概率论和数理统计浙大四版习题答案解析第三章

合集下载

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计第四版-课后习题答案盛骤浙江大学

概率论与数理统计第四版-课后习题答案盛骤浙江大学

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学完全版概率论与数理统计习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为:ABC或A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。

表示为:ABC或AB-ABC或AB-C(3)A,B,C中至少有一个发生(4)A,B,C都发生,表示为:A+B+C 表示为:ABC表示为:ABC或S-(A+B+C)或(5)A,B,C都不发生,(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于AB,BC,AC中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:A,B,C中至少有一个发生。

故表示为:或ABC(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P (A) = 0.6,P (B) = 0.7即知AB≠φ,(否则AB = φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B) (*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P(AB)=P(A)=0.6,(2)从(*)式知,当A∪B=S时,P(AB)取最小值,最小值为P(AB)=0.6+0.7-1=0.3 。

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。

表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:中至少有一个发生。

故表示为:(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第3章 多维随机变量及其分布【

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第3章 多维随机变量及其分布【
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 3 章 多维随机变量及其分布
3.1 复习笔记
一、二维随机变量(X,Y)的分布函数 性质 (1)单调性:F(x,y)分别对每个变量是单调不减的,当 x2>x1,F(x2,y)≥F(x1; y);当 y2>y1,F(x,y2)≥F(x;y1)。 (2)有界性:∀x,y,0≤F(x,y)≤1,且
2 2
其中1 0,2 0, 1 1。
注:若(X,Y)~N(μ1,μ2,σ12,σ22,ρ),则
(1)X~N(μ1,σ12),Y~N(μ2,σ22);
(2)X 与 Y 独立⇔ρ=0;
(3) aX
bY
~
N (a1
b2
,
a
2
2 1
2ab1 2
b2
2 2
)

三、条件分布 1.条件分布律 Y=yj 条件下 X 的条件分布律
X
0
若第一次取出的是正品
1 若第一次取出的是次品
Y
0
1
若第二次取出的是正品 若第二次取出的是次品
试分别就(1)、(2)两种情况,写出 X 和 Y 的联合分布律。
解:(1)放回抽样
第一次、第二次取到正品(或次品)的概率相同,且两次所得的结果相互独立,即有
P{X=0}=P{Y=0}=5/6
P{X=1}=P{Y=1}=1/6
放回抽样情况下,X 和 Y 的联合分布律如下
表 3-2-1
(2)不放回抽样 由乘法公式 P{X=i,Y=j}=P{Y=j|X=i}P{X=i},i,j=0,1,则
6 / 58
圣才电子书 十万种考研考证电子书、题库视频学习平台

F x, F , y F , 0, F , 1

概率论与数理统计教程第四版课后答案

概率论与数理统计教程第四版课后答案
i j
2
j
j
i
j
i
j
6
连续型随机变量 ( X,Y),
DX = ∫
( x − EX )2 f X ( x )dx −∞
+∞
( x − EX )2 f ( x , y )dxdy , =∫ ∫ −∞ −∞
+∞ +∞
DY = ∫
( y − EY ) −∞
+∞
2
f Y ( y )dy
+∞ 2 −∞
=
∫ ∫ ( y − EY ) f ( x , y )dxdy .
D( X ) = E( X 2 ) − E 2 ( X ) = 0 .319
(X σX = D ) = 0 .565
13
3.3 对一目标射击,直至击中为止。如果每次射击命中率为 对一目标射击,直至击中为止。 p,求射击次数的数学期望和方差。 ,求射击次数的数学期望和方差。 解 设随机变量X表示射击次数, 服从几何分布。 设随机变量 表示射击次数, 则X 服从几何分布。 表示射击次数 P ( X = m ) = p(1 − p ) m −1 m = 1 , 2L ∞ ∞ 1 1 1 n−1 n−1 = p⋅ = p⋅ E(X) = = ∑npq = p∑nq 2 2 = (1−q) [1−(1− p)] p n=1 n=1 =1 ∞ ∞ 1+ q 2− p 2 n−1 2 n−1 2 n pq = p∑n q = p⋅ . E(X ) = ∑ 3 = 2 (1+q) p n=1 n=1
第三章 随机变量的数字特征小结
一、一维随机变量的数学期望
定义1 设X是一离散型随机变量,其分布列为: 定义 是一离散型随机变量,其分布列为: 是一离散型随机变量

[学习]概率论与数理统计浙大四版第三章习题

[学习]概率论与数理统计浙大四版第三章习题

•例3 •[思路]
•解
•从而 •因此所求概率为
•例4
•解
•例5 •[思路]
•解
•例6 •[思路]
•解
•从而
•例7 •解
•练习 :
课后练习:
练习
3 测量某目标的距离时,误差X(m),且知 XN(20,1600),求三次测量中至少有一次误差绝 对值不超过30m的概率.
好前景。
物质第四态-等离子体(plasma)
• 所谓等离子体就是被激发电离气体,达到一定的 电离度(甚至几百万摄氏度时 ),气体处于导电 状态,这种状态的电离气体就表现出集体行为, 即电离气体中每一带电粒子的运动都会影响到其 周围带电粒子,同时也受到其他带电粒子的约束 。由于电离气体整体行为表现出电中性,也就是 电离气体内正负电荷数相等,称这种气体状态为 等离子体态。由于它的独特行为与固态、液态、 气态都截然不同,故称之为物质第四态。
1976年,在J. Koch的算法的支持下,美国 数学家阿佩尔(Kenneth Appel)与哈肯 (Wolfgang Haken)在美国伊利诺斯大学的两 台不同的电子计算机上,用了1200个小时 ,作了100亿判断,终于完成了四色定理的 证明(打字约900页)。四色猜想的计算机 证明,轰动了世界 ,开辟了机器证明的美
1872年,英国当时最著名的数学家凯利正 式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。
1878年肯普和泰勒宣布证明了此定理, 11年后,即1890年,数学家赫伍德以自己 的精确计算指出肯普的证明是错误的。不 久,泰勒的证明也被人们否定了。后来, 越来越多的数学家虽然对此绞尽脑汁,但 一无所获。于是,人们开始认识到,这个 貌似容易的题目,其实是一个可与费马猜 想相媲美的难题 。

概率论与数理统计浙大第四版-第三章2

概率论与数理统计浙大第四版-第三章2

3 y (4 y ) 3 2 x y dx , 0 y 4, 16 y 32 0 , 其它.
fY ( y ) 0 ,故 因为仅当 y 在 (0,4) 内取值时, 2x y x 2, , f ( x , y) f X |Y ( x | y) 4 y f Y ( y) 其它. 0 ,
3x 2 , 0 x 1, 其它. 0,
3x 1 f ( x , y ) 2 , 0 y x 1, 3x f Y | X ( y | x) x f X ( x) 0, 其它.
于是
1 1 1 1 8 8 P{Y | X } f Y | X ( y | x )dy 4 dy 0 8 4 4 2
j ,若
易知上述条件概率具有分布律的性质
1) P{ X xi Y y j } 0
2)
P{ X x
i 1

i
Y y j}
i 1

pi j p j

p j p j
1
同样,设 ( X , Y是二维离散型随机变量,对于固定 ) 的
P{ X xi } 0 ,则称 pi j P{Y y j X xi } j 1, 2 , pi 为在 X xi 的条件下 X 的条件分布律。
G
0
2
x2
0
16 A x y dy 3
3 A 16

f X ( x)
f ( x , y ) dy
5 3 x2 3x x y dy , 0 x 2, 16 0 32 0 , 其它.
fY ( y )

概率论与数理统计浙大四版习题答案第三章资料

概率论与数理统计浙大四版习题答案第三章资料

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧=ο若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=ο若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。

