空发动机基本原理航空发动机的基本原理是利用内燃机的燃烧产生的高温高压气体,通过喷射式原则将其排出,产生反向的推力。
航空发动机主要由气体压缩机、燃烧室和涡轮机组成。
气体压缩机通过叶片将外界空气进行压缩,增加其密度和压力。
随后,燃料被喷入燃烧室中,与压缩空气混合燃烧,产生高温高压气体。
最后,高温高压气体通过涡轮机的叶片驱动压缩机,实现循环自动供能的过程。
航空发动机的原理可概括为:压缩气体、气体燃烧、喷出气体,三个主要步骤。
二、北航航空发动机的特点北航航空发动机在国内外航空发动机制造领域具有重要的地位。
其主要特点体现在以下几个方面:1. 高效性:北航航空发动机通过不断优化设计,提高热效率、机械效率,实现发动机轻量化和节能减排。
2. 可靠性:北航航空发动机在设计中注重结构强度和耐久性,提高了发动机的可靠性和寿命。
3. 先进技术:北航航空发动机采用了先进的喷油技术、热管理技术等,提高了发动机的性能和可控性。
4. 环保性:北航航空发动机采用了先进的排放控制技术,减少了对环境的污染,符合国际航空发动机排放标准。
三、北航航空发动机的发展趋势未来航空发动机的发展趋势,将是朝着高效、低排放、低噪音、轻量化和可重复使用等方向发展。
在此趋势下,北航航空发动机有以下几个发展方向:1. 全球市场:北航航空发动机将加强与国际航空公司的合作,进一步拓展全球市场份额。
2. 新材料应用:北航航空发动机将加强对新材料的研发和应用,提高发动机的强度、耐久性和轻量化程度。
3. 绿色技术研究:北航航空发动机将加大对环保技术的研究力度,减少对环境的污染和资源消耗。
4. 智能化发展:北航航空发动机将注重智能化技术的研发和应用,提高发动机的控制性和自动化程度。
飞行学院航空发动机原理与构造复习
飞行学院航空发动机原理与构造复习资料第一部分:航空发动机构造一、单项选择题每题2分1.涡喷涡扇涡桨涡轴发动机中,耗油率或当量耗油率的关系是A2.A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷3.C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨4.发动机转子卸荷措施的目的是B;5.A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性6.B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性7.C.减少发动机转子负荷,提高发动机推力8.D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度9.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系是D;10.A.M涡轮>-M压气机B.M涡轮<-M压气机11.C.M涡轮=M压气机D.M涡轮=-M压气机12.压气机转子结构中,加强盘式转子是为了B;13.A.加强转子强度,提高转子可靠性14.B.加强转子刚度,提高转子运行稳定性15.C.加强转子冷却效果,降低温度应力16.D.加强转子流通能力,提高压气机效率17.压气机转子结构中B;18.A.鼓式转子的强度>盘式转子的强度19.B.鼓式转子的强度<盘式转子的强度20.C.鼓式转子的强度=盘式转子的强度21.D.鼓式转子与盘式转子强度比较关系不确定22.压气机转子结构中的刚度A23.A.盘鼓混合式转子>盘式转子24.B.盘鼓混合式转子<盘式转子25.C.盘鼓混合式转子=盘式转子26.D.盘鼓混合式与盘式转子刚度大小关系不确定27.压气机静子机匣上放气机构的放气窗口通常位于A28.A.静子叶片处B.转子叶片处29.C.静子叶片与转子叶片之间D.转子叶片与静子叶片之间30.