第四章 运动控制与步态 第二节 运动控制的调节_PPT幻灯片

合集下载

《运动控制系统》课件

《运动控制系统》课件
开环控制系统的缺点是抗干扰能力差,受环境影响较大,无法自动修正误差。
闭环控制系统包含反馈回路,通过负反馈来自动调节系统的输出量,使其达到预定的目标值。
闭环控制系统的优点是精度高,抗干扰能力强,能够自动修正误差,适用于对精度要求较高的复杂系统。
闭环控制系统的缺点是结构复杂,设计难度较大,需要具备一定的稳定性分析和调整能力。
03
反馈控制原理的实现需要具备一定的传感器和控制器技术,以及对系统的数学建模和仿真分析能力。
01
反馈控制原理是通过比较系统的输入与输出信号,将输出信号的差值用于控制执行机构,以实现系统的自动调节。
02
反馈控制原理广泛应用于各种运动控制系统,能够提高系统的稳定性和精度。
04
运动控制系统的应用
运动控制系统能够精确控制机器人的动作和位置,实现自动化生产线的连续作业,提高生产效率和产品质量。
控制器的种类繁多,根据应用需求可以选择不同的控制器,如单片机、PLC、运动控制卡等。
执行器是运动控制系统的输出部分,负责将驱动器的电压或电流信号转换为机械运动。
执行器的种类也很多,常见的有步进电机、伺服电机、直线电机等。
执行器的选择要根据实际应用需求来决定,如需要高精度定位、快速响应等。
传感器的种类也很多,常见的有光电编码器、旋转变压器、霍尔元件等。
自动化决策
智能化运动控制系统将具备自适应学习能力,能够根据不同环境和工况自动调整控制策略,以适应各种复杂和动态的运动需求。
自适应控制
远程监控与控制
通过网络技术,实现对运动控制系统的远程监控和控制,方便对设备进行远程调试、故障诊断和远程维护。
数据共享与协同工作
通过网络化实现多设备之间的数据共享和协同工作,提高生产效率和设备利用率。

步态分析ppt演示课件

步态分析ppt演示课件

揭示肌肉的电生理活动与步态的关系。
.
14
sEMG(表面肌电图)
.
15
.
16
髋关节(hip)
• 髋伸肌:臀大肌、腘绳肌
• 髋屈肌:髂肌、腰大肌(髂腰肌)
• 髋外展肌:臀中、小肌、梨状肌、
• 髋内收肌群:耻骨肌、长/短收肌、大收肌
• 髋内旋肌:阔筋膜、臀小肌、臀中肌前部
• 髋外旋肌:臀中肌、臀大肌后部,梨状肌、 闭孔内肌
. 45
.
46
当摆动腿向前迈步时, 骨盆向前及向对侧发生 一定的旋转,正常约5°
.
12
正常步行周期中骨盆和下肢各关节 角度的变化
关节运动角度
步行周期 骨盆 首次着地 承重反应 站立中期 足跟离地 足趾离地 5°旋前 5°旋前 中立位 5 °旋后 5 °旋后 髋关节 30 °屈曲 30 °屈曲 30 °屈曲 ~0 ° 0 °~10 °过度伸展 10 °过度伸展~0 ° 膝关节 0° 0 °~15 °屈曲 15 °~5 °屈曲 5 °屈曲 5 °~35 °屈曲 踝关节 0° 0 °~15 ° 15 °跖屈~10 °背屈 10 °背屈~0 ° 0 °~20 °跖屈
. 27
观察法
• 一般采用自然步态,即最省力的步行姿态。观察包括前 面观、侧面观和后面观。需要注意全身姿势,包括步行 节律、稳定性、流畅性、对称性、重心偏移、手臂摆动 、诸关节姿态与角度、患者神态与表情、辅助装置(矫形 器、助行器)的作用等。 • 在自然步态观察的基础上,可以要求患者加快步速减少 足接触面(踮足或足跟步行)或步宽(两足沿中线步行 ),以凸现异常;也可以通过增大接触面或给予支撑( 足矫形垫或矫形器),以改善异常,从而协助评估。
• 股直肌、缝匠肌也参与屈髋活动