解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。

概率论与数理统计(第四版)习题答案全

概率论与数理统计(第四版)习题答案全

概率论与数理统计(第四版)习题答案全概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++= 于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P 又设B 表示“电路发生间断”,则321A A A B += 于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布.解:设X表示“在取得合格品以前已取出的废品数”,则X的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p.生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X表示“在两次调整之间生产的合格品数”,且设=1,则ξ的概率分布为q-p三、 已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布;(2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x CCC x X P x x从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xxx从而X 的概率分布为即四、 电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP 相对误差为.5168877.0168031355.0168877.000≈-=δ五、 设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P 32254115505)1()1()1(11p p C p p C p p C ------=16308.0≈六、 设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、 函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x x x F ,所以)(x F 在(0,∞-)上单增.综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<≤<≤<≤=3,132,22021921,222110,430,0)(x x x x x x F四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2).21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2)).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间 不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率. 解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰e e dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有 638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有tt e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥. (2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx x f X P s X s X P x x.答:该电视机还能使用5年以上的概率约为6065.0. 四、 设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=.解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yXyYe F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即)( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xxxXx dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ2arctan 121x π+=yxy Y ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dxx y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有1610032==⎰⎰∞+∞+--A dy e dx e A yx,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x yy x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰020006),()(2032x x ex x dye e dy y xf x f xy x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰030006),()(3032y y ex x dxe e dx y xf y f yy x Y(4)⎰⎰⎰⎰---==∈x y xRdye dx edxdy y x f R Y X P 322033026),(}),{( 6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dydx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x .第九章 随机变量的独立性·二维随机变量函数的分布一、 设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dxedx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥102102212)(21),()(7869.0)1(2221122≈-=-=--e ex二、 设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(;,,2 ,1 ,0 ,)(212211n j q p C j p n i q p C i p j n j j n Y in i i n X====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()(∑=-+=ki kn n k in i n q p C C 02121)(由k nm ki ik nk m C C C +=-=∑0, 有 kn nki in i n C C C21210+==∑. 于是有),,2,1,0( )(212121n n k q p C k P k n n k in n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,;2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ. 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0,2 1,10 ,210,10,),(其它当当y x y y x y y x fYX Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、 电子仪器由六个相互独立的部件ijL (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ijX 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差.解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即于是有1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX 2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、 对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为于是有p q p q q p q p iq p ipq EX i ii i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X于是有pp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P kk k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k kkk k kkkk kki iik k k X P k x X P x 不绝对收敛,所以ξ没有数学期望. 四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D . 解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdxx x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为)( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为于是有72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为 ⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ; 0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<14110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P 设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---e e e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量nX X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni iX nX 11的数学期望与方差. 解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量nX X X,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设iX 表示"第i 站的停车次数" (10,,2,1 =i ). 则iX 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i,1,0 于是iX 的概率分布为设∑==ni iX X 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、 设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y x Ay x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++11120022222A dr r rd A dxdy y x A πθπ解得, π1=A .(2)()11),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dxy xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r r r r dr r r d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y x xydy dxdy y x xyf π.二、 设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-121322),(dx x dy xdx dxdy y x xf EX xx0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY 0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdyy x xyf ),(10==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有⎰⎰+∞∞--===xdy dy y x f x f x xX 2),()(; 当)1,0(∉x 时,有0)(=x f X.即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y 因为),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、 利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差 )(X σ的概率.解:91)3()3(2=≤>-ξξξξξD DD E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率.解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ 于是有npq p npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、 样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少 个产品,可使次品率为10%的一批产品不被接受的概率达到0.9?解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ 1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理) 因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、 设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、 已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率.解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布). 解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F XY≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y. 当0>y 时,有dx ey X P y F yx Y⎰∞---=≤=ln 2)(2221)ln ()(σμσπ. 此时亦有222)(ln 21)(σμσπ--='y Yeyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数;(2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有 (1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.。

最新概率论与数理统计教程第四版课后答案第三章精品课件

最新概率论与数理统计教程第四版课后答案第三章精品课件

y j EY 2 p xi , y j .
j
ij
6
第六页,共38页。
连续型随机变量 X ,Y ,
DX
x
EX
2
fX
x dx
x
EX
2
f
x,
y dxdy ,
DY
y
EY
2
fY
ydy
y
EY
2
f
x,
y dxdy .
方差的计算公式: DX EX 2 (EX )2 有关方差的定理:
定理1 DaX b a2DX
第三章 随机变量(suí jī biàn liànɡ)的数字特征小结
一、一维随机变量(suí jī biàn liànɡ)的数学期望
定义1 设X是一离散型随机变量,其分布列为:
X x1 x2 xi
P p( x1 ) p( x2 ) p( xi )
则随机变量X 的数学期望为: EX xi pxi
P( X xi ) p( x1 ) p( x2 )
xn p( xn )
则定义随机变量函数 Y gX 的数学期望为:
EY EgX gxi pxi
i
(2)若X为连续型随机变量, 其概率密度为 f x, 则定义随
机变量函数 Y gX 的数学期望为:
EY
EgX
gx
f
xdx
3
第三页,共38页。
求数学期望(qīwàng)和
解 (1)
f x dx
Ax 1e x dx
A
x 1 e x d x
0
0
A
1,
A
.
(2) 当 1, A .
f
x

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

P( A) + P( A) =1
首先求 P( A) ,然后求 P( A) 。第 3 种方法是直接求 P( A) 。读者还可以用更多方法求
P( A) 。
------------------------------------------------------------------------------10.在 11 张卡片上分别写上 Probability 这 11 个字母,从中任意连抽 7 张,求其排列结果为 ability 的概率。
5!
P( A) =
C52 C130
=
2!3! 10!
= 10 120
=1 12
3!7!
(2)令事件 B={最大号码为 5},最大号码为 5,其余两个号码是从 1,2,3,4 的 4 个号码
{ } 中取出的,有 C42 种取法,即 B= C42个基本事件 ,则
4!
P(B) =
C42 C130
=
2!2! 10!
(2)至少有 2 个次品的概率。
解 (1)利用组合法计数基本事件数。令事件 A={恰有 90 个次品},则
P( A)
=
C C 90 110 400 1100 C 200 1500
(2)利用概率的性质。令事件 B={至少有 2 个次品}, Aι = {恰有 i 个次品},则
所求概率为
B = A2 ∪ A3 ∪ A200 , AiAi = ∅(i ≠ j)
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
两种方法如下: ①考虑整个样本空间。随机试验:掷两颗骰子,每颗骰子可能出现的点数都是 6 个,

概率论与数理统计第四版习题答案全

概率论与数理统计第四版习题答案全

概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合; (3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB = (3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有1,2,3,4,5.从中任取3只,A —“最小为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品; (4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验?解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、总机为300个用户服务.在一小时每一用户使用的概率等于0.01,求在一小时有4个用户使用的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------= 16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(xx F +=,则1)(0<<x F 因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π.解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P (3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰021102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~λe X ,所以R x ∈∀,有xex F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=.求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA = (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-., 00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00030006),()(3032y y ex x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰C x x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 第九章 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e e x二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y i n i in X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C +=-=∑, 有k n n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]服从均匀分布,Y 在区间[0,2]服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是zy x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为2X0 1 4 9即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X p pp p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=- 进一步有p pp p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x xx f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx x x dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(2221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求:(1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z=2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而 2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f +--=π.。

《概率论与数理统计》浙江大学第四版课后习题答案

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n n n o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。

表示为: C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生 表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论和数理统计浙大四版习题答案解析第三章

概率论和数理统计浙大四版习题答案解析第三章

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧=ο若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=ο若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。

解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果<见下表>,按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,〔1〕计算圆半径的期望值;〔2〕(2)E R π是否等于2ER π?〔3〕能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解〔1〕100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯= 〔2〕由数学期望的性质有(2)223.2E R ER πππ==〔3〕因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。

