第一章 量子力学基2013

合集下载

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

第一章量子力学基础知识总结

第一章量子力学基础知识总结

第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。

●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。

●不同金属的临阈频率不同。

●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。

●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。

Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。

如:sin,log等。

线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。

5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。

第一章1 量子力学基础

第一章1 量子力学基础

满足上述条件的波函数称为合格波函数或品优波函数 (well-behaved function)
(a)违反单值条件
(b)不连续
(c)一阶微商不连续
(d)波函数不是有限的
不符合品优函数条件的情况
(2)、Ψ 和CΨ 描述同一状态 C为一个非零的常数因子(可以是实数或复数)
ψ
2
重要的是在空间不同点的比值,而不是各点的绝对值大小。
r1 0.529 1010 m=52.9pm
玻尔 半径
氢原子轨道能量 1 me 4 R En 2 ( 2 2 ) 2 ,n 1, 2,3, n 8 0 h n
R 13.6eV
比较:多电子原子轨道能量
Z2 En R 2 n
玻尔理论的缺陷:旧量子论
● 玻尔理论仍然以经典理论为基础,定态假设
2、 电子衍射实验—德布罗意假设的实验验证
(1)戴维逊—革末电子单晶反射实验(1927年)
1925年,戴维逊和革末第一次得到了电子在单晶体中 衍射的现象(Ni 氧化,单晶),1927年他们又精确地进 行了这个实验,实验发现,从衍射数据中求得的电子 的物质波波长与从德布罗意关系式中计算出的波长一 致。
2 2 l 2
求此波函数的归一化常数A。
nx A sin( ) l
(0 x l)
l A 1 A 2
2
2 l
二、假设Ⅱ:力学量和算符
1、算符的定义:一种运算符号,当将其作用到某一函数上 时,就会根据某种运算规则,使该函数变成另一函数
g Af
2、算符的性质 ①相等
定态(E2)→定态(E1)跃迁辐射
(3)量子化条件
电子轨道角动量 M n

第一章量子力学基础知识.doc

第一章量子力学基础知识.doc

第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。

2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。

金属中的电子从光获得足够的能量而逸出金属,称为光电子。

光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。

(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

(3) 增加光的频率,光电子的动能也随之增加。

光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。

按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。

(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。

电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。

2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。

1第一章 量子力学基础

1第一章 量子力学基础


实例1: 运动速度为1.0×106m·s-1的电子的de Broglie波波长为
实物微粒的波粒二象性
6.6 ×10−34 J ⋅ s λ= = 7.0 ×10−10 m (9.1×10−31 kg ) × (1.0 ×106 m ⋅ s −1 )
这个波长相当于分子大小的数量级,说明原子和分子中电子运动的波效应 是重要的。而宏观粒子,如质量为1.0×10-3kg的宏观粒子以1.0×10-2 m·s-1的 速度运动时,经计算λ= 7.0×10-29 m,观察不到波动效应。 实例2:电子的运动λ =h/mυ,它由加速电子运动的电场电势差V(伏特)决定。
W 脱出功,hv0 Ek光电子动能,mυ2/2
ε = h ν, p = h/λ ε, p 粒性, v, λ 波性
实物微粒的波粒二象性
• 波粒二象性是微观粒子的基本特性,这里所指的微 观粒子既包括静止质量为零的光子,也包括静止质 量不为零的微粒,如电子、质子、原子和分子等。 • 1924年de Broglie(德布罗意)受光的二象性启发, 提出实物微粒的波粒二象性假设,三年后被 C.J.Davisson(戴维孙)等人用电子衍射实验证实。 • de Broglie的假设内容有: E = hν , p= h/λ 这样实物微粒在以大小为p = mv 的动量运动时, 其波长 λ =h/p=h/mυ 此即de Broglie关系式, λ 为德布罗意波的波长。
者之间所应满足的关系。
例:试比较电子和质量为10g的子弹位置的不确定量,假设它 解:
们在x方向都以速度200m/s运动,速度的不确定度在0.01%内。
Δx ⋅ Δp x ≥ h
−32
h Δx = Δp x
电子: Δp x = 0.01% mv x = 10 −4 × 9.11× 10 −31 × 200