压气机转子工作叶片的榫头结构承载能力D31.A.燕尾形>枞树形>销钉式B.燕尾形>销钉式>枞树形32.C.销钉式>枞树形>燕尾形D.枞树形>燕尾形>销钉式33.燃烧室的燃油喷嘴结构中,稳定工作范围A34.A.蒸发式喷嘴>离心式喷嘴35.B.蒸发式喷嘴<离心式喷嘴36.C.蒸发式喷嘴=离心式喷嘴37.D.蒸发式喷嘴与离心式喷嘴比较关系不能确定38.燃烧室火焰简上的轴向力A39.A.向前B.向后40.C.近似为零D.方向不定41.为减少热应力,燃气涡轮发动机燃烧室火焰筒通常采用B结构42.A.无约束 B.欠静定约束43.C.静定约束 D.超静定约束44.涡轮转子工作叶片的榫头大多采用C结构;45.A.燕尾形B.销钉式46.C.枞树形D.周向燕尾形47.涡轮转子结构通常可以采用D结构;48.A.鼓式B.鼓式,盘式49.C.鼓式,盘式及盘鼓混合式D.盘式,盘鼓混合式50.涡轮叶栅通道形式为A;51.A.收敛形B.扩散形52.C.收敛-扩散形D.扩散-收敛形53.涡轮机匣考虑结构刚性要求,一般优先考虑采用C机匣;54.A.剖分式B.分段式55.C.整体式D.剖分式和分段式56.收敛形尾喷管上的轴向力B57.A.向前B.向后58.C.近似为零D.方向不定59.发动机反推力工作时,在相同工作状态下,反推力B;60.A.与正推力大小相等B.为正推力二分之一.61.C.为正推力三分之一D.为正推力四分之一62.发动机噪声与发动机排气速度D成正比;63.A.平方B.四次方64.C.六次方D.八次方65.涡喷涡扇发动机噪声主要以D噪声为主66.A.风扇和压气机B.燃烧室67.C.涡轮D.尾喷管排气68.刚性套齿联轴器可以传递B;69.A.扭矩B.扭矩和轴向力70.C.扭矩,轴向力和径向力D.扭矩、弯矩、轴向力和径向力71.球形套齿柔性连轴器可以传递C;72.A.扭距B.扭距和轴向力73.C.扭距,轴向力和径向力D.扭距,轴向力,径向力和弯距74.滑油系统中,D;75.A.油气分离器是供油系统部件,离心通风器是回油系统部件76.B.油气分离器是回油系统部件,离心通风器是供油系统部件77.C.油气分离器是供油系统部件,离心通风器是通气系统部件78.D.油气分离器是回油系统部件,离心通风器是通气系统部件79.发动机工作时,双速传动系统的传动路线是D80.A.发动机-摩擦离合器-棘轮离合器-电机81.B.发动机-棘轮离合器-摩擦离合器-电机82.C.发动机-摩擦离合器-滚棒离合器-电机83.D.发动机-滚棒离合器-摩擦离合器-电机二、填空题每题2分1.发动机的基本类型有:涡轮喷气发动机,涡轮螺旋桨发动机,涡轮风扇发动机,涡轮轴发动机,供垂直/短距起落飞机用的发动机;2.压气机转子结构的基本形式__鼓式、盘式、鼓盘式;3.压气机工作叶片榫头的结构形式有__销钉式、燕尾形、枞树形_;4.压气机防喘结构措施有_放气机构,可转进口导流叶片和可转静子叶片,可变弯度的进口导流叶片,机匣处理;5.发动机采取的防冰措施有_热空气防冰,电加热防冰,热滑油防冰;6.材料的比强度是_材料的持久极限或屈服极限与比重之比;7.材料的比刚度是_材料的弹性模量与材料的比重之比;8.航空发动机燃烧室的基本类型有__分管、环管、环形;9.燃烧室燃油喷嘴的基本类型有_离心喷嘴,气动喷嘴,蒸发喷嘴,甩油喷嘴;10.提高涡轮部件效率结构措施有_带冠叶片,涡轮叶片冷却,涡轮间隙控制;11.提高涡轮转子工作叶片抗振措施有___叶尖切角、叶顶带冠、环形护圈、成对榫头装于同一榫槽_;12.加力燃烧室点火器的结构形式有_热射流点火,高能电嘴,催化点火;13.反推力装置结构形式有_蛤壳形门式,戽斗式门,外涵反推;14.消音喷管的基本结构形式有__波纹式、星形、分管式_;15.双排球轴承均荷的措施是__在两个轴承的外环之间和内环之间分别安置有可以调整尺寸的调整环;16.