利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差〔参看习题二第16题〕。

概率论与数理统计(理工类第四版)第三章多维随机变量及其分布习题答案

概率论与数理统计(理工类第四版)第三章多维随机变量及其分布习题答案

第一章多维随机变量及其分布二维随机变量及其分布设(X打的分布律対1^6 19 1/181'3 M 19求口-解答=由分布律性质工A - L可知I 6+ 1/9^1 "lfi +1/3 +"+ 1/9-1, 解得£戸込I习題2(丄)2.ig {X, F)的分布ill數为Fa. J'),试用尺工门表示:尸治Gf £仇F g匸}-尺机t)-尺“疋),,习題2(2)I2.® (尤n的分布函勒为川斗理),试用/-UJ)表示:(2)p;o<y<忙;尸出町yg冇j =鬥+卫』)三尸(+ 00'0)・习題24)]2■设g y)的分布働対珂扎小试用表示;(3)門疋>0, y<^i *尸尸<郴=F(+<K上)—尸他[解答=1P{max|A; n ^0| -P{Y, 少•个夭于J'O}=pgo} + W20} -P{X20. y纫4 4 3 5**7 7 7 7习題5丨(Kn只取下列数值中的值:(0.0), (-1, I), 、(2.0)且相应釈率依次为扌,,缶存请列出(x,r)的畴分布表,并写出关于啲边缘分布・解答^(I )因为所给的一组槪率实数显然均大于驭 且有1 + 1 +补+刍=1,故所给的一组实数必6 3 12 12是某二维随机变蚩(x,r )的麻合概率分布.因(* D 只取上述四组可能值,故事件:-I, r^Ob <X ・0・ y=-h{X- 0, r-1 H |x= 2・ n {*■ 2. y -1},均为不可能事件,其概率必为®.因而得到下表!0 1/3(2)F{f ・0}«P{X=-i, Y 0} +P{X-o, y=o} +P{%・2, r-0} n I 5 7=0H — + —=—,6 12 12同祥可求得P W >I 3j关于的y 边缘分布见下表^0 1/3 712 1/12 1/3 设随机向量(A ; K )服从二维正态分布M ()・(h 101101()),其低率密度为1 "八"2«0n求 PIX^Y].解答=丨由于尸氐W Y] 4 P{x> r} = h 且由正态分布图形的对称性,知円 XS n = P{x> r\,故 P{*S Y} = ;.习題7设®机变*(& D 的概率密度为7(6-Jf-卩),0<1<2,2<v<4'-I 0. Mt则⑴确罡常数灯(2)求P{Xvl 』v3”(3)求PXvlS}; (4)求P{X+y<4}・1/65-42 1/12 0 0 1/3 012 p{y=】r,解答;1如s所示(I)由「J:/(x,y)心a”. I >确定常数人-JJ^Z:(6-X-yydydx = Hj6-Ixydx = 8A = I ,⑵ P{X< l,r<3) = 4寸;1(6 7-刃在u 扌・⑶ P{X<\.5}=£ rfx£i(6-j-y)</v=寻.(4) P{无4人42J施广i(6_x-y)妇扌.[习題8」_____________________________________已知财口y的联合密度为C 、'w.OSMl.O 幻 G f{x. V)= <■ K 0, 氏它试求:(I)常数(2)尢和y的联合分布跚凡2).解答=1⑴由于TH :/(x, y)dxdy =41 xytfxdy = ~,E = 4 .⑵当X M 0或y 5 0时,显然Fg y) = 0 J当x2 1,y2l日寸,显然F(x,>■) = H设OSM I、0^> < I 有E(x, y} = P J* /{u, v}duJ\ =4(严也卜也=巧》^;设05x<l , v>l;有F{x,y}= P[X< l,K< vJ = =jr)最后,设xA(b OMpSl,有F(jr,v)= P[X< I, y<v\ =4jjM寸;vdv = r. 函数F(儿y)在平面各区域的表达式0, x<0i^<0F, 0<.v< i.>-> lF(")=巧人0<x< 1、0<y< I .r,x>i,OSySI习題9设二维随机变量伉,D的柢率密度为£[4・8只丨-X). 0<xS l.JT <y< 1心”0, ft它解答:人仗)■匚/Z)创f 4剛1 -x)a 几0, 其它2.4(l-F)(I-x), OSxSl ~1 0,其它♦_ 们4・8叩-x)dx, O£yW I0, H•它_ 2.4r(2-y), OSvSl0,其它•习a丄0 I设ee在邮刼"所ffl戒的区域仃里服从1祠分布J求联台廿布啻虜和边缘分布密度.E域G的面积月三J:b -论==,由题设知(X n的联合分布密度为6, 0盂』MhrWyW.Y/gm 二①11它”从而八h.v)fA =叮:创=(心rb s哲I,&0:—护h 0 W岸兰1.心卞)=J 3(),JI它同样的/ ") =「:rg处=或:必=6由-.V),u^v< 1^即# f小刃-1■ '■ 1 0, R L ■条件分布与随机变量的独立性二维随机变量(尤n的分布律为0 17/15 7.307/30 1/15(1)y的边缘分布律J(2)求Pr=o|x=oh P w=iro};⑶判定兀与y是否独立?解答:1⑴由(XJ)的分布律知b y只取0及1两个值・P{y=0} = P{x = 0j = 0} +Pb= l,j = 0;=«j^ +寺= 0.7,j-(j JO 15(2)P{y=Qx = 0}= P{x"0」"0} = ? ?* P{x = 0} 3⑶已知P{2 0,尸= 由⑴知Ptv=0i=0.7,樂以可得尸仪=0}-0.7.因^鬥20,尸0}*{.20}•氏2(1},所以*与y不独i・将某一医药公司9月份和8份的膏莖素针剂的订货里分别记为X与y.据以往积累的资科知X 和y的联合分布律为51 52 53 54z51 0.06 0.05 0.05 0.01 0.0152 0.07 0,05 0.01 0.01 0.0153 0,05 0.10 0.100.05 0.0554 0.05 0.02 0.01 0,01 0,030.05 QM005 0.01 0-03(1)求边缘分布律;(2)求X月份的订单数为51时,9月份订单数的条件分布律.解答=丨X5152 53 54 55 0J8 0.15 035 0.12 0.20 *对应丸的值,将每行的祗率相加b 可得円/"・}•对应y 的值(最上边的一行b 将S 列的柢率相加 可得p{y 可:•52 53 54 55~~6^2~0^~0.13 •⑵当y - 51B 寸'X 的条件分布律为鬥Ei,備宵严=粽,"5WK55.列表如口习题3 1 已乳(X n 的分布律如下表所示y-^ -1^LrL •(1) uy=i 的条件下,戈的条件分布律,(2) 在X«2的条件下,y 的条件分布律.f 解答=1由麻合分布律得关于X. y 的两个边缘分布律为故⑴在y-1条件下,尢的条件分布律为_0 1 23/11 8/11 0 ⑵在X=2的条件下.y 的条件分布律为4/7 0 3/7(I)边缘分布律丄 X "719/24 8/24 7/241024 11'24 3/24由尢与y 相互独立知PiX=x,. r=j ;j=P{X=xJP{y=yJ, /=l,2,3.4, 7=1,2.3, 从丽(A ; y )的K 合祗率分布为P{X+y=\}= P{X«・ P{X«O, y=l}=—+ — = 16 4K 12P{X+ y*0} = I - P{X+ F 二0}= 】-P{X 二-b y=i}-p4x== -二2 2 1 I 32S12 6 4习題5丨丸与y 相互独立,其概率分布如表S )及表⑹所示,求:(KK )的联合概率分布, Pj%+r=iH P{*+y*o}・-20 1/2-1/2 1/4 1/3 142 1/31/21/4 1/4表3)解答: (I)由题设易知fk I人(-4—, I a M 尼又y 卜相互独立,故A ■与》的联合槪率密度为L tk 找它⑵因2有实根}-:判另弑A=-4A^'-4ys()! - {用2鬥,I + y-yr舌则图所示得到:、 」■尸加有实根} =P {X-> Y } = H “儿 ,曲T 町V 讪」/「 rr '%工=l - ; ."dr-r HLclx-二维随机变量函数的分布r?=1 一莎J 壮一丘『厂必■ ■ =]—血他⑴―山⑹,又tl>(IJ-0.MI.3 I 小(冊三2^于杲巾(I)-伽(0)-03413』所以 尸旧有实根! = 1 — 血冲(I)—职仙] -2.51贰0加13 = (1」4工=-t(i )z=r +y 酚布律为•2 0 A 1/10151/2 110 no-2 1/21/5 1/10 1/10 1/10J/2 1/51'5 3/10 151 10(4)Z.max1Xri 的分布律习那]设二维隨机向S (x, y )眼从矩形区,或D “(2)IOSM 2・0<八H 的均匀分布,且 ■ , fo.xsy “ 3*s2yU=1 ; v=)J, x>2r解答:I依题(U 耳的概率分布为P{CZ=O, V^Q}^P{X^KX<Y\=P{X^Y}咖:扑w ,p{(7=o,I j = P{XM};x>2r}M(bp {c/=i,r=o}=p {x>y,x<2y}=p<y<xs2Y}=例:5心,p{u-1, r-1}=1 -p{r=o, r=o|-P|c/=o, r= i }-p {u= i, r=o} = iz2,(3) Z 二*"的分布律-2 1/101/57/10[\.X> y求0与A 的联合概率分布.I习題4 I设(x,r)的联合分布密度为I E —e " 2n求2的分布密度.解答:依翹意,由_____当xO时,FX Z)=P(0)=O J当沦0时,F^z).P{X'+r'^z^)- JJ /{x.yydxdy・« ・1 ■p・5 =-j;x^ 曲» [g ,dp■ 1 - e •故2的分布函数为FQ・0, 2<02的分布密度为ze \ 2>0L 0, 2<0习題5〕颇机变量(X "师率密度为・a + v)<? A”, x>0.y>0r(x 丿” \ 2I 0,煤它(I )冋;V 和y 是否相互独立?(2)求7«* †+ y 的概率密度• 解答=1(|)/7力=厂/("曲依题童,x,y 的柢率密度分布为fl, Owl心0.其它'由卷积公式得Z«x+ y 的概率密度为//2)=匸:/(xteG ~x)dx,于是当 0<x<l, z-x>O01,广(x)j?U-x)*O,故兰 Ovx<Nv I 日寸,有 /'/z)=£t* '• m 办=1-t? r ;当沦I 时,有//z>=£e» *■ **rfr=e*即2的駅率密度为x> 0 一时,/(X. z-.v)*O,所 X<2-xe ^dx = —z^e :. ? 2习题6 1设随机变S* y相互独i,若刘艮从(0, I)上那咖布,}服从参数I的指数分布,求随机变量z=x+y的率密度.解答=IQp八0鮒)0. «它■-e—e0<二<I习題7 I0. VMO01lt0, M<0 (1-C 于丁〒OS“vl ・设随机变量(X y)的槪率密度为bgWj 0<xvl,0<y<+80,具它(1)试确定常数切⑵求边缘概率密度/e), ⑶求函数U= max数.⑴由J 工 J{x,y}dxdy = 1 ,确定常数 b.J ;厶J ;仏 'e Py-W-e *)/(x.y} =-—e Ovx< 1,0vyV+8 e~'0, 其它(2)由边缘概率密度的定义得--- e 0,-e(叫几Ovxvl 淇它0. «它~e0•氏它I0,氏它⑶因为/(x,j)=/,Xx)/,<v),所以龙与y 独立,故F(W) = Pfmax {兀 Y] W i/} =P{X^ u, r<H J =fyw)FK■ f ] ■ JI其中 Fv(X)-£-j-^<// Ovxvl,所以0, H SO-eI -a-,Q<x< 1 •"1同理£c ⑷,0<y<+ « 1—严;0vy<4oo0, y<0习題7 I1 -<?',习題B设系统丄是由两个相互独立的子系统丄和E 职串联方式联接而成,人和丄,的寿命分另I 伪A 与 b 其概奉密度分另怙,隹(h ・)i(K .Y<0解答:设 Z-inin{y, V\ 则F(d = FM>二}-你miti{*= }= l-r|niiii(-\; }-r{X^2. } S J} =1-IIP""川 1 —珥 ^二}|= }-[}-F,[=]][}=由于* z>0认 z<nf I -r 巴 z>0 尺㈡* I 0, Z<n0, z<(l从而3>()习题9设随机变童疋湘互独立』且服从.