运动控制方案

运动控制方案

运动控制方案CATALOGUE 目录•运动控制概述•运动控制系统的组成•运动控制方案的设计与实现•运动控制技术的应用场景•运动控制方案的优势与挑战•未来运动控制技术的发展趋势01CATALOGUE运动控制概述定义运动控制是指在自动化系统中对机械或设备的运动进行控制的过程,通过调节输入的能量,使设备按照预设轨迹或模式进行运动。

特点运动控制具有高精度、高速度、高稳定性等特点,能够实现复杂的运动轨迹和精确的位置控制,广泛应用于机械制造、电子制造、包装、印刷等领域。

定义与特点运动控制的重要性提高生产效率通过运动控制技术,可以精确控制设备的运动轨迹和速度,提高生产效率,降低生产成本。

提高产品质量运动控制的精确性和稳定性能够保证产品加工的精度和质量,提高产品的合格率和品质。

实现自动化生产运动控制是实现自动化生产的关键技术之一,能够提高生产线的自动化程度,减少人工干预,降低劳动强度。

运动控制系统的历史与发展历史回顾早期的运动控制系统主要采用模拟电路和硬件控制器,随着计算机技术的发展,数字控制逐渐取代了模拟控制。

近年来,随着嵌入式系统、微控制器和伺服电机技术的发展,运动控制系统得到了进一步的完善和优化。

发展趋势未来的运动控制系统将朝着更加智能化、网络化、模块化和集成化的方向发展,同时将更加注重节能和环保,以满足不断变化的市场需求。

02CATALOGUE运动控制系统的组成控制器是运动控制系统的核心,负责接收输入的指令,经过处理后输出控制信号。

控制器的性能直接影响运动控制系统的精度、响应速度和稳定性。

常见的控制器有PLC、运动控制卡、工业控制计算机等。

根据执行器的类型,驱动器可分为直流电机驱动器、交流电机驱动器、步进电机驱动器等。

驱动器的性能直接影响执行器的运动性能,如速度、加速度、精度等。

驱动器是将控制器的控制信号转换为能够驱动执行器的动力。

01执行器是运动控制系统中的最终执行元件,根据控制信号驱动机械系统实现运动。

【PPT】什么是运动控制系统.

【PPT】什么是运动控制系统.

运动控制系统的发展过程及应用(续)
早就普遍应用于恒速运行场合的交流电机可以弥补直流电机的不 足,加之世界范围的能源短缺,人们又开始了新一轮的交流调速的 研究。仅对占传动总量三分之一强的风机、水泵设备而言,如果改 恒速为调速的话,就可节节电30%左右。近三四十年来,随着电力 电子技术、微电子技术、现代控制理论的发展,为交流调速产品的 开发创造了有利的条件,使交流调速逐步具备了宽调速范围、高稳 速精度、快速动态响应和四象限运行等良好的技术性能,并实现了 产品的系列化,从调速性能上完全可与直流调速系统相媲美。目前 交流调速系统已占据主导地位。 当今社会,运动控制系统的应用已相当普及,不论是民用还是军 用。在工厂、农村以及大多数家庭中,到处可以看到以电动机为动 力的各种生产机械或家用电器。例如:轧钢厂的连轧机,加工车间 的切削机床,造纸厂的纸机,纺织厂的纺织机,化工厂的搅拌机和 离心机,搬运场的起重机和传送带,矿山的卷扬机,田间的抽水泵, 家庭中的冰箱、空调、洗衣机以及电脑等。
图0.1 运动控制系统的基本结构
图中的三个主要组成部分是构成运动控制系统所必需的,而 且也是变化多样的。任何一部分微小的变化都可构成不同的 运动控制系统,这些不同系统的共性和特点以及它们的分析 和设计方法就是本课程研究的主要内容。我们把每一部分可 能的变化列于表0.1中。
表中各部分的不同组合,可以构成不同的运动控制系统。电动机部分、功率驱动部分 和控制器中的大部分内容分别在其他课程中有介绍,但它们组合成完整的运动控制系统以 后,有哪些新的控制要求,如何分析系统的性能,如何设计控制器使系统达到较高的性能 指标,在实际应用中存在哪些具体问题,以及如何解决等,这些都是个课程要解决的问题。
0.1 什么是运动控制系统
按中国大百科全书的解释,运动是物质的固有性质和 存在方式,是物质所固有的根本属性.没有不运动的物 质,也没有离开物质的运动、这是基于哲学的解释。与 中文“运动”对应的英义词汇有“movment”和 “motion”,按照大英百科全书的解释,运动是一个物 体相对于另一个物体或相对于一个坐标系统的位置的变 化、这是基于运动学的定义。运动涉及宇宙万物、大到 遥远的天体,小到物质内部的质子和电子,对这些运动 的研究覆盖了整个科学技术领域。 本课程所指的运动(motion)和运动控制系统(motion control system)是近10多年来在国际上流行的一个技术 术语,它源于一种狭义的、约定俗成的共识,即它的主 要研究内容是机械运动过程中涉及的力学、机械学、动 力驱动、运动参数检测和控制等方面的理论和技术问题。