发动机静子传力方案有_内传力方案,外传力方案,内外混合传力方案,内外平行传力方案;17.发动机滑油系统的封严装置有_篦齿式封严,浮动环环形封严,液压封严,石墨封严,刷式封严;18.航空发动机起动过程的主要阶段及特点是_第一阶段:由起动机开始带动转子转动到涡轮开始发出功率,此阶段只有起动机带动;第二阶段:涡轮开始发出功率,到起动机脱开,此阶段是由起动机与涡轮共同带动;第三阶段,起动机脱开,到发动机进入慢车状态,此阶段转子由涡轮单独带动;19.航空发动机的起动机的基本类型有__电起动机,有压气机的涡轮起动机,吴压气机的涡轮起动机;三、判断题每题2分1.错涡喷发动机的推力主要来自尾喷管高速排出的气体力的反作用力,故涡喷发动机推力主要作用在尾喷管上;2.对涡桨发动机主要由螺旋桨产生推力,但发动机有扭矩输出;3.对涡桨发动机主要由螺旋桨产生推力,但发动机有扭矩输出;4.对飞机做俯冲拉起机动飞行,发动机转子顺航向看为顺时针方向旋转,此时,陀螺力矩将使长机产生左偏航;5.错飞机做俯冲拉起机动飞行,发动机转子顺航向看为顺时针方向旋转,此时,陀螺力矩将使飞机向右偏航;6.错压气机转子叶片中,燕尾形榫头抗振性能优于销钉式榫头7.对压气机转子叶片中,销钉式榫头抗振性能优于燕尾形榫头;8.错压气机转子叶片中,燕尾形榫头强度优于枞树形榫头强度;9.错发动机压气机静子可转整流叶片可以采用内或外操纵方案;10.错可调静子叶片可以采用内或外操纵方案;11.对发动机进口导流叶片可以采用内或外操纵方案12.错航空发动机燃烧室大多采用突然扩张式扩压器,主要是其压力损失比一次扩压器小;13.对气动雾化喷嘴与空气掺混均匀,燃烧充分,其稳定工作范围比离心喷嘴宽;14.错加力燃烧室中,为了满足稳定燃烧要求,通常采用双路离心式喷嘴15.错涡轮部件冷却系统总是使零部件热应力减小;16.对涡轮转子工作叶片中间叶根有利于轮盘冷却,因而使涡轮转子总重量减少;17.对涡轮转子工作叶片中间叶根有利于轮盘冷却,尽管叶片重量增加,但使涡轮转子总重量减少;18.对涡轮转子工作叶片中间叶根有利于轮盘冷却,但增加了涡轮叶片重量,使涡轮转子总重量减少;19.对为了保证发动机的性能,在安装涡轮导向器过程中,需要调整出口排气面积;20.对球形套齿式柔性联轴器可以传递扭矩、轴向力和径向力21.对为改善发动机转子动力特性,减小发动机振动,可采用弹性及挤压油膜阻尼支承结构;22.对为了减少支承结构,在内外混合传力方案中,常采用压气机末级静子叶片和涡轮一级导向叶片传力23.错为了维持滑油系统循环,通常要求滑油系统的供油能力与回油能力相等;24.错发动机的滑油系统目的是润滑发动机主轴承,因而增加轴承腔内存储的滑油量,有利于提高轴承寿命;25.错双速传动机构在发动机工作过程中的传动路线是发动机→棘轮离合器→摩擦离合器→发电机四、简答题每题5分1.什么是恰当半径以恰当半径为界,分为哪两个区域恰当半径:2.发动机转子为什么要采取卸荷措施常采用什么措施对发动机推力有无影响一问:因为压气机转子及涡轮转子上的轴向力都是很大的,如果这两个转子都是通过自己的止推轴承来承受轴向负荷,将使止推轴承负荷很大;二问:将压气机转子与涡轮转子轴向联结,抵消一部分向前的轴向力;压气机后卸荷腔通大气;压气机前卸荷腔通高压气体三问:无影响,转子减荷后,载荷转移到静子上去了;3.什么是比强度,什么是比刚度在选择材料过程中如何考虑两者的作用比强度:材料的持久极限或屈服极限与比重之比比刚度:材料的弹性模量与材料的比重之比;第一类是转子零件,第二类是静子零件;第一类零件的材料,在工作温度下,应有高的持久强度和抗腐蚀能力,高的疲劳强度和抗振性,为减轻零件的惯性力,必须选择比强度高的材料;第二类零件主要根据工作温度、材料比重和工艺方法而定;复合材料要考虑比强度和比刚度;4.