(01) 第一章 量子力学基础

(01) 第一章 量子力学基础

( 1 1 ), n n R 2 2 1 2 n1 n2 n1 1, Lyman 系 n1 2, Balmer 系 n1 3, Paschen 系 n1 4, Brackett系 n1 5, Pfund 系
原子光谱是原子结构的信使. 那么, 在此之前, 人们对 原子结构认识如何呢?
1903年,J.J.汤姆逊提出“葡萄布丁”原子模型.
1911年, 卢瑟福在α粒子散射实验基础上提出原子的
有核模型. 但问题是: 原子是一个电力系统, 电子如果像行
星绕太阳那样绕核运转, 就会在这种加速运动中发射电磁 波而损失能量, 从而沿螺旋线坠落到核上并发射连续光谱, 与原子稳定性和光谱分立性相矛盾:
结成经验公式(后被J.R.Rydberg表示成如下的波数形式),
并正确地推断该式可推广之(式中n1、n2均为正整数):
20 世 纪 初 , F.Paschen(1908 年 ) 、 F.S.Brackett (1922 年) 、H.A.Pfund (1924年)等在红外区, Lyman (1916年)在 远紫外区发现的几组谱线,都可用下列一般公式表示:
直认为是实物粒子的电子等物质, 也看作是波.
de Broglie关系式为:
ν= E / h
λ= h / p
尽管Einstein的光量子理论对de Broglie有重要影响, 但 实物微粒的波粒二象性并不能从光的波粒二象性经演绎推理 得出. de Broglie波的传播速度为相速度u, 不等于粒子运动速 度v; 它可以在真空中传播,因而不是机械波;它产生于所
匀速直线运动, 决不可能作圆周运动!
事实上, 按照经典物理学, Bohr模型中的电子只受一种向心力 mv2/r 作 用 , 才 产 生 了 圆 周 运 动 , 而 这 向 心 力 本 身 就 是 库 仑 引 力 e2/(4πε0r2) . 至于离心力和向心力, 它们是分别作用于原子核和电子的, 而不是 共同作用于电子.

结构化学第一章 量子力学基础

结构化学第一章 量子力学基础

~= 1 =R 1 − 1 ν H 2 2 λ n1 n2
1913年为解释氢原子光谱的实验事实, Bohr综合 1913年为解释氢原子光谱的实验事实, Bohr综合 年为解释氢原子光谱的实验事实 了Planck的量子论、Einstein的光子说以及卢瑟福的原 Planck的量子论、Einstein的光子说以及卢瑟福的原 的量子论 子有核模型,提出: 子有核模型,提出:
氢原子线状光谱
1885年巴耳麦(Balmer)和随后的里德堡(Rydberg) 1885年巴耳麦(Balmer)和随后的里德堡(Rydberg) 建立了 年巴耳麦 对映氢原子光谱的可见光区14条谱线的巴尔麦公式。20世纪 14条谱线的巴尔麦公式 对映氢原子光谱的可见光区14条谱线的巴尔麦公式。20世纪 初又在紫外和红外区发现了许多新的氢谱线,公式推广为: 初又在紫外和红外区发现了许多新的氢谱线,公式推广为:
一、 经典物理学的困难与旧量子论的诞生 1.黑体辐射实验与普朗克的量子论 黑体辐射是最早发现与经 典物理学相矛盾的实验现象之 一。 所谓黑体是指能全部吸 收各种波长入射光线辐射的物 体。带有一个微孔的空心的金 属球,非常接近于黑体,进入 金属小孔的辐射,经过多次吸 收、反射,使射入的辐射完全 被吸收,当空腔受热时,又能 发射出各种波长的电磁波。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
1 2 hν = W + EK = hν 0 + mv 2
是电子逸出金属所需要的最小能量,称为逸出功, 式中W是电子逸出金属所需要的最小能量,称为逸出功, 它等于hν0;EK是电子的动能, 是电子的动能,
1 2 解释了光电效应实验的全部结果: 上式解释了光电效应实验的全部结果: 光子没有足够的能量使电子逸出金属, hν< 当hν<W 时,光子没有足够的能量使电子逸出金属,不发生 光电效应; 光电效应; 这时的频率是产生光电效应的临阈频率( 当hν=W 时,这时的频率是产生光电效应的临阈频率(ν0) ; 从金属中发射的电子具有一定的动能, hν> 当hν>W 时,从金属中发射的电子具有一定的动能,它随ν 的增加而增加( 与光强无关。 的增加而增加(T=hν-hν0),与光强无关。但 增加光的强度可增加光束中单位体积内的光子 因此增加发射电子的数目。 数,因此增加发射电子的数目。