同一分布』试证明;P {(t < niiniX 卄"2 [鬥出]丄—[PiX> * 口»ff 答:设血i^F}二乙则尸旧wruMfJ ; F)"} =£//>) = ◎(&)』/7二尸尸{min f A ;打"} — 1 —鬥min |兀 冷“} -l-nX>z r>r^- I -F{#dz}P{FHz} 二丨TFfvr 门代入得/^{u<imii{A ; n 5; = I - If {人、忧F-(l -f汗}打""耐证毕.复习总结与总习题解答0. v<()苴中,』>{),“〉(b 回,试束系?盍丄的寿命Z 的柢率密Rr) = *1 —严+吒£>0习題1丨在一箱子中装有12只开关,其中2只罡次品,在其中取两次,毎次任取一只,考虑两种试殓;(I )放回抽样八2)不放回披样•我们走义随机变量X. y 如下:-0若第一次取出的是止品"":1■芳® —次取卅的走次品' 解答:(I )有放回抽样,(X, n 分布律如下:p.v=o,r=o, = ^ = g,P{x=.,x=o, = ^ = l(2)不放回抽祥,(尤n 的分布律如下:P{X=(). y=()} =竺11 =竺,P{x=o,y=i} =史11 =凹12x11 66 12x11 66 P {灼,—“^二黑砒"—2二=£ 12x 11 66I2x II 66假设随机变量y 服从聲数为1的指数分布,随机变量母屮仟仏3求(兀冷的联合分布率与边缘分布率.0■若第二次取Hi 的是lE 品 1,若箔一次取出的是次跖 砂别就(I ),(2)两种谢兄,写出/和 > 的联合分布律•Y=<劭y服从劳数为啲指数分布,血=『电"|,所以有11,若 1= I} = P| y> I} = J* % ^dy = c ',f{y, = 0} = l-eP{X=I}= P{y>2}=J;l 'dy = e 2,P{Xj = O} =1 -e 2,= l)=P{y>2)=e SrjA^,= l,Yj = O( = f{X,= l}-r{X, = UXj = l} =e '-e P{X, = O,A;=O}=P{r^t!= !-<?*',p {/=o,& = H = Ptv,=o}-PM>o,y=o}=(), 故e,Ay联合分布率与边壕分布率如下表所示:在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香嵐今从袋中随机抽出4只,以乂记橘子数,y记苹果数,求gn的联合分布•解答=IX可取值为0,1,23 y可取值0, 1,2,则Ptv=o, r=o3=p{0( = o, P{Y=o, y=i}=c:c;c"c;=2/7o, 門X=o, y=2} =C;GC:/C:= 3/7O, = 1, r= GJ = CjC^Cj/C'; = 3/70,P{X= I, Y=\}= C;C;G/G = I 8/70, P {%= I, r=2} = C;C;C;/C = 9/70,P{X=2, r=<)}=qc^c5/C; = 9/7O, P{X = 2, r=|>=c^cjc;/q= 18/70, 門X=2,r=2}=C;C;C;/C; = 3/7(b P{X=3, r=()! =C;C;rl/C;=3/7O,P{X=3, r=l5=C;CX7C'; = 2/7O, P|Y=3, X=21=PJ0} = O,所以,(X, 合芬布如下:设斑机变量兀与y相互独立,下勵tt 了二维随机变量(x, n的联合分布律及关于尢与y的边缘分布律中的部分数值,试将其余数值《入表中的空a处:解答=]由题设X与y相互独立》即有"厂几几0- 1.2; R 1,2,3),又由独立性,有故化笃从而円产5・方-§,又由几产几P"即从而P产才类似的育I 1 3卩严亍如蔦'卩2蔦将上述数值填入衰中有(2)(x(一=呼Array n s鎗當墨(2)因窗賞J: 2X0-r叭工 <dsxa 一灶yAI-B 「FumnoJ◎脏一八 2yI -讥弋A o 畀-F(XQ )H P C SH一・y H—二 H -、4J 显X22、—-^ycoBq》 F (X ・S H 2X »一•y" — 二4P亠尢》2・y »— 二H5二2j显一人xa2;>0尹F (x・0»^x»-・ T—二*史XH 厂◎肛X W2;W O 尹/%R・Y )H P K H一・n H —二+2X H2・ PH I 二 + p 亠X H 厂 〉+解答:I 2应彳,£.由分布律的性质可知I 九=丨,故习題9 I _________________________ 设H 随机变量(尤naw 率密度函数为Ct?0,儿它⑴确定常数门(2) 求X"的边缘概率密度函数J (3) 羽联合分伟国数尸(X 』); (4) 求 P{ysx}; (5) 求条件槪率密度函数 (6) 求P{X<2\Y<\} •I 解答=1⑴由匚工 /(X, y](ix(iy^ 1 求常数 f - i :r-即0+0=■•3又因九与y 相互独立,故pjx=A r=ZJ = P^x=/iP{X=7b 从而 «・P{*・2, K-2}«P{r -i|P{r-/!r 1 VI 、V9 A4J2 *6,0 = P{X=3、X=2}=PJT=3JP{Y=2} fl I -+ -U 31+#]转1+0A3*3. 〔訂⑵A(x)=J y(x,v)Jv =■「2宀“ x>020・hx>O/Q) ■匸/(xj)必= J 「2eW 血y>00, «它严y>0 10, ySO(3)f J 〉■ r r /(“• v}dvdu< ■«! .rXJJ :2° 叫'dvdu. x>0,r>0 0,氏它J(1-宀)(iy)・ x>0,y>0 "I 0.其它•(4) 門卩£卫=厂叫2€ % 7/1 =j^ 2e -'(I-e ")必=\(5) 当八0时,,2r — ♦<-x>0 J2e, x>0 0. x<Q to ,"0(6) P{X< 2|r<I} = P'Xu 2,F(2, 1) (\-e-■ --------- : --- = 1 — e?0. xSO二/(")二J:e M 设随机变置以槪率I取值为(b而y是任—e意的随机变量,iiP加与丫相互独立.解答=I因为必的分布函数为0, %r<offfF(x)=< . 7〔1,畑側设y的分布因数为几0), (x, n的分布国数为Fgy),则兰工"时,对任意厂有F{x,y} = P{X<x, Y^y} = P{{X<x}r>(y<y}}= F{0C(F)}=F{0}=O= F3F3当20时,对任意F,有川儿卩)-PiX<x, Y<y} - P {(XS)c(FQ,)}- 勺刘-/>{〉<,} = FQ)=F/MO).依罡义,由Fg y) = F#r)厲仞知,北与V独立.设连续型随机变S(x,y)的两个弁S尢和*相互独立,且服从同一分布,试证P{X<Y\ = \fl.解答:I因为A; y独立,所咲/(X」)=//x)/)0).P伫r:=『心刃艸 =口/的/QMS•cSy jrSr■ {二[/0龙8^0皿皿・「:[/\0)尸0)]妙=J /^XvWv)=—L:=-.J" 2 2注:也可以利用对称性来证,因为X」独立同分布,所以有P\X<Y}=P\y<X\,而p{xs rj \ P{X2 Y} = \,故F{/Vsr}-I/I2.习題121设二维随机变量(A ; D 的联合分布律为“2 X 、 a 1/9 c? "9A13若久与y 相互独立,求参数a,人C 的值• 解答:]关于*的边缘分布为a + - A+ - C —9 93关于y 的边缘分布为,4 fl + c+ • b+ • 99 由于X 与y 独立,则有几2=P 、Pa 得 ( ./>= b4- /)+V 9八 由P\2訴P"得由式①得"二彳,代入式②得"右,由分布律的性质,rt + />4c + — + - -1—9 9 3代入"IV g?得心•易验证,所求绒也C 的值,对任倉的j 和/坷荐足甘化XPj.因此,所求依处的值为"丄,』,c=l18 96P K/ f9.习題14 I设(工K)的联合密度I 邂故为P ,『打匕用f(x,y)=< H R ・ ,0, K 它⑴求北与^的边缘概率密度;(2)求条件概率密度,并问龙与y 是否独立?⑴当 *<-/?或^>/?时,f/x) = J ^/(x, y)</v=J *0命=0; 当一RS T WRE 寸,AW 叮并』如爲几4 =务戸• 于是'乍■尺"/Q) = 1宛斤V 0,兀它由于X 和y 具有对称性,同法可得y 的边缘#[率密度为/爲光厂,*曲0,其它值位于IM W J R ' -}2这个范围内,/'(儿y)才有非零JlR1/ 灿)=-7 —= / . 2 '即件1R 率密JS 为—r===, 1X |M JP ■“ /WMy)= 2j 用-尸0, 它同法可得X= X 时y 的条件祗率密度为f« 2{疋-£ .(),It 它 由于条fMR 率密度与边編R 率密度不相等,所以尢与y 不独立.⑵/>0卜)=少亠,注意到在y 处X ・/心)值,敌在此范團内,有霞 一5H H-心鼻働奮吐長o r n +y 叭Z)MOJ肛0览八一孚- Es«pbv+yn 一—=n (n d oe+r*r;令«z{2lz)l5(2lzr+ (hl-)2J吐ZW2鼻』=/'(XG)4zva ・nfuYfyxan一 • 3 0.2(21^13(21* I VN A O22搭AS H 一 2 I P匚P一从0人2・t 习題IT I设H 随机娈量(X X)的概率密度为2g52.q 2()j>00,其它 求随机变Sx-乂+2y 的分布佛.按定义/7Z) = P{x 千即当 ZM0时,F/Z)= JJ f{x,y}dx<iy = JJ 0厶妙=0.J( *2*" X * 2> S J 当-A O 时,F/Z)= JJ /(斗划厶亦I 叫幼 J *2yS :=£e '(I - e" 9iZv=[(e “-e •)<Zx = [-e"*^|^-ze'* =l-g7-二 g7,0, 注0习題W 1设随机变MX 与y 相互独立,其概率密度函数分别为Ae^\y>010. yso驰(I)常数‘4; (2)随机变量Z-2X+ >的概率密度(酬•(1) 1 «「:/0)心《」「才吆 3" •(2) 因^与F 相互独立,故(A ;y)的联合概率密度为e"\ OS N M I, v>0 •, 0,氏它 于是当zwO 时,有F ⑵二P{2W Z }M P{2X+ r^r}=Oj当OS 注2时,有F(z) = P{2X +ysz}=['住% VvJ 如当A 2时,有F(z) = P{2X+ ys2}=f :次匸 \ Vv =j^(l 仙.利用分布1跚法求^寻7亠2X+ y 删率密度a 数为0,匸<0(M -1)0 ¥2.沦 2{//*)= (l-e 9/2, O<2<2・/g)=故分布酗为F") M \1 ^-se •, z> 0 一、I.OSxSl 八、朋£・其它,如十习ai9 I is 阴机变量K.y 相互独立,若尤与y 分别服从区间(0, I )与(仇2)上的均匀分布,求U= max{X 幷与 r-minM ; Y\«答=I由题设知,尢与F 的概率密度分别为1, 0<x<1 .0, It 它'于是,①尢与啲分布函数分另|]为0, xMO X. 0 M X V 1, I 1, 21从而U= max{A ; Y ]的分布为K w22故n 的柢率密度为W, 0<u<l/tO/) =②龍,由r,b')=i-[I -F A X 呱 1-®] =人何 + F") -FXv)F,{v) =尸3)+ 厲3)-耳3), 得y=niin{X n 踽布瀏为f 0,OSv< I,故心min W}的概率密度为'3I - - V, 0<v< I.A (v )=b ^,0, K 它注;(I )用卷积公式,主S 的困难在于店丫的《?率密度为分段函数,故卷积需®分段计亀 ⑵先分别求出X 」的分布函数FQ )与FQ ),然后求出片何,再求导得/沖);同理先求 出FQ ),求导即得/a.ri/2.0<>-<2M 0.其它 0. > <0 y/2, OSy V2,F,4w) = FJw)F|-(w) =0, M<0ir/2, 0<«< 1w/2, 1 S w V 2vvO* — Xt习題IT I"如x>00, ,<0 r畔I-/e Wx>0-20. je<o-(X+ l)e \ x>0(),丫<0-(V + I)e \ y> 0由対称+蜘,显然I 0, pMO.Z'g"A(x)/Q),JC>0.y>0, 所以龙与y不独立.(2)用卷积公式求= 当{即•当时,//r) = Oj 当"0吋,/血)=帛于是,z="+y的积率密度为12>0 zMO。