有哪些提高涡轮效率的结构措施主要从三方面说明,1、有关叶片方面,主要是叶冠;2、减小叶尖与机匣之间的间隙方面;3、涡轮部件冷却,可以提高整体的效率;5.什么是主安装节、辅助安装节、安装面对主安装节有什么要求安装节:将发动机推力传递到飞机上的重要组合件,也是发动机在飞机上的轴向定位处;辅助安装节:只承受径向和周向负荷,而不承受轴向负荷;安装面:安装面分主安装面和辅助安装面,主安装节所在的发动机横截面称为主安装面,没有主安装节的安装面称为辅助安装面;主安装节要求:应注意缩短与转子止推轴承位置的轴向距离,避免在工作受热时,静子部件与转子部件间的轴向间缭有较大的变化;五、简答题每题10分1.分析图示斯贝MK511低压压气机转子结构特点;斯贝MK511低压压气机转子为鼓式转子,结构简单,刚性好,但强度弱,转子的转速受到限制;该转子具有五级压气机叶片,采用销钉式榫头,抗振性能好,结构简单,加工方便,不需要专用加工机床,但承受能力较小,尺寸大,重量大;销钉采用垫圈和锁片固定;鼓筒由前后两端组成,连接端面轴向定位,采用精密螺栓定心,鼓筒传力、传扭;鼓筒后段与3级鼓筒连接,后两级鼓筒采用悬臂结构,缩短了支点跨度,提高了转子结构刚性;每级叶片之间有篦齿封严装置,提高压气机效率,鼓筒上设有去材料动平衡用的突环,保证转子的平衡性;后两级鼓筒为悬臂节后,缩短支点跨度,提高了转子的刚性;压气机气流通道为等中经结构,流道损失较小,但机匣加工复杂;鼓筒前后轴颈上开有通气孔,用于引低压压气机后的气体到前支点,保护前轴承与防冰热空气隔离2.分析图示JT9D高压涡轮转子结构特点;它是靠二级盘短轴内的轴向套齿和大螺帽,与压气机后轴颈联接在一起;这种结构简单,装拆又方便;而且由于将轴与二级涡轮盘相联,缩短了盘与轴承间的距离;二级盘温度较低,减少了向轴承的传热;3.分析图示CFM56风扇增压级转子结构特点;由图可知为低压转子;该转子为鼓式转子,增压级转子为鼓式转子,鼓筒靠紧密螺栓固定于风扇轮盘后端,其外圆上作出三道凸缘,用拉刀一次拉出三级燕尾形榫槽,鼓式转子的结构简单,零件数目少,加工方便,并有较高的抗弯刚性,但由于受到强度的限制,目前主要应用在大流量比涡扇发动机的低压转子上;4.分析图示斯贝MK202低压压气机转子结构特点;MK202低压压气机转子由五级转子叶片、轮盘、定距环、前轴、后轴以及一些连接件组成;是典型的加强盘式转子;前轴和第一级盘做成一体,盘身较厚,刚性好;第二级到第四级轮盘中心部分剖面呈“”形,称为发夹形结构,孔中心带有内套齿,和后轴上的外套齿有紧度地啮合,保证轮盘工作时定心良好,传扭可靠;第五级轮盘用螺栓固定在后轴的后安装边上,用套齿定心和传扭;前、后轴之间靠安装边上的圆弧端齿定心、传扭,然后用螺栓连成一体;各级轮缘之间安装着定距环,第五级盘固定后,各定距环和轮盘构成鼓筒,使转子的刚性得到加强;轮缘和定距环间装配时的轴向压紧度可通过第五级盘和后轴安装边间的垫圈进行调整;工作时,由于第五级盘向后倾斜,它的离心力的轴向分力可使各定距环和轮缘压得更紧;各定距环的外缘都带有封严齿,与静子叶片组成的内缘板构成级间封严;5.分析图示WP5发动机涡轮转子结构特点;WP5发动机涡轮转子为可拆式盘轴联接,通过联接件来实现的,因此局部的受力复杂化,使联接刚性与强度受到很大影响涡喷5发动机的盘轴联接结构;盘轴借8个螺栓轴向固紧并传力;扭矩靠盘轴安装边上的渐开线套齿传递,为降低套齿加工精度,采用了专门的圆柱面A使盘轴定心;为了减少盘向轴和轴承传热,除将盘身与盘安装边的转接部分采用局部“缩颈”外,盘轴接触处盘的端面上铣有8个圆形槽,减少传热面积,此外,在轴上装有隔热衬套,减少向轴承传热;它以两个圆往段定心,一段在轴的安装边上,另一段在轴中部带螺旋槽的凸边上;衬套装在轴上后,与轴形成环形腔,冷却空气经螺旋槽去冷却轴承内圈,然后由衬套安装边上16个径向槽甩出;这种联接方案的传力、传扭、定心,定位和冷却等均“分工”明确,并且不削弱轮盘,因此,可靠性好,尺寸较紧凑,但构造复杂,重量较大;6.