运动技能学习与控制课件第四章感觉系统对运动控制的作用

运动技能学习与控制课件第四章感觉系统对运动控制的作用
• 肌腱振动技术:振动器
– 本体感觉反馈失真。
动物手术:切断神经传导
精度明显不如 从前,但依然 具有完成技能 的能力
肌腱振动技术:
二、本体感觉的作用
• 影响运动的准确性
– 对肢体错误位置的反馈提供了纠错的基础。
• 影响动作指令的开始时间
– 例如,伸直食指同时提踵。
• 肢体协调
第五节 前馈对动作控制的影响
optical flow
眼球
移動目標
固定目標
一、视觉信息
网球击球时,何时开始动作,何时球拍与球接触,这些信息 的获得离不开视觉信息。 当球接近人时,球距离越近,视网膜上的投影的变化率越大。 通过这种信息可以判断物体接触到视网膜的时间,即触前时 间Tc.
一、视觉信息
运动员运用视觉 信息来准确起跳。 接近40%的调整都 发生在最后一步。
人是看不清楚球的
思考题
• 什么是闭环控制系统? • 中央视觉与周围视觉的区别? • 什么是触前视觉信息?对于体育运动项目
有什么用? • 本体感觉在运动控制中的作用。 • 前馈和反馈的区别?
中央视觉
中央 有意识
损害 这是什么?(What)
外周视觉
中央和外周 无意识 无
它在哪里?(Where)
一、视觉信息
腹侧视觉系统: •有意识分析的知觉。 •只限制在中央视觉 •需要聚焦和充足的光线。 •于人体注视聚焦的物体很敏感 背侧视觉系统 •为运动的视觉控制提供知觉信息 •全视野的(接近180度), •不要求聚焦 •光线微弱的情况下也能工作。
听觉与动作控制
跑步的脚步声反映出跑步者的节奏; 球棒撞击声为棒球运动员提供棒球被击中程度的信息; 高尔夫球手通过杆头与球碰撞声音判断击球情况

步态分析pptPPT学习教案

步态分析pptPPT学习教案

胫前肌
首次触地至承重反应结束 足离地至再次首次触地
第34页/共70页
五 、氧价
指运动时人体单位体重、单位距离所消耗的氧气量,单位为 ml/(kg·m)。
氧价是步态分析中常用的能量分析的指标,可以定量 评估运动中的能量消耗。
第35页/共70页