概率论与数理统计第四版_部分习题答案_第四版_盛骤__浙江大学

概率论与数理统计第四版_部分习题答案_第四版_盛骤__浙江大学

第一章 概率论的基本概念2、设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

故 表示为:AB +BC +AC 3、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P , 81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- 16、据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P (A )=P {孩子得病}=,P (B |A )=P {母亲得病|孩子得病}=,P (C |AB )=P {父亲得病|母亲及孩子得病}=。

求母亲及孩子得病但父亲未得病的概率。

解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB )P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6. 从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.17、已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。

概率论与数理统计(理工类-第四版)第三章多维随机变量及其分布习题答案

概率论与数理统计(理工类-第四版)第三章多维随机变量及其分布习题答案

概率论与数理统计(理工类-第四版)第三章多维随机变量及其分布习题答案第一章多维随机变量及其分布3.1二维随机变量及其分布习an设代n的分布律为17—31H6191/1B213打1埠求―I/64- 1/9+ l/1S + l/3 + d+ 1/9- I、輕得« = 2/9,「习題巩工)2. IS (X, X)的分布函数为珂览r),试用h\x,示:(\}P{a<X<b^ Y<c\iI解答:P{u <.XS /?, KSc} * F\b、c}—Fg’f) i习^2(2);2.设(X门的分布国数为试用Hx.y)表示:(2)P\0<Y<b\ ;解答:尸榔二鬥+耳b)-尺4-00,0)・习题2(盯2•设g n的分布函数为尺工y),试用邛」)表示:(3)Y<榔・F丿人42 3二i, i }^p{x^ 1, Y-2} + P{x^ u r=3j试求: ^Y<2J<r<4| ;解答:P{\<X<2,3<.Y<4\=p{x=i・ y=3} + p(x= i, y=4} + P{X=2・ y=3} + P{X=2. Y=4}=0 + — 4 0+ — = —•16 4 16习題3(3).设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3)・解答厂I凤2, 3) = P(I, l) + P(l,2) + P(l,3)+ P(2, l) + P(2, 2)*(2, 3)=—+ 0 + 0 + —— + — + 0 = .4 16 4 16冃題匸设* y为随机变量,且3 4P{xno.炬0}= P{X2O} = P{yno} =二,7 7求Y}>0}.解答:Pfmaxfy, K}2 0} =P\X,疼少一个大于等J 0}=pgoHP{ym{xno, yxo}4 4 3 5=z — + —— = .7 7 7 7习題5只取下別搂!i值中的值:(0,0), (-1, I), [ -I (2. 0)且相应概率依次为” •存寻请列出(K X)的概率分布表,并写出关于啲边缘分布.如團所示⑴由j j 确走常数八[[*(6 -x-y)dydx -点[(6 - 2x)dx = R& =1,所以心.X⑵ P{X< I, r<3} = J :耐;*67-刃即£ •⑶咄<1.5)=(城+(6-“〉,肋,=|| ・(4)卩{*4 U4}=(办(律(6-X -丿)妙=半・习題8已知尢和}的联合密度为IO :⑴常数心 ⑵久和『的麻合分布函数住』)・/(x ,r)=< cxy % 0 Sx V 1,OS»S0, 其它(I)由于]=J J /(A,y)(/xdy二< j(J xydxdy =才,o 二4 .⑵当* W0或y S 0曰寸,显然F(x, y)= 0;当日寸,显然F(x, y)=l ;lS0<x< I , 0<y< I 有F(儿y) = j j /(Us v]dudv - ^ udu^vdv -ryr j 设0<x<l , y>\,有F(x, y) — P{X< 1, Y<y} = 4( udu^vdy^r > 最巨.谡x>0, OMyVl,有y) = P\X< I, Y<y\ = 4( xdx^vdv —y1• 函数F(x,刃在平面各区域的表达式°0, HW0 垃<0 x2, 0<x< 1, j> 1 r/,0<A< 1,0<J< 1・ r, x>l,0VySI1, x> 1,13.2条件分布与随机变量的独立性二维随机变量的分布律为解答:(I)由(X」)的分布律知,『只取0及I两个值.P{y = O}二P{X二0丿二0}+P{x二1」二0}二右遵=0.7,P{y= 1}=》尸1) = ^ + 77 = 0.3.—0 3U 1〉P{x = 0j=0}二2(2)P{y = Ox = ()} ="3 = 0}" 3 ;P{y,= I x = O} = j⑶已知Q{X =O J=O}=£,由(1)知P{p=0}=0.7,类似可得P{.r = 0}=0.7.因为P{・2 0juOW“2 0}・P{—0},所以X与y不独立.习題2将某一医药公司9月份和8份的青毒素针剂的订货单分别记为彳与y.据以往积累的资料知X 和y 的联合分布律为沁51 52 53 54 5551 0.06 0.05 0.05 0.01 0.0152 0.07 0.05 0.010.010.0153 0.05 0.10 0.10 0.05 0.0554 0.05 0.02 0.010.01 0.0355 0.05 0.06 Q.Q5 0.01 0.03⑴求边缘分布律;(2)求X月份的订单数为51时,9月份订单数的条件分布律.寸9 2一•I N I —- —M N1 --十I 2 ・-r x dI nM 二:丄n©丄左n o g d、2J OC 0 9--I H — + I n- -一E\© n f i 00 龙 V-< CMv-< ■"--I 乂 ^―1 、 8过 V-< c r-H 1 00 VO V-< 窝 w-H 9 T-<n i r-H 1 oQv-<尺#0睜墨独書温uw)s亠F X S :丄弍丄:X H X ?(e)喋■ E二E二寸二f fi卜•©O A +X S:二一g踽I?设随机变量*的概率密虞f(x)= -e_w(-oo<x< +oo),im x与凶是否相互独立?解答:若入与冈相互独立,则V Q O,各有P{XSa, \x\^a} = P{X^ayP{\x\Sa}, 而事件{\X\<a}a{X<a}f故由上式有P{\x\<a}=P{X<a\ P{\x\<a},=> 尸{|A|Sa}(l -P{X<a}) = 0=>F{|^<«|} = 0或1 ・(W A O),但当"0时,两者均不成立,出现矛盾,故X与凶不独立.习題再设人和『是两个相互独立的随机变量,x在(0,1)上服从均匀分布,y的概率密度为I 厲yso(1)求乂与『的联合概率密度5(2)设有“的二次方程/ + 2M + 丫= 0,求它有实根的概率•解答:(I)由题设易知l t 0<x<,几Kt又苹F相互独立,故尤与F的联合概率密度为1 ¥-於,0 <i< l t y>0 /(利刃< 2 ■^ 0,武它⑵因2有实根K判另域用-4¥-4F2W ={X1>Y} ?故如图所示得到:P 也有实根\=P{^>Y}= j| f{x y y)dxdy訂城A汕又Q>(I)-0.8413 I ®(0>0.5j于罡他⑴・飙0)・O.341儿所以尸汕有实根} = 1—伍[51 ) —9(0)] w1-2Jl X0.3413 = 0」4豹.3.3二维随机变量函数的分布解答:依题意有如團所示的概率表,(X.Y) (-1,-1) (-1.1) (-1,2) (2r l)(2.1) (2.2)Z=X+Y -2 0 1 1 3 4Z=XY 1 -1 ・2 ・2 2 4z=xy 1 -1 -1/2 ・2 2 1 Z=max{X,Y} •1 1 2 2 2 2A 1/10 1/5 3/10 1/5 1/10 1/10 于是,有的分布律为(4)Z = maxan^» 布律习題兰 _______________________________________________设二维隨机向量(X X)服从矩形区域"{(2)|0GM2・O3《1}的均匀分布,且(o.XsY f/S*2yI ux>y j,x>2r求〃与p的麻合概率分布.解答「I依题(",耳的槪率分布为P{U=<X V^Q\^P{X< Y y X^Y}^P{X<.Y}二仙1扑斗P{U = O, F=l}=P{T<KX>2r}=0,P{U= 1, e 0} = P{X> r, XS 2Y} = P{ Y<X<.2Y}=W4Jx=i,P{U=i, r=ij=| -PfC/=0. y=0}-P{U=0, /= 1} —p;u= I, 7=0} = 1/2,L习題4 ]设(K X)的联合分布密度为I 宀尸 _____f^y)=—e 2,Zp", 2K V求z的分布密度.