第01章 量子力学基础

第01章  量子力学基础

19
化的。 化的。
《结构化学》-量子力学基础 结构化学》 量子力学基础
1.1.3 氢原子的线状光谱与玻尔(Bohr)原子结构理论 氢原子的线状光谱与玻尔( ) 原子光谱
当原子被电火花、电弧或其它方法激发时, 当原子被电火花、电弧或其它方法激发时,能够发 出一系列具有一定频率(或波长)的光谱线, 出一系列具有一定频率(或波长)的光谱线,这些 光谱线构成原子光谱。 光谱线构成原子光谱。
氢原子线状光谱
1885年巴耳麦(Balmer)和随后的里德堡 年巴耳麦( 年巴耳麦 )和随后的里德堡(Rydberg) 建立了对 映氢原子光谱的可见光区14条谱线的巴尔麦公式 条谱线的巴尔麦公式。 世纪初 映氢原子光谱的可见光区 条谱线的巴尔麦公式。20世纪初 又在紫外和红外区发现了许多新的氢谱线,公式推广为: 又在紫外和红外区发现了许多新的氢谱线,公式推广为:
热力学+ 热力学+电磁辐射
3
λ
5
e
只适用于短波部分
8
《结构化学》-量子力学基础 结构化学》 量子力学基础
经典物理学方法解释 统计力学+ 统计力学+电磁辐射
Rayleigh-Jeans公式 公式
E (λ , T ) =
CkT
λ
4
只适用于长波部分,引出了“紫外灾难” 只适用于长波部分,引出了“紫外灾难”的争论
E(λ) λ
0
1
2
3
4
5
6
(m)
λ
7
《结构化学》-量子力学基础 结构化学》 量子力学基础
经典物理学方法解释 维恩(Wien)定理---维恩位移公式 维恩(Wien)定理---维恩位移公式 ---

第1章 量子力学基本原理

第1章 量子力学基本原理
42
Bohr理论的局限性
不能解释氢光谱的谱线强度、光谱精细结构、 多电子原子的光谱现象。 其假设的平面轨道与电子围绕原子核呈球形 对称的现象不符。 未解释原子稳定存在的原因。
28
氢原子 光谱
Balmer公式
36.64 n 5 2n 222
n=3、4、5、……
(11 0m 0)
Rydberg公式
n~1RH(212 n12)
Rydberg常数:RH=1.09677581×107m-1 29
当时有关原子的结构的知识 原子由电子和带正电的部分组成。 原子为电中性。 电子的质量比原子的质量小得多,如氢原子 中电子的质量仅为氢原子的1/1837。
3
结构化学 —— 第一章量子力学原理
1.1 量子力学(量子论)的实验基础
黑体辐射 光电效应 氢原子光谱
4
1.1.1 黑体辐射
高于0K的任何物体都会产生辐射,其辐射特征决 定于物质的本性和温度。 Black body:是一种理想的辐射体,它在任何温 度下都能完全吸收任何波长的辐射。
5
射入腔孔的辐射实际 上全部吸收,只有极 少量的入射辐射有可 能从腔孔偶然逸出。 开有小孔的等温空腔是一个良好的黑体模型
27
1.1.3 氢原子光谱
研究原子的结构及其规律常用的实验方法
利用高能粒子对原子进行轰击。 观测在外界激发下(电火花、电弧、火焰或其 它方法)原子所发射的光辐射。
元素的原子被火焰、电弧等激发时,能受激而 发光,形成光源。将它的辐射线通过狭缝或棱 镜,可以分解为许多不连续的明亮的线条,称 为原子光谱。
结构化学 —— 第一章量子力学原理
第一章
1
I 量子论的形成 新理论的产生
为世人接受的新 观念和新理论