步态分析方法
第36页/共70页
临 床定性 分析 步态 的定性 分析是 由康复 医师或 治疗师 用肉眼 观察患 者的行 走过程 ,然后 根据所 得印象 或按照 一定的 观察项 目逐项 评定的 结果对 步态做 出结论 ,因其 不需要 昂贵的 设备、 没有复 杂的数 据分析 ,所以 是目前 最常用 的评定 手段。
中间位
向前4°~5°
髋关节
中间位
屈20°
屈20°~30°
屈30°
膝关节
屈35°
屈60°
屈60°~30° 屈30°~0°
踝关节
跖屈20°
跖屈10°
中间位
中间位
第20页/共70页
摆动前期即对侧足跟着地,支撑侧足 尖离地之前
关节:
髋关节:过伸10°——中间位
髂腰肌、股直肌向心性收缩使髋关节屈曲 带动下肢前移
臀中肌离心收缩防止躯干摆动
膝关节:伸直——屈15°
股四头肌对抗重力离心收缩使 膝关节有控制的屈曲
踝关节:中立位先跖屈后背伸——跖屈15°
胫骨前肌离心收缩(前) 小腿三头肌离心收缩(后)维持踝关节稳定
第16页/共70页
支撑中期即支撑足全部 着地
关节:
髋关节:前屈30°—— 中间位
臀大肌向心收缩以支撑 体重并产生伸髋动作
胫骨前肌向心性收缩使踝关节背伸
第23页/共70页

运动控制系统ppt课件

运动控制系统ppt课件

ud
ua
ub
uc
ud
O
ud
ua
ub
uc
ud
Ud E
t O
id ic O
ia
ib
ic
id
a)电流连续
ic
t O
ia
ib
ic
b)电流断续
图1-9 V-M系统的电流波形
Ud E
t
t
1.2.3 抑制电流脉动的措施
在V-M系统中,脉动电流会产生脉动的 转矩,对生产机械不利,同时也增加电机 的发热。为了避免或减轻这种影响,须采 用抑制电流脉动的措施,主要是:
• 瞬时电压平衡方程
ud0
E
id R
L
did dt
(1-3)
式中
E — 电动机反电动势;
id — 整流电流瞬时值; L — 主电路总电感;
R — 主电路等效电阻;
且有 R = Rrec + Ra + RL;
对ud0进行积分,即得理想空载整流电压 平均值Ud0 。
用触发脉冲的相位角 控制整流电压的
序言
课程的内容、目的
以电动机为控制对象、以实现既定(旋转) 运动规律和特性为目标、以电力能量变换技 术(电力电子应用技术)和自动控制理论及 相关控制技术为手段,探讨如何构成运动控 制系统。
序言
课程的地位、意义
• 自动化学科及自动控制领域背景知识 • 自动化专业的内涵及专业特征 • 本课程的专业地位及重要性
O
TL
2 3
Te
曲线变软。
调磁调速特性曲线
▪ 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(即电机 额定转速)以上作小范围的弱磁升速。

步行与移动能力的训练概述PPT课件

步行与移动能力的训练概述PPT课件

临床特点
1 平行杠内重心转移良好
2 可以维持单腿站立
3 具有骨盆运动控制能力
4 立位下肢分离运动充分
康复目标
1 拄拐独立步行
2 徒手独立步行
3 室内独立安全步行
4 上下阶梯
5复杂地面的独立步行
6 室外独立步行
训练方法
1 平行杠内步行训练
首先将平行杠高度调节在与患者股骨大转子相同的位置。步行模式
此外,周围神经损伤导致的下肢屈肌肌力低下者,在摆动期躯干也会因代偿而后 倾。无论导致后倾的原因如何,其结果都是利用反向负荷模式完成的动作。因此,为 了矫正步态应进行躯干后倾的抑制训练。
(三) 躯干侧倾
躯干侧倾是由于一侧下肢于支撑中期躯干与髋外展肌反向控制不充分,或对侧下肢 髋关节内收受限时,利用反向负荷而引起的代偿动作。这种异常的动作模式很容易使 下肢尽快的完成摆动,双足着地以确保平衡。这也是不行中健侧摆动期(迈步相)变 短的主要原因之一。与躯干前倾相比,侧倾更容易发生。但是,如果患者能单腿站立 保持侧方平衡,躯干侧倾的情况就会减少。
前型,后型,平型。手杖也可根据稳定性从大到小依次分为肘拐,四脚拐,手杖
三种。训练中还要注意重点练习步行的稳定性,在此基础上提高耐力和速度。
3 控制双肩步行训练
治疗师位于患者身后,双侧轻轻搭在患者肩上(拇指在后,四指在前)当患肢处于 支撑期,健侧下肢摆动时,在足跟着地前肩胛骨向后方旋转,可以防止足外旋。当患 肢处于摆动期时,治疗师诱发患者双上肢呈对角线方向有节奏地自然摆动可使躯干旋 转,为出现正常步态创造条件。
5 特殊步行训练
(1)向患侧横向迈步训练
治疗师立于患侧,一手置于患侧腋窝,使患侧躯干伸展,另一手置于健侧骨盆, 使患者身体重心移向患肢,然后嘱患者健侧下肢从患肢前方横向迈出。