解答:依题意,由______巧⑵=“Z "}=p{何TF s z}.当ZVO时,FXz) = P(0) = O;当220时,FQ.P{F"5・ JJ f(x,y)dxdy诰』F乎如'怕:城°%上上=£e 'pdp = 1 -e 2 .故2的分布函数为°J%)=< —2’ z-°,0, z<02的分布密度为■•伽十2, z>0.「0. 2<0设随机变莹(“ D的概率密度为i(x + v)^ Af>0,y>0f(x.y)=l 2 ,^ 0, 其它⑴冋龙和y是否相互独立?⑵求z x+y的概率密度._____________________________________⑴/,&)=「7(2”少产“°0,注00, ^<0/(2)*/心)/2), x>0, y>0, 所以龙与y不独立.(2)用卷积公式求/矗)=「:/(不z 以当"0时,/z(z) = 0;" xlx …… X>k)~■八Z")妇当即时m)“,所().M0由対称性知/;©)=于是,z x+y的槪率密度为习题6设随机变蚩x, y 相互独立,若尢服从(o, I)上的均匀分布」服从参数I 的指数分布,求随机 变量的概率密度. 解答依题意,X 」的槪率密度分布为1, 0<x< 1 0,其它'由卷积公式得Z XI 的枫率密度为/z(2)=匚/WgG - x)dx,于是当 0<X<1, Z-X>0 时,/(x)x(z-x)^0,故当 OvxSvl 时,有/Z (z) =(2-i'(£r= 1 -e a;当z2 1时,有f X z )=£e=e* ~2 - e~z .即z 的概率密度为0<z<l共它g(y) = \e ""、o,其它/(x) =设随机变量(* X)的概率密度为(be"", 0<x< l 9O<y< +oo/(")={J ^I0,其它⑴试确定常数仍⑵求边缘概率密度/冷),/Q);⑶求函数U=max{X, *的分布函 数. 解答二 ⑴由「丁 :r(x,y)厶心=i,确定常数从 j\lx^rbe^>dy=b(\-e })= 1 , 所以从而140. 其它⑶因为/(兀丿)=/亦)/2),所以*与y 独立,故尸口(“) = PfmaxJX Y} 0好=P(ATS“, Y<u} -F^u)F }{u) ■ C ] * X其中£/只)=『 ~ dt =—— > 0<%<1,所咲A Jo l -e 1 1-r 10. x<0―90<x< 1 • e同理因此0. u<0(】一"八 匸/(2)=卩 Y' 严-e). ovx< |,0<j< +oo⑵宙边壕概率密度的定义得f 「8 I 丄 “巴儿Ovxvle _x—°g具它f)M =0,1?士宀呱乜0.其它 0, 其它(>'< 0<y< +» 0. Jt 它9卜'dt. 0 <y < 40. yso1 一 严;0<y< +8()• y<0设索统丄是由两个相互独立的子系统人和h 臥串联方式联接而成,•和匚的寿命分别为*与 卜,其概率密度分另伪塾何*,趴©)=I 0, x<()其中Q0, E, gfh 试求枭统匚的寿命£的概率密度.i§Z=niinijX Y[则F\z)-P{Z>z} -P{min(X,打"}=1 一尸ging r)>s} = l-/?{X£j 1 畑} =\-\\P{X<^\\]-P{Y<z}\ =1-[1-^{2}][1-^{2}],由于从而(X zsO设随机变量丸门相互独立』且服从同一分布‘试证明:門 xmin {嵐1} 旳=『注沏『一孑"町『・设min 健叶■乙则P{a<min {X, r} = F/b) - F/a) ?F/zi = f{nrinJX Y}^z} = i -P{min(A ; Y}>z} -1 -P{X>Z r Y>z} = 1-P{X>2}P{Y>2} = I-[P{X>E}]%代入得尸归uminU ; Y}<b} =\-[P\X>b\]2-(\-[P{X>a\]2)■ [p 仇*}F ・[p{K“}F ・ 证毕.复习总结与总习题解答0, y < ()二) [ae nl -dx, z >“m尽){)* z<0 [l -严 eo炉(=) =(皿+佻十吒z>0在一箱子中装有12只幵关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试捡: (I)放回抽样;(2)不放回抽样.我彳虚义随机变量X、卜如下:_ ‘0•若第一次収出的是正品_Jo.若第二次取出的是正品=J,若第一次収出的是次晶'Y=\l,若第二次取出的是次品・试分别就⑴,⑵两种情况,写出X和y的联合分布律.解答:(1)有放回抽祥,(”,r>分布律如下:10x10 25 2x10 5P{x=o, r=oj = —―- p(x=], y=o} = =刁12x 12 " I2x 12 36P{X=Qy=i} = -^^ 5• 一砒=|, y=i} = 2x2 112x 12 jb 12 x12 361 K 0 1025/36 5/361 5/36 1/36(2)不放回ffiW, (KF)的分布律如下:10x9 45 10x2 10 P{X=0, 丫=0}= 砒=0, y=i} = =77 >12x )1 66 I2x 11 66p{m-o}- 2x 1010• =P{X=\, y=i} = 2x11=—、I2x II 66 I2x 11 66沁0 104566 10z661 10 66 1 66习題2假设随机变童丫服从参数为1的指数分布,随机变童Jo,若m兀=S , 伙=1, 2), [1,若丫“求(兀冷的联合分布率与边缘分布率.设随机变量尢与》相互独立'下表歹灶了二维随机变童X r)的联合分布律及关于x与丫的边缘分布律中的部分数值,试将其余数值填入表中的空白处:解答:i(1)由分布律的性质可知故土+””"1,所以“冷⑵因F(^y)^P{X<x, Y<y}①当x < I 或y< - I 时,F(x, y) = 0 j②当IM XV2, - I <y< 0时,F(xj) = P{X=丨,丫= 一1}= 1/4;③当x22, -l<y<OB^,阳』)=P{X=i,y= -i》+ P{*=2, y= -1}=5/12;趣当I <x<2, y>0时,凤凡夕)M1, 丫= - 1} 4P{X=】,yM021/2;⑤当X22, 寸,F\^y) =P{X=1, r=-】} + P{X=2, r=-l}+P{*二1, y 二0} + P{x=2, y 二0}习題8若(*, D 的分布律为则久”应满足的条件是 __________ ,若才与y 独立'则" _____________ " ____________ .3工 1 ~1 1/6 1/9 1/18213aB __求gx)和/Q)・ 解答= 依題意1, 0 2, max(0,x - 1 )^^^min( 1.x)max(O, .v - I)=0, xv 1 t JC - I, X > 1 斫以,心丿)有意义的区域(如園)可分为x 9 x< 1〉min(l“)=I L >\即 f(x,y) = /A)1, OSxSl,OS»SxI, 1 <x^2,x- 1 <y< I f 所以0,梵它0 <x< 1 L 如"S2 =、0,其它f dx, 0 <^< I0, H 它2 -x. 1 <x^2》 /^)= 1, 0^7< 1解答:由分布律的性质可知为犷I,故即«+/?=-.3又因才与y相互独立'故p{H}=Pd}P{y=/b从而a = P{X=2, r=2} =P{X i}P{Y^j}2/< = P{X=3. Y=2} = P{X=3:P{Y=2}习題9解答:丨⑴町工f(x,y)dxdv= 1 求常数e.厂厂3⑴讥询=c\斗“肿Jo " \ 2 y号1, 附*2.(6)F{X<2|y<l} = P鶯;『}=F(2J)=C-e-)(l-^)=1_g\e >dy1 一*0, xSO0, x<0()■ it 它10, yWO(3)F(xj)・『J fQu. v}dvduJJ :2e 叫 'dvdu 、CO,"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章多维随机变量及其分布1.[ 一]在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量如下:0,若第一次取出的是正品,X1,若第一次取出的是次品0,若第二次取出的是正品,Y1,若第二次取出的是次品试分别就(1)(2)两种情况,写出X和Y的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P( X=i, Y=j)=P ( X=i)P (Y=j)P( X=0, Y=0 )= 10 102512 12 36P( X=0, Y=1 )= 10 2512 12 36P( X=1, Y=0 )= 2 10 512 12 36P( X=1, Y=1 )= 2 2 112 12 36或写成(2)不放回抽样的情况10 9 45每X,YP{X=0,Y=0 }= 10 11 12—4512 11 6610 2 10P{ X=0, Y=1 }= 10—竺12 11 66或写成 3.[二] Y pg , 丫=吨曙 6) P { X=1, Y=1 }= 2 12 1 111 66£10 45 10 66 66 110 1 6666盒子里装有3只黑球,2只红球,2只白球,在其中任取 Y 表示取到白球的只数,求 X, Y 的联合分布律。