分析图示J69发动机燃烧室结构特点;这是典型的折流式环形燃烧室;对小型燃气祸轮发动机,因其流量小,转速高,可以采用离心式压气机和燃油从发动机轴内腔经甩油盘离心甩出的供油方式;为了充分利用空间尺寸,缩短转子支点的距离,所以常采用折流式环形燃烧室;离心压气机出来的空气分三路折流进入火焰筒:第1路约占总气量的%,由前进气盘壁上的孔和缝隙流入;第2路约占总气量的%,经涡轮空心导向叶片,由内、后进气盘上的孔流入;其余经火焰简外壁的进气斗流入;燃烧室内、外壁后端,沿闯周分别用螺钉和螺栓固定在一级涡轮导向器的内、外环上;环绕在涡轮轴上的挡气环套内有前、后两组密封槽,在两组槽间引入第2路气体以保证涡轮轴的冷却;燃油从发动机轴内腔经甩油盘离心甩出,当转速很高时,能良好雾化和均匀分布,但在起动和低转速工作时,燃油雾化较差;7.分析图示WP7低压压气机转子结构特点;涡喷7低压压气机转子结构形式----盘式转子盘式转子由一根轴和若干个轮盘组成,用轴将各级轮盘联成一休;盘缘有不同形式的榫槽用来安装转子叶片;盘心加工成不同形式,即用不同的方法在共同的轴上定心和传扭;转子叶片和轮盘的离心力由轮盘承受,转子的抗弯刚性由轴保证;本转子中,第一级为纯盘式结构,无定距环;在转子的第二级和第三级中,为了提高转子的抗弯刚性,盘缘间增添了定距环,并将轴的直径加粗,为加强的盘式结构;在转子支承机构方面,为部分轮盘外伸的支承结构,第一级盘在前支承轴承前;8.分析图示J85发动机涡轮转子结构特点;J85涡轮转子结构是鼓盘式结构;该机构是可拆式盘轴联接,利用连接件将盘与轴联接起来,因此局部的受力更为复杂;使联接强度和刚度都受到影响;常用的连接件有长螺栓、短螺栓和套齿等;套齿联接也常用在盘与轴的联接上,采用套齿传扭、圆柱面定心、大螺母压紧;J85涡轮喷气发动机压气机的后轴伸到涡轮盘附近.涡轮短轴与第1级涡轮盘做成一体,两轴靠前后两段圆柱面定心,套齿传扭.用大螺母压紧;短轴和轴承内环配合处开有轴向槽,以减少盘向轴的传热;这种结构只要拧开大螺帽就可以分解涡轮部件,非常适用于单元体结构;盘与盘的连接利用短螺栓和鼓筒直接连接,在盘缘上打孔对盘有削弱作用;9.涡喷7发动机转子支承方案,分析优缺点;WP7低压压气机转子第一级为盘式转子,二、三级为盘鼓混合式转子;第一级带短轴的盘利用轴上双外圆柱面定心、利用与轴的接触端面压紧轴向定位,利用一级盘短轴上的齿宽和压气机轴内套齿上的宽槽周向定位;利用花键螺栓和其上螺母传力,利用短轴和压气机轴上的轴向齿套传扭;二、三级盘与轴之间利用圆柱配合面定心,二、三级盘之间利用定距村套轴向定位,二、三级盘鼓之间也利用圆柱配合面定心,径向销钉连接,配合紧度摩擦和销钉传力与传扭;三级盘与轴之间利用套齿传扭,并利用其套齿端面压紧轴向定位;整流罩与一级盘利用圆柱面定心,利用凸台和凹槽轴向定位,端面压紧轴向定位,利用旋转、热空气和憎水剂涂料提高防冰效果;一级盘前后、二级盘前侧和三级盘后侧均有平衡螺钉孔用于转子动平衡;一级叶片槽向倾斜严重,槽向分力较大,采用两个挡销固定;二级叶片次之,采用一个挡销,以圈卡环固定,挡销还起到叶片安装时定位作用;三级叶片较为平缓,仅采用以圈卡环固定;压气机前支点安装在一二级盘之间,缩短了支点跨度,提高了转子的结构刚性,但是,平衡好的转子要分解后再次装配,故平衡性不太好;10.分析V2500燃烧室结构特点;V2500发动机是环形燃烧室,该发动机燃烧室的特点是:火焰筒内壁上固定有若干段沿轴线及沿圆周由耐热合金精铸的衬片,衬片与火焰筒内壁间有缝隙,二股空气由此缝隙流过时,对火焰筒壳体及衬片进行冷却,一般称为浮壁式燃烧室;火焰筒头部有充分冷却的热屏;带20片叶栅的扩压器与外机匣、内机匣铸成一整体,起到传递高压涡轮前轴承负荷的承力框架;火焰筒头部装有20个空气雾化喷嘴,喷嘴外壳有热屏,使下作时燃油不会焦化,空气雾化喷嘴能使燃油均匀雾化,有极好的点火特性和均匀的出口温度场,增大了燃烧效率;第二部分:航空发动机原理一、单项选择题84.