运动技能学习与控制PPT课件

运动技能学习与控制PPT课件
11
12
二、误差测量
1、一维动作目标的误差
x1
x5
x3
x2
x4
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
13
14
各种误差的计算方法
Constant Error (CE): CE=Σ(xi-T)/n
Variable Error (VE):
运动(movement):构成动作或运动技能的肢 体或肢体联合的行为特征。
3
2、高水平技能的特征
成功的可能性最大,准确性高 体能和心理能力的消耗最少 时间最短
4
3、运动技能的三种成份
姿势成份为动作提供支持平台。 身体的移动成份是身体和肢体移动到动作
位置。 操作成份产生动作。
能力是指个体所具有的遗传的、相对持久的、 稳定的特质,存在于各种运动和认知技能之 中。
技能是对特定任务的精通。
70
能力的种类
可能有30多种,例如
多肢体协调 空间定向 手指灵活性 手与手臂稳定性 视敏度
反应时 移动速度 操作灵活性 机械资质 运动感觉
71
参照
比较器
肌肉感觉 运动感觉 环境感觉
44
长时间的、连续的任务 短时的、非连续的任务 动作技能的反射控制模型
45
M1应答: 30-50ms
M2应答: 50-80ms
反应激发: 80-
反应时12应0答ms:
120180ms
46
刺激鉴别 应答选择 应答编程
运动程序
M2
脊髓
M1
肌肉
动作
误差 参照

运动控制和学习ppt课件

运动控制和学习ppt课件

运动控制卡广泛应用于各种自 动化设备和生产线,如包装机 械、印刷机械等。
运动控制器
运动控制器是一种集成了运动控 制算法和硬件接口的控制器,用
于实现多轴协调运动控制。
运动控制器通常采用高速计算机 或DSP等技术实现,具有强大的
计算和控制能力。
运动控制器广泛应用于数控机床、 机器人、自动化生产线等领域, 是实现高效、高精度加工的关键
伺服控制系统通常由伺服电机、伺服驱动器和控制器三部分组成,具有快速响应、 高精度和高稳定性的特点。
伺服控制技术的应用范围广泛,包括数控机床、机器人、自动化生产线等领域。
步进控制技术
步进控制技术是一种通过控制步进电 机的步进角度来实现精确位置控制的 技术。
步进控制技术的应用范围也较广,如 打印机、扫描仪、自动化设备等。
位置、稳定性等。
学习控制的方法
监督学习
通过输入输出数据,学习 一个从输入到输出的映射 关系,实现对被控对象的 控制。
无监督学习
通过学习数据的内在规律 和结构,对被控对象进行 控制。
强化学习
通过与环境交互,学习如 何最优地选择行为以最大 化累积奖励,实现对被控 对象的控制。
学习控制的实现
数据采集
采集被控对象的输入输出数据 ,为学习提供数据支持。
设备之一。
03 学习控制理论
学习控制的概念
学习控制
指通过一定的控制策略, 使被控对象达到所期望 的性能指标,实现最优
控制。
控制策略
指在控制过程中所采用 的方法和手段,包括开 环控制、闭环控制、最
优控制等。
被控对象
指被控制的系统或设备, 可以是机械系统、电气
系统、化工系统等。
性能指标