量子力学基础

量子力学基础

i 2 i 2 xpx Et xpx Et A exp h x h
第一章 量子力学基础知识
i 2 i 2 i 2 xpx Et px A exp p x h h h
z
e2
第一章 量子力学基础知识
e1
不考虑核的运动
r1 r12 r2
z
2 p12 p2 2e 2 2e 2 e2 E 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
e2
ˆ 2 2 2e 2e e H 1 2 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
第一章 量子力学基础知识
合格(品优)波函数
由于波函数的概率性质,所以波函数必须满足下 列条件: • 单值的,即在空间每一点 只能有一个值;
• 连续的,即 的值不出现突跃; 对x, y, z的 一级微商也是连续函数;
• 平方可积的,即 在整个空间的积分
* d
为一个有限数,通常要求波函数归一化,即
态函数的形式与光波的方程类似,习惯上称之为 波函数。如: 平面单色光的波动方程: A exp i 2 x t E hv, p h 代人波粒二象性关系: i 2 得单粒子一维运动波函数: A exp xpx Et
h


定态波函数:当微观粒子的运动状态不随时 间而变时,其波函数可以写作:
x1 , y1 , z1 , x2 , y2 , z2 , x3 , y3 , z3 , t
or
or
1,2,3, t
q1 , q2 , q3 , t ,
<关于波函数的一些概念和说明> 波函数是体系中所有粒子的坐标和时间的函数。

第一章 量子力学基础

第一章 量子力学基础

若厄米算符Â具有本征值, 若厄米算符Â具有本征值,则其一定是实数 对一个微观体系,厄米算符给出的本征函数组ψ 对一个微观体系,厄米算符给出的本征函数组ψ1 ψ2 …..形成一个正交归一的函数组 形成一个正交归一的函数组。 ψ3…..形成一个正交归一的函数组。 波函数的正交归一化条件
一 件 1 i= j 归 条 ∫ψ ψ j dτ = 0 i ≠ j 正交条件
∗ i
d2 下列函数e 例3 下列函数 x ,sinx,2cosx,x3中,哪几个是算符 , , dx2
的本征函数。若是,求出本征值。 的本征函数。若是,求出本征值。
d2 (ex ) x ex是算符的本征函数,本征值为 是算符的本征函数,本征值为1 = 1× e dx2 d2 (sin x) 是算符的本征函数, 是算符的本征函数 本征值为-1 = −sin x sinx是算符的本征函数,本征值为 dx2 d2 (2cos x) = −2cos x 2cosx是算符的本征函数,本征值为 是算符的本征函数, 是算符的本征函数 本征值为-1 2 dx d2 (x3 ) = 6x 2 dx
本征值与本征函数
求解Schrödinger方程结果如下: 方程结果如下: 求解 方程结果如下
nh En = 2 8ml 2 nπ x ψ n ( x) = sin , (0 < x < l ) l l n = 1, 2,3,⋯⋯
2
2
二、讨 论
(1)不同态时的波函数和能量. )不同态时的波函数和能量. (2)波函数Ψ(x)和几率密度︱Ψ(x)︱2图. )波函数Ψ(x)和几率密度︱ (x)︱ 和几率密度 (3)说明: )说明: 波函数可以有正负变化,但概率密度总是非负的. 波函数可以有正负变化,但概率密度总是非负的. 波函数或几率密度为零的点或面(边界处除外)称为节点 波函数或几率密度为零的点或面(边界处除外) 或节面,量子数为n 或节面,量子数为n时,有n-1个节点(面),节点数越多, 个节点( 节点数越多, 能级越高. 能级越高. 没有经典运动轨道, 没有经典运动轨道,只有几率分布 Ψ(x)——一个量子数 一个量子数n 一个量子数