4只球,以X 表3 235 356122 135 35 3516 320 35 35 35解:(X , Y )的可能取值为(i ,j ), i =0, 1, 2, 0 1 2 33,示取到黑球的只数,以 X j =0,12, i + j > 2,联合分布律为 P { X=2, Y=1 }=1 C 74 35 c 3c ;c ; 6 C 7435 c 3c ;c ;6 C ;35C ;c ; 3C ; 35 c ;c ;c ; 12P { X=0, Y=2 }= P { X=1, Y=1 }=P { X=1, Y=2 }= P { X=2, Y=0 }=C;35P { X=2,P { X=3, P { X=3, c ;; 3C ;35 c 3C ;2 Cy35 c 3C ; 2 Cy35Y=2 }=Y=0 }= Y=1 }=P { X=3,Y=2 }=05.[三] 设随机变量( k(6 x y), 0 x 2,2 y 4 X , Y )概率密度为f (x, y) 0,其它(1)确定常数k 。

(2 )求 P { X <1, Y <3} ⑶求P (X <} (4)求 P (X+YC 4} 分析:利用 P {( X Y) € G}= f (x, y)dx dyGf (x, y)dxdy 再化为累次积分,其G D o中 D o (x, y) 2,1k(6⑵P(X 1, Y 3)dx(6 丿0 2 8x y)dy1.5(3)P(X 1.5) P(X 1.5, Y)024X1(4) P(X Y 4) dx丄(6x y)dyf (x, y)dxdy0 dx 1题中的随机变量(X 、 6. (1)求第 Y ) 13241 —(6 2823x y)dy I 732的边缘分布律。

