钟面行程问题讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.
在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.
钟面行程问题例题讲解3(时间误差问题)
什么是电梯行程问题?
与流水行船问题类似的有自动扶梯上行走的问题,与行船问题类似的,自动扶梯的速度有以下两条关系式:
与流水行船不同的是,自动扶梯上的行走速度有两种度量,一种是"单位时间运动了多少米",一种是"单位时间走了多少级台阶",这两种速度看似形同,实则不等,拿流水行程问题作比较,"单位时间运动了多少米"对应的是流水行程问题中的"船只顺(逆)水速度",而"单位时间走了多少级台阶"对应的是"船只静水速度",一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即"单位时间走了多少级台阶",所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单.
电梯行程问题的基本解题思路
电梯问题其实是复杂行程问题中的一类。有两点需要注意,一是“总行程=电梯可见部分级数±电梯运行级数”,二是在同一个人上下往返的情况下,符合流水行程的速度关系,(注意,其总行程仍然是电梯可见部分级数±电梯运行级数)
商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?
上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可
见部分有?80-20=60(级)。
行程自动扶梯解析
1.(测评题)小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。已知该自动扶梯共有150级阶梯,每秒运行级阶梯,问警察能否在自动扶梯上抓住小偷?答:_____。
分析:全部以地板为参照物,那么小偷速度为每秒级阶梯,警察速度为每秒级阶梯。警察跑上电梯时相距小偷×30=45级阶梯,警察追上小偷需要45秒,在这45秒内,小偷可以跑上×45=级阶梯,那么追上小偷后,小偷在第112~第113级阶梯之间,没有超过150,所以警察能在自动扶梯上抓住小偷。
2.在商场里甲开始乘自动扶梯从一楼到二楼,并在上向上走,同时乙站在速度相等的并排扶梯从二层到一层。当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,那么,自动扶梯不动时从下到上要走多少级?
分析:向上走速度为甲和自动扶梯的速度和,向下走速度为甲和自动扶梯的速度差。
当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,
60÷80=3/4,这说明甲乙处于同一高度时,甲的高度是两层总高度的3/4。则甲和自动扶梯的速度和与自动扶梯的速度之比是3/4:(1-3/4)=3:1,即甲的速度与自动扶梯速度之比2:1,甲和自动扶梯的速度差与自动扶梯的速度相等。向下走速度向上走速度的1/3,所用时间为向上走的3倍,则甲向下走的台阶数就是向上走台阶数的3倍.因此甲向上走了80÷(3+1)=20级台阶。甲的速度与自动扶梯速度之比2:1,甲走20级台阶的同时自动扶梯向上移动了10级台阶,因此如果自动扶梯不动,甲从下到上要走20+10=30级台阶。
3.商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?
上所用时间相同,在这段时间中,自动扶梯向上运行了(80-40)÷2=20(级)所以扶梯可见部分有 80-20=60(级)。
繁分数化简的方法
把繁分数化为最简分数或整数的过程,叫做繁分数的化简。
繁分数的化简一般采用以下四种方法:
1)先找出中主分线,确定分子部分和分母部分,然后这两部分分别进行计算,每部分的计算结果能约分的要约分,最后改成“分子部分÷分母部分”的形式,再求出结果。
2)繁分数化简的另一种方法是:根据分数的基本性质,经繁分数的分子部分和分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
(3)繁分数的化简一般由下至上,由左到右,逐次进行化简。
繁分数的分子部分和分母部分有时也出现是小数的情祝,如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。即:把小数化成分数,或把分数化成小数后再进行化简。
当分子部分和分母部分都统一成小数后,化简的方法是:中间约分时,把小数看成整数,但要注意小数点不要点错位置。
也可以根据分数的基本性质,把繁分数的分子部分和分母部分都变成整数连乘,然后交叉约分算出结果来。
通过观察可以看到:分子部分的各个因数一共有三位小数;分母部分的各个因数一共有两位小数。针对这个情况,分子和分母同时扩大1000倍,就都变成了整数。
在此基础上进行约分,即可得出最后的结果。
(4)利用整数的运算性质进行化简,通常可用拆分法或找规律法
繁分数的计算练习题及答案讲解1
繁分数的计算练习题及答案讲解2
繁分数的计算练习题及答案讲解3
繁分数的计算练习题及答案讲解4
什么是换元法
换元法解方程例题讲解1 换元法解方程例题讲解2
六年级计算问题:换元法
难度:中难度
解答:设出第二部分为a,第四部分为b,
最后结果为9
什么是裂项法求和?
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
裂项求和的易错点是什么?
此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意:余下的项具有如下的特点