第一章 量子力学基础课后习题

第一章 量子力学基础课后习题

第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。

黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。

况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。

实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。

这一结果用经典理论无法解释。

(2)光电效应。

光照射到金属上时,有电子从金属中逸出。

实验得出的光电效应的有关规律同样用经典理论无法解释。

(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。

经典物理学不能解释原子的稳定性问题。

原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。

定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。

这种在量子力学建立以前形成的量子理论称为旧量子论。

评价:旧量子论冲破了经典物理学能量连续变化的框框。

对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。

但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。

由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。

@第一章 量子力学基础

@第一章 量子力学基础

量子力学基本假设
如果一个体系的可观测力学量的平均值不随时
间而改变,这个体系就被说成是处于一个定态。
注意:定态不等于静止。
本课程中主要讨论定态波函数。
C为一个常数因子(可以是实数或复数)时,Ψ 和 C Ψ描述同一状态。(为什么?)
由于波函数描述的是几率波,所以ψ必须满足3个条 件,即品优波函数或合格波函数: •单值,即在空间每一点ψ只能有一个值
一维势箱
一维势箱中最低能量值:n=1,E1=h2/8ml2, 对应1状态
(3)零点能
E1即为零点能(能量最低的状态1所具有的 能量) 由于箱中V(x)=0,故E1全是动能
箱中动能恒大于0,粒子处在最低的能量 状态,也在运动 能量最低的状态叫基态,基态公式可以看出,当l增大,即粒子的活动 范围扩大时,相应的能量会降低。 这种由于粒子的活动范围扩大而使体系能量降 低的效应称为“离域效应” 在有机化学中,共轭化合物的体系,因离域 效应而使得化合物更加稳定;对当代一些光 电材料学科也具有重要的意义。
电子1/2mv2 = eV; = h/mv = h/(2me)1/2(V)1/2 =1.226×10-9/V1/2(m)
实物微粒波的证明及其统计解释
1926年,波恩提出实物微粒波的统计解 释:他认为在空间任何一点上波的强度和粒 子出现的概率成正比,按照这种解释描述的 粒子的波称为概率波。 1927年,德布罗意的假设被戴维逊-革 末的镍单晶电子衍射实验和汤姆逊的多晶金 属箔电子衍射实验所证实。 1928年后,实验进一步证明,分子,原 子、质子、中子等一切微观粒子都无不具有 介绍 波动性。
量子力学基本假设
假设Ⅳ 态叠加原理
若ψ1,ψ2,…,ψn为某一微观状态的可 能状态,由它们线性组合所得的ψ也是该体系的 可能状态:

第一章-量子力学基础PPT课件

第一章-量子力学基础PPT课件
结构化学
王荣顺 等 编著
讲授:陈喜 (副教授)
2021/3/12
1
Байду номын сангаас
结构化学课程内容
· 微观粒子运动所遵循的量子力学规律 ·原子结构(原子中电子的分布和能级) ·分子结构(化学键性质和分子能量状态) ·晶体结构(晶体场理论,晶体初步) ·实验方法(IR、NMR、EPR、PES等)
2021/3/12
2
结构化学的学习方法
❖ 理论联系实际 理论来源于实践,被实践检验,反过来又指导 实践;在实践的基础上建立模型,近似和假定 才可以得出合理的结果。
❖ 学会抽象思维和运用数学工具 抓住问题的关键,采用简化的数学模型。
❖ 恰当的运用类比,模拟以及其他科学方法
2021/3/12
3
参考书目
1.《物质结构》, 潘道皑、赵成大、郑载兴,高等教育出版社,1989年。 2.《量子化学》,徐光宪,科学出版社,2008年。 3.《结构化学基础》,周公度,北京大学出版社,2009年。 4. 《结构化学多媒体版》,李炳瑞,高等教育出版社,2004年
此时增加光的强度可增加光束中单位体
积内的光子数,因而增加发射电子的速率, 使光电流增大。
2021/3/12
17
3.氢原子光谱与波尔的原子模型
当原子被电火花、电弧或其它方法激 发时,能够发出一系列具有一定频率(或波 长)的光谱线,这些光谱线构成原子光谱。
氢原子光谱实验装置图
2021/3/12
18
连续光谱 氢原子吸收光谱(Balmer系)
(4) 频率大于0的入射光照射到金属表面,
立即有电子逸出,二者几乎无时间差
2021/3/12
11
光电管的伏 安特性