轴流式压气机是怎样提高发动机效率的 C85.A.能够使用更多的涡轮B.降低了燃烧室温度86.C.能获得更高的增压比D.增加进入燃烧室的空气速度87.当燃气在喷管中完全膨胀,并忽略燃气和空气质量的差别,则飞行中的发动机的推力F=A ;88.A .Ga c5-cB. Ga·c5C. Ga·cD. Gac5+c89.亚音速进气道内气体流动的速度变化为: B90.A.流速减小,静压增加91.B.流速先减小,静压增加,在经过进气整流锥,流速再稍微增加,静压降低92.C.进气道流道是一直扩张的,因为进气道又称为扩压器93.D.进气道流道是一收敛形涵道94.涡轮风扇发动机的主要特点是: C95.A.流速减小,静压增加96.B.在低超音速时,推进效率最高97.C.由两个同心圆筒的内涵道和外涵道组成98.D.能在大气层外飞行99.燃气涡轮发动机在地面起飞状态工作时 B100.A.热效率等于0 B.总效率等于0C.推进效率等于D.总效率等于101.以下说法错误的是 D102.A.冲压发动机不能在低速时使用,通常要和其他发动机组合使用103.B.火箭发动机压缩气体的方法是燃烧压缩104.C.随着涡轮前燃气温度的不断提高,涵道比也是不断增大的105.D.只要发动机推力足够大,飞行器在低空飞行速度可以突破10倍音速106.使用高涵道比的涡扇发动机,主要目的是: C107.A.改善高速性能B.改善高度特性C.改善低速性能D.改善转速特性108.随着发动机转速的提高,涡扇发动机的涵道比: C109.A.不变B.增大C.减小D.先减小后增大110.燃气涡轮发动机迅速加速时,为什么要控制供油量增加的速率: B111.A.控制涡轮间隙,防止叶片与机匣摩擦112.B.防止压气机喘振,涡轮超温和富油熄火113.C.控制发动机加热速率114.D.防止贫油熄火115.燃气涡轮发动机的排气温度表提供与 C 有关的指示116.A.进气温度B.N压气机的温度1117.C.涡轮进口温度D.排出燃气通过排气尾锥时的温度118.现代涡扇发动机的供油量是根据 A 需要来调节的;119.A.高压转子B.低压转子C.高、低压转子D.整台发动机120.燃油消耗率与单位推力的关系是: B121.A.正比B.反比C.没有关系D.不能确定122.亚音速气流流过扩张形管道时,其 C123.A.速度增加,压力下降B.速度减小,压力下降124.C.速度减小,压力增加D.速度增加,压力增加125.装有反推力装置的发动机,反推力装置打开后,气流折转的角度一般为 B ; 126.A.120°B.135°C.150°D.165°= D ;127.涡喷发动机的推力与大气压力的关系为:F/F128.A.PP0B.2)(ooo TTPPF C.2)(TTPPF ooo D.0PP129.涡轮喷气发动机反推力装置的功用是: B130.A.打开反推力装置折流板131.B.使排气改变方向132.C.使通过发动机进气道的空气倒流133.D.降低排气速度134.燃气涡轮发动机的排气温度表提供与 D 有关的指示135.A.进气温度B.N1压气机的温度136.C.排出燃气通过排气尾锥时的温度D.涡轮进口温度137.为什么涡喷发动机需要高能量的点火系统 C138.A.为了在高空和高温条件下点燃油气混合气139.B.因为使用的电压太高140.C.为了在高空和低温条件下点燃油气混合气141.D.因为使用的电压太低142.随着飞行速度的提高,涡扇发动机的涵道比: B143.A.不变B.增大C.减小D.先减小后增大144.