运动控制系统PPT参考课件

运动控制系统PPT参考课件
9
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性

运动控制器PPT资料(正式版)

运动控制器PPT资料(正式版)

Q170MCPU特点(1)
QDMotion特点(2)
通过多CPU间的高速总线,在一个 工作周期内,可以进行多达 14K字的数据传送
©COPYRIGHT
三菱电机自动化(中国)
QDMotion特点(2)
©COPYRIGHT
三菱电机自动化(中国)
Q170MCPU特点(1)
集成性高:三合一的运动控制器
结构紧凑的Q170MCPU将电源模块,顺控PLC CPU和MOTION CPU集成于一体.开 发程序时,PLC CPU型号选择Q03UDCPU,MOTION CPU型号选择Q170MCPU.并内置 了增量型同步编码器接口和手动脉冲发生器接口,特别适合包装设备中的同 步要求.
SSCNETIII
……
©COPYRIGHT
三菱电机自动化(中国)
运动控制器的特点(3)
根据不同的使用场合,可变更控制器的操作系统(OS)
1.适用于搬运及组装,如搬运机,注塑机,涂装机等场合的操作系统—SV13 2.适用于自动机械,如同步控制,食品包装等场合的操作系统—SV22 3.适用于机床行业的操作系统—SV43 4.适用于机械手的操作系统—SV54
运动控制器
运动控制器的特点(1)
QPLC CPU和MOTION CPU组成的多CPU系统
顺序控制由 QPLC CPU 负责
复杂的伺服控制由
Q MOTION CPU 模块进行处理
©COPYRIGHT
三菱电机自动化(中国)
运动控制器的特点(2)
可与伺服放大器进行高速的串行通讯 通过SSCNETIII光纤网络进行高速通讯,通讯速率可达到50Mbps,并且具有良好的 抗干扰性
标签编辑 可以对使用了标签的运动SFC 进行编辑 提高动作SFC程序的可读性

运动控制系统ppt课件

运动控制系统ppt课件

IdL
馈的作用降低下来,
电机的电磁转矩也随 O
t
之减小,加速过程延
图2-1 a) 带电流截止负反馈
长。
的单闭环调速系统
最新版整理ppt
6
性能比较(续)
❖ 理想起动过程波形 如图,这时,起动
Id Idm
电流呈方形波,转
n
速按线性增长。这
是在最大电流(转
IdL
矩)受限制时调速 系统所能获得的最 快的起动过程。
为了分析双闭环调速系统的静特性, 必须先绘出它的稳态结构图,如下图。 它可以很方便地根据上图的原理图画出 来,只要注意用带限幅的输出特性表示 PI 调节器就可以了。分析静特性的关键 是掌握这样的 PI 调节器的稳态特征。
最新版整理ppt
19
1). 系统稳态结构图
Id
U*n +
R
ASR U*i +
Ui -
最新版整理ppt
10
1). 系统的组成
TA
L
U*n +-
Ui U*i ASR +
内环
V
ACR Uc UPE
+
Ud
Id
Un
-
外环
+
MM
n
TTGG
图2-2 转速、电流双闭环直流调速系统结构
ASR—转速调节器 ACR—电流调节器 TG—测速发电机
TA—电流互感器最新U版P整E理—pp电t 力电子变换器
11
第六讲
2.1 转速、电流双闭环直流调速系统及其静特性
2.2 双闭环直流调速系统的数学模型和动态性能 分析
最新版整理ppt
1
转速、电流双闭环直流调速系统和调节器的工程设计方法

步态分析ppt课件

步态分析ppt课件
性疾病有关,如关节炎或腰椎疾病。
案例三
总结词
身体功能障碍
详细描述
该残疾人在行走过程中存在明显的步态异常,如一瘸一 拐或摇摆不稳等,这些问题可能与身体功能障碍有关, 如肌肉萎缩或神经损伤。
感谢您的观看
THANKS