第一章量子力学基础 - 南开大学结构化学精品课程网站 孙宏伟

第一章量子力学基础 - 南开大学结构化学精品课程网站 孙宏伟
d ax e ae ax eax是算符d/dx的一个本征值为a的本征函数 dx d ax2 ax 2 eax2不是算符d/dx的本征函数 e 2axe dx 例:函数cos(3x+5)是否是算符d2/dx2的本征函数,如果是, 本征值是多少? d2 d cos(3x 5) 3sin(3 x 5) 9cos(3 x 5) 2 dx dx
C为任意值, 令C=1
令C=i
ˆ f * Agd ˆ g ( Af ˆ )* d f ( ACg ˆ )* d g * Afd

Nankai University
ˆ g ( Af ˆ )* d f * Agd

第一章 量子力学基础
The Foundation of Quantum Mechanics
Nankai University
《量子化学》第一章 量子力学基础

§1.1 量子力学算符
Operators in quantum mechanics 经典力学 可观 测力 学量 —函数
Nankai University
《量子化学》第一章 量子力学基础
证明:设 = f + Cg C为任意参数
* ˆ ˆ )* d ( A d A
* ˆ ˆ ( f Cg )]* d ( ) ( ) ( )[ f Cg A f Cg d f Cg A
f f xf xf x 2 f f 2 xf ( x 2 1) f ˆ x 2 1) f ˆ 2 2 xD (D
ˆ x ˆ 2 2 xD ˆ x2 1 ˆ )2 D (D
ˆ x ˆ x ˆ x 直接算符运算 ( D ˆ )( D ˆ) ˆ )2 ( D ˆ (D ˆ x ˆ x ˆ(D ˆ) ˆ) x D ˆ 2 Dx ˆ ˆ xD ˆ2 ˆˆ x D ˆ x2 1 ˆ 2 2 xD D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E = nhv0
第一章
量子力学基础
§1.1 经典物理学的困难
1600K时黑体辐射的理论预测与实验结果的比较
第一章
量子力学基础
§1.1 经典物理学的困难
第一章
量子力学基础
§1.1 经典物理学的困难
2 光电效应 2.1 微粒说的严重挑战——光电效应 对阴极B所用金属,有一固定的频率ν0,只有 当入射光的频率ν>ν0时,才有光电流产生, ν0 频率称为该金属的临域频率。 但当电压减小到0并逐渐变负时,i≠0,表明 B发射的光电子具有动能,故能克服反向电 场力的作用而仍向A运动。只有当V负得足够 大,才使i=0,这个电压称为遏止电压Vs。
第一章
量子力学基础
§1.1 经典物理学的困难
T = hv − W0
增加照射光强度,不能增加光电子动能,只能 光电子的数目增加; 光电子动能随照射光频率的增加 而增加。
第一章
量子力学基础
§1.1 经典物理学的困难
1.3 氢原子光谱实验 原子光谱:当原子被火焰、电弧、电火花等方法 加热时能发出光来,这样测得的谱线称为原子光谱。
量子力学基础
§1.1 经典物理学的困难
de Broglie波不仅对建立量子 力学和原子、分子结构理论有重要 意义,而且在技术上有重要应用。
使用de Broglie波的 电子显微镜分辨率 达到光学显微镜的 千倍,为人类打开 了微观世界的大门。
第一章
量子力学基础
§1.1 经典物理学的困难