涡扇发动机在稳定工作状态下,排气温度在实际使用中都是测量 B ;145.A.喷口处B.低压涡轮出口处C.高压涡轮出口处D.燃烧室出口处二、填空题1.启动过程,加速过程,减速过程三个过程属于发动机过渡工作状态;2.发动机主要单位性能参数有:单位推力,耗油率;3.加力涡喷发动机的主要工作过程参数有:压气机增压比,涡轮前燃气温度,加力温度4.涡轮风扇发动机主要工作过程参数有:压气机增压比,涡轮前燃气温度,动力分配系数,涵道比参数;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空发动机原理、构造与系统
(Aviation Engine Principle,Structure and Systems)
教学大纲
本课程与其它课程的联系:
主要先修课程:航空概论、大学物理
主要后续课程:航空发动机维修
一、课程的性质
本课程是航空机电设备维修专业的一门主要专业课。
二、课程的地位、作用和任务
本课程旨在帮助学生掌握航空燃气涡轮发动机的基本工作原理和特性,掌握航空燃气涡轮发动机的基本结构,了解各主要工作系统的组成、工作原理。
为学生将来从事航空维修打下必要的理论基础。
三、课程教学的基本要求
1.理解工程热力学、气体动力学的基本概念及在航空发动机上的应用。
2.掌握涡喷发动机各主要部件的工作原理、基本结构和工作特性
3.理解常用发动机(涡扇发动机)的工作特点、主要系统工作原理。
4.掌握航空发动机的维修和使用的基本知识。
四、课程教学内容
1.航空燃气涡轮发动机热工气动基础
1.1工程热力学部分
1.2气体动力学部分
重点:热力学第一定律,焓形式的能量方程式,机械能形式的能量方程式。
难点:机械能形式的能量方程式
思考题:10个
2.燃气涡轮发动机基本工作原理
2.1工作循环
2.2产生推力的原理
2.3主要性能参数
重点:燃气涡轮发动机的理想循环;
难点:主要性能参数。
思考题:5个,计算题:2个
3.涡喷发动机主要部件
3.1进气道
3.2压气机
3.3燃烧室
3.4涡轮
3.5尾喷管
重点:压气机增压原理,涡轮工作原理;收敛喷管的工作状态。
难点:压气机流量特性
思考题:20个,计算题:4个,
4.燃气涡轮发动机共同工作
4.1稳态共同工作
4.2过渡态共同工作
4.3单转子涡喷发动机特性
4.4双转子涡喷发动机特性
4.5涡轮螺旋桨发动机
4.6涡轮风扇发动机
4.7涡轮轴发动机
重点:稳态工作,转速特性,涡桨发动机特性,双转子涡扇发动机组成和工作原理,涡轴发动机部件的特点,
难点:高度特性,速度特性,涡扇发动机特性
思考题:15个
5.发动机总体结构
5.1转子支承机构
5.2联轴器
5.3支承结构
重点:各种类型发动机的转子结构,轴承,典型封严装置
难点:多转子发动机转子支承结构
思考题:5个
6.发动机工作系统
6.1燃油控制系统
6.2滑油系统
6.3起动系统;
6.4点火系统
6.5指示系统
6.6操纵系统
6.7排气系统
重点:各工作系统的组成、功用和典型系统
思考题:15个
7.辅助动力装置
7.1概述
7.2APU工作系统
7.3典型辅助动力装置
重点:结构和典型机型
思考题:2个
8.发动机使用维修
8.1发动机维修
8.2发动机健康管理
重点:维修要求和常见的方法
思考题:4个
五、课内实践教学要求
在整个教学过程中安排4个学时的实习,主要内容是有关发动机构造的演示性实验,地点在工程技术训练中心。
六、教学进程表
七、考核办法
考试方式:闭卷笔试
考试用时:120分钟
八、教材及教学参考书
教材:
1.瞿红春航空发动机原理与构造中国民航学院校内讲义
教学参考书:
1.瞿红春.民用航空燃气涡轮发动机原理. 北京:兵器工业出版社,2006
2.李书明.民用航空燃气涡轮发动机构造与系统。
北京:兵器工业出版社,2005。