2题中的随机变量(X 、(2)求第 Y ) 36 36 的边缘分布律。

5 361 361X 0 1Y 0 1P i •51P j5 1~6~6~6~6②不放回抽样(第1题)边缘分布律为X 0 1Y0 1P i •5 1P J5 16666(2) (X , Y )的联合分布律如下X 0123Y、3 38831188X 的边缘分布律Y 的边缘分布律X 0 1 2 3Y13P •丄3 3 丄P-j6_ 2_88 88887.[五] 设二维随机变量( X , Y ) 的概率密度为4.8y(2 x)0 x1,0 y x 求边缘概率密度.f(x, y)其它解:f x (x)f(x, y)dyx4.8y(2x)dy2.4x 2(2x)0 x其它f y (y) f(x, y)dx14.8y(2 x)dxy2.4y(3 4y y 2)边缘分布为解: 10 y 其它8.[六] 设二维随机变量(X , Y )的概率密度为xf (x, y ) e ,0 x y 求边缘概率密度。

0,其它•cx 4 5y, x 2 y 19.[七]设二维随机变量(X , Y )的概率密度为f (x, y )0,其它(1)试确定常数C 。

(2)求边缘概率密度。

15.第1题中的随机变量 X 和Y 是否相互独立。

解:放回抽样的情况P { X=0, Y=0 } = P { X=0} • P { Y=0}= 36 5 P { X=0, Y=1 } = P { X=0}P {Y=1}= — 36 P { X=1, Y=0 } = P { X=1}P {Y=0}= —364 P { X=1, Y=1 } = P { X=1}P {Y=1}=—36在放回抽样的情况下, X 和Y 是独立的 不放回抽样的情况:P { X=0, Y=0 }=10 9 45 12 11 66解:f x (x)f Y (y)xe y dyxe , x 0 0,xye y dxye y , y 0,0,y 0解:1=f (x, y)dxdyj y 2 1dyycx 2ydxo214X ~ f x (x):x 2 ydyx421 2 x 80, Y ~ f Y (y)y21 2 d 2ydx y 4 072yf (x, y)dyf(x, y)dx(1xP { X=0}= P { X=0, Y=0 } + P { Y=0, X=1 }=10 _9 _2 10 _512石石石石55 25P { X=0} • P {Y=0} = - -6 6 36Y=0 }丰 P { X=0} P { Y=0}P{ X=0, x 和Y 不独立16.[十四]设X , Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布。

Y的概率密度为f Y (y) pejy 0 0,y 0. (1)求X 和Y 的联合密度。

(2) 设含有a 的二次方程为a 2+2Xa+Y=0,试求有实根的概率。

解:(1)X 的概率密度为f X (x) 1,x (0,1) 0,其它Y 的概率密度为 f Y (y)y2, y 0且知X , 1 e 2 0, y 0.Y 相互独立,是(X, Y ) 的联合密度为f(x,y)f x (x) f Y (y)1 e2 0_y2 x 1,y 其它 (2)由于 a 有实跟根,从而判别式4X 24Y即:Y x 2 记D{( x, y) | 01,0P(Y X 2)f (x, y) dxdyD1 - 0dx0 2e 2dy1 x 21 dx 0x 2de0 x 21e 2 dx10 x 2120e T dx 12 ( (1) (2)) 1 2 (0.8413 0.5)V21 2.5066312 0.3413 1 0.8555 0.144519.[十八]设某种商品一周的需要量是一个随机变量, te 七,t0 f (t ) 0 t 0设第二周需要量为 Y,它是随机变量且为同分布,其分布密度为te t ,t 0 f(t)t 0当z>0时,由和的概率公式知3z f z (z)6 e 0设E 表示第三周需要量,其概率密度为:并设各周的需要量是相互独立的,试求(1)两周( 2)三周的需要量的概率密度。

解:(1)设第一周需要量为 X,它是随机变量其概率密度为Z=X+Y 表示两周需要的商品量,由X 和Y 的独立性可知:f(x, y)xxe ye 0yx 0,y其它当 z<0 时,f z ( z ) = 0f z (z)f x (z y)f y (y)dy z 0(zy)e (zy)ye ydy3ze6(2)设z 表示前两周需要量, 其概率密度为f z (z)3z e 6f E (X )0 X 0z 与E 相互独立n = z + E 表示前三周需要量则: •.•耳》0, 当u>0时• ••当 u <0, f n (u ) = 0f n (u)f(u y)f E (y)dyu1 /(u 0 6 ' 5—e u 120y)3e (u y) ye y dy所以 n 的概率密度为f n (u)5—e u 120u 0u 022.[二十二]设某种型号的电子管的寿命(以小时计)近似地服从xe2N(160,202 )分布。

随机地选取 4只求其中没有一只寿命小于 180小时的概率。

为: 解:设X i , X ?,X 3, X i 为4只电子管的寿命, 它们相互独立,同分布,其概率密度 1 e2 n 20(t 160)22 202f{X 180} F x (180) 202180(t 160) 厂dt2 202令 t 160 令u 1 20——2u 2Tdu180 60 (h )查表0.8413设 N=min{X , X 2, X X 4}P { N>180}=P {X >180, Xa >180, X 3>180, X 4>180}444P {冷 180} ={1 — p [X<180]}==27.[二十八]设随机变量(X , Y )的分布律为(2) 求V=max(X Y )的分布律(3) 求U = min (X, Y )的分布律解:(同理(2)变量V=maXX, Y }显然V是一随机变量,其取值为P {V=0}= P {X=0 Y=0}=0P {V=1}= P {X=1 ,Y=0}+ P {X=1, Y=1}+ P {X=°,Y=1}=++=P {V=2}= P {X=2,Y=0}+ P {X=2, Y=1}+ P {X=2,Y=2}+ P {Y=2, X=0}+ P {Y=2, X=1}=++++=P {V=3}= P {X=3, Y=0}+ P {X=3, Y=1}+ P {X=3,Y=2}+ P {X=3, Y=3} + P {Y=3, X=0}+ P {Y=3, X=1}+ P {Y=3, X=2}=++++++=P {V=4}=P { X=4,Y=0}+ P {X=4,Y=1}+ P { X=4,Y=2}+ P { X=4,Y=3} =+++=P {V=5}= P {X=5, Y=0}+ ……+ P {X=5, Y=3} =+++=(3)显然U的取值为0, 1, 2, 3P {U=0}=P {X=0, Y=0}+ ……+ P {X=0, Y=3}+ P { Y=0, X=1}+ …… + P {Y=0,X=5}=同理P {U=1}= P {U=2}= P {U=3}=或缩写成表格形式( 2)V 0 1 2 3 4 5P k 0( 3)U30 1 2P k(4) W=V+U显然W的取值为0, 1, (8)P{W=0}=P{V=0 U=0}=0P{W=1}=P{V=0, U=1}+P{V=1U=0}V=max{X, Y}=0 又U=min{ X, YM 不可能上式中的P{V=0,U=1}=0 ,又P{V=1 U=0}= P{ X=1 Y=0}+ P{ X=0 Y=1}=故P{W=1}=P{V=0, U=1 }+ P{ V=1 ,U=0}=P{W=2}=P{V+U=2}= P{V=2, U=0}+ P{V=1,U=1}= P{X=2 Y=0}+ P{X=0 Y=2}+P{X=1 Y=1}=++=P{W=3}=P{V+U=3}= P{V=3, U=0}+ P{V=2,U=1}= P{X=3 Y=0}+ P{ X=0,Y=3}+ P{ X=2,Y=1 }+ P{X=1,Y=2} =+++=P{W=4}= P{V=4, U=0}+ P { V=3,U=1 }+ P{ V=2,U=2} = P{X=4Y=0}+ P{X=3,Y=1}+P{X=1,Y=3}P{X=2,Y=2} =P{W=5}= P{V+U:5}=P{V=5, U=0}+ P{V=5, U=1}+P{V=3, U=2} = P{X=5 Y=0}+ P{X=5, Y=1}+P{X=3, Y=2}+ P{X=2, Y=3}=P{W=6}= P{V+U^S}=P{V=5, U=1}+ P{V=4, U=2}+P{V=3, U=3} = P{X=5, Y=1}+ P{X=4, Y=2}+P{X=3, Y=3}=P{W=7}= P{V+Uh}=P{V=5, U=2}+ P{V=4, U=3}=P{ V=5, U=2} + F{ X=4, Y=3}=+=P{W=8}= P{V+U:8}=P{V=5, U=3}+ P{X=5, Y=3}=或列表为W 0 1 2 3 4 5 6 7 8P 0[二十一]设随机变量(x, Y)的概率密度为f (x, y)be (x y),0 , 0 x其它1,0 y(1)试确定常数b; (2)求边缘概率密度f x ( x) , f v ( y)(3)求函数U=max (X, Y)的分布函数。

相关文档
最新文档