量子理论诞生100年后, 我国科学家又在世界上首次 发现了新的物质波干涉现象。中国科学院大连化学物 理研究所发展了一种新的激光光谱方法来测量分子碰 撞传能截面,证明了分子与分子碰撞时也像光波一样 发生干涉效应,对分子碰撞传能有重要影响。我国科 学家在钠的碰撞实验中也观察到这一效应。这一成果 丰富了量子理论,受到国际同行的关注和高度评价, 是2000年中国十大科技进展新闻之一。
第一章
量子力学基础
§1.1 经典物理学的困难
X-rays
Electron
电子衍射不是电子间相互作用的结果,而是电子本身运动所 固有的规律性。
第一章
量子力学基础
§1.1 经典物理学的困难
1.5.4 德布罗意波的几率解释 1927年波恩提出实物粒子波的几率的解释。 实物微粒在空间不同区域出现的概率呈波 动性分布。 波函数所描写的是处于相同条件下的大量粒子的 一次行为或者是一个粒子的多次重复行为,微观粒 子的波动性是与其统计性密切联系着的,而波函数 所表示的就是概率波。
第一章
量子力学基础
§1.1 经典物理学的困难
1.5.3 物质波的实验证实和统计解释 例:子弹的质量为0.01kg,运动速度为1000m/s,电 子质量为9.11×10-31kg,运动速度为5×106m/s,试 求子弹和电子的de Broglie波长。
结论:宏观物体的德布罗意波无实际意义。实物微 粒(微观粒子)——电子、分子、中子、质子等。
第一章
量子力学基础
§1.1 经典物理学的困难
粒性观点:曝光强的地方,电子落在此处的机 会就多,即电子出现的概率大; 波性观点:曝光强的地方, |ψ(x,y,z)|2 大, 在化学中,电子在原子分子中各点的几率 密度分布叫电子云,即电子云是电子概率密 度的空间分布。
第一章
量子力学基础
§1.1 经典物理学的困难
m= m0 1 − ( v )2 c
第一章
量子力学基础
§1.1 经典物理学的困难
4. 光子具有一定的动量
P = mc =
h
λ
5. 产生光电效应时服从能量守恒与动量守恒定律 光子学说对光电效应的解释 光电方程 临阈频率 遏止电压
1 2 hv = mv + W0 2
hv0 = W0
1 2 mv = eVs 2 h h Vs = v − v0 e e hv − hv0 =
−34
c
λ
100 J 3 ×10 m J .s × 590 ×10−9 m
−1 8
× 1s = 2.96 × 10
20
第一章
量子力学基础
§1.1 经典物理学的困难
例:当一个电子从高能级向低能级跃迁时,发射一个能量 子hv0,,若激发态的寿命10-9s ,问v的偏差是多少?由此 引起的谱线宽度是多少?(单位:cm-1)
第一章
量子力学基础
§1.1 经典物理学的困难
2.2 Einstein光子学说 1 光的能量是量子化的。最小单位为“光量子”。
ε 0 = hv
2.光的强度取决于单位体积内光子的数目(光子密度)
ρ = lim
Δτ →0
ΔN dN = Δτ dτ
3.光子不但有能量,还有质量(m),但光子的静止质 量为零。 ε 0 hv h m= 2 = 2 = c c cλ
例:宏观物体与微观粒子的不确定度计算 对于宏观物体,如质量为0.01kg速度为1000ms-1的子 弹,若其速度的不确定度为其运动速度的1%,则其位 置的不确定度
完全可以忽略
对微观粒子,如电子,其质量为9.1×10-31kg,如 其速度和速度不确定度均与子弹相同,在这种情 况下,其位置的不确定度为
不能忽略
第一章
量子力学基础
§1.1 经典物理学的困难
为了克服经典物理无法解释实验事实的困 难 , plank 提 出 了 黑 体 辐 射 的 物 理 模 型 :——谐振子模型
M.Planck
黑体是由不同频率的谐振子组成,而谐振 子的能量是不能连续变化的,只能以某个最小 单位做跳跃性变化。
ε 0 = hv0
第一章

1.3.1 玻尔原子模型要点 原子中电子运动的轨道是不连续的。 在玻尔轨道上运动的电子处于相对稳 定的状态。——定态 电子在不同的轨道间跃迁时,会吸收 或放出能量。
第一章
量子力学基础
§1.1 经典物理学的困难
频率定则
由玻尔理论推出的结果 1 轨道角动量是量子化的。
2.5 不确定关系
1927年Heisenberg根据理想实验和德布罗意关系提出不确 定关系,后来又根据玻恩对波函数的统计解释加以严格证明。
粒子在客观上不能同时具有确定的坐标位置及相 应的动量。
Δx⋅ΔP ≥ h
不确定关系也存在于能量和时间之间:
ΔE⋅Δt ≥ h
第一章
量子力学基础
§1.1 经典物理学的困难
ΔEτ ≥ h ΔE = hΔv ≥ h
τ
Δv ≥

1
τ
= 10 s
9 −1
Δv 109 s −1 Δv = = = 3 × 10−2 cm −1 c 3 ×1010 cm.s −1
第一章
量子力学基础
§1.1 经典物理学的困难
但在量子力学中,按照哥本哈根学派的观点, 概率则是原则性的、基本的东西。即使像氢原子中 的电子这样简单的体系,也必须用概率描述。原因 在于微观世界中不确定原理起着明显的作用。 概率作为一种基本法则进入了物理学,Ψ被称为 波函数, 这种波被认为是一种概率波。
nh M= =n 2π
第一章
量子力学基础
§1.1 经典物理学的困难
2 轨道半径是量子化的
mv 2 e2 = r 4πε 0 r 2 nh M= = mvr 2π
ε0 ⋅h 2 2 r= ⋅ n = 52.9 ⋅ n pm 2 π ⋅m ⋅e
2
第一章
量子力学基础
§1.1 经典物理学的困难
3 能量是量子化的
第一章
量子力学基础
§1.2 实物微粒运动状态
1.2 实物微粒运动状态的表示法及态叠加原理
de Broglie波的存在被实验证明时,还缺少波 动方程。 比波动力学稍早出现的还有W.K.Heisenberg1925 年提出的矩阵力学。 1926年, E.Schrödinger发现这两种理论在数学上 等价。他于1926年创立波动力学,核心就是今天众 所周知的Schrödinger方程.
第一章
量子力学基础
§1.1 经典物理学的困难
注意: (1)微观领域并非所有物理量都不能准确测定, (跟算符的对易法则有关)
(2)单个物理量是可以准确测定的。
第一章
量子力学基础
§1.1 经典物理学的困难
例:一个100W的钠蒸汽灯,发射波长为590.0nm的 黄光,计算每秒发射的光子数。
100 J = xhv = xh x= 6.626 × 10
第一章
量子力学基础
§1.1 经典物理学的困难
ΔE ⋅ Δt ≥ h
但能量-时间不确定关系使 跃迁发生在两个不同程度展宽 的能级ΔEa和ΔEb之间,导致 谱线加宽。 Eab Eb
Ea
第一章
量子力学基础
§1.1 经典物理学的困难
宏观物体的运动可以同时具有确定的位置和动量。 而对微观粒子,不能同时具有确定的位置和动 量,这就表明微观粒子不存在确定的轨道,只能用 其在不同位置出现的几率密度来考虑其性质,这也 正是德布罗意波的意义所在。
第一章
量子力学基础
§1.1 经典物理学的困难
ν= E / h
λ= h / p
强调实物微粒的波动性
这就是著名的德布罗意关系式。 数学形式上与爱因斯坦关系式一样,但这是一 个全新的假设,因为它可以应用到所有的实物微粒。 de Broglie波被称为物质波 模型→现有理论无法解释→假设→新理论的诞生
第一章
第一章 量子力学基础
§1.1 经典物理学的困难和量子论的诞生 §1.2 实物微粒运动状态的表示法 及态叠加原理 §1.3 实物微粒的运动规律—薛定谔方程
§1.4 定态薛定谔方程的算符表达式
第1-1章
第19题(a,c) 第20题(a,c) 第25题(b)
相关文档
最新文档