其他疾病
如糖尿病、甲状腺功能亢进等 ,也可能影响步态。
常见步态问题类型
蹒跚步态
走路时左右摇摆,常见 于神经系统疾病。
剪刀步态
双腿僵硬,交叉向前移 动,常见于脑瘫患儿。
痉挛性步态
步伐小而快,足部呈划 圈样移动,常见于帕金
森病。
拖腿步态
足部下垂,步伐缓慢, 常见于下肢肌肉或关节
疾病。
步态问题对人体的影响
步态周期与阶段
步态周期定义
步态周期是指行人在一个步行循环中完成一个完整的步态过 程所需的时间。一个步态周期可分为支撑相和摆动相两个阶 段。
支撑相与摆动相
支撑相是指行走过程中,足部与地面接触的阶段,主要负责 承受体重和推动身体前进。摆动相则是指足部离开地面的阶 段,主要负责平衡和加速。
03
步态分析方法
观察法
总结词
直接观察法是一种简单易行的步态分析方法,通过观察者的肉眼观察,对被观察者的步态进行初步评 估。
详细描述
观察法通常用于初步判断步态是否异常,如观察行走过程中是否存在姿势异常、步长和步频是否正常 等。这种方法虽然简单,但对于一些明显的步态问题,如蹒跚步态、剪刀步态等,观察法可以提供快 速的初步判断。
06
案例分析
案例一:某运动员的步态问题分析
总结词:运动损伤
详细描述:该运动员在训练和比赛中经常出现膝盖疼痛和脚踝扭伤的问题,通过步态分析发现其步态存在异常,如足部外翻 和膝盖内扣等,这些问题可能导致运动损伤。

运动控制与运动再学习 ppt课件

运动控制与运动再学习  ppt课件
•调节运动功能的重要作用, 它与随意运动的稳定性、 肌紧张的控制、运动程序 和本体感觉传入冲动信息 的处理有关; • 为一切运动提供必要 的“配合活动”
ppt课件
40
大脑皮质在运动控制中的调节
•大脑的反射与调控-平衡反射(见前表)
•大脑对下位中枢的调节
抑制区:皮层运动区、纹状体、小脑前叶蚓部
易化区:前庭核、小脑前叶两侧部
高水平(随意 运动控制) 大脑
脊髓 指令 效应器 运动控制器 输出
小脑 中等水平 基底节 脑干
低水平(反射 肌肉骨骼系统
运动控制)
控制结果的行 为表现
ppt课件
运动
32
神经-运动等级调控
高级中枢实现对反射的逐级控制
脊髓水平
(more、屈肌退缩反射)
延髓水平 (粗大运动) 中脑、桥脑水平
(姿势、调整反射)
调节脊髓前角运动神经元和中间神经元的兴 奋性,易化或抑制由其它途径引起的活动, 特别是在快速随意控制肌肉的精细、协调运 动中起基本作用。 组成:它是由皮质运动区锥细胞发出的神经, 经内囊处汇聚成束下行,止于脑干神经核运 动神经元(皮质脑干束)和脊髓运动神经元 及中间神经元(皮质脊髓束),在锥体束下 行过程中一部分交叉至对侧。
ppt课件
16
反射模型
核心思想: 反射是运动的基本单位; 人体运动是各种反射的总和或整合的结果;
人体复杂运动:简单反射(腱反射)+复杂反射(Moro 反 射等)
运动反应的中枢控制依赖外周感觉输入(反射弧完整); 感觉输入能够控制运动的输出—神经促进技术理论基础 (破坏平衡诱发平衡运动反应)。
ppt课件
ppt课件
27
(3)优势现象
在中枢神经系统内,当某一中枢受 到较强刺激,其兴奋水平不断提高, 这个提高兴奋水平的中枢,称兴奋优 势灶,它能综合其他中枢扩散而来的 兴奋,提高其自身的兴奋水平,对其 临近中枢却发生抑制作用。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调节机制
根据运动控制的理论,运动的控制不只是皮质 运动区单方面发布/传递命令,还有反馈系统的 调节,和许多反射参与。
中枢神经系统储有许多后天获得的运动程序, 所以中枢性的运动控制也有不受外周反射影响 的成分。
调节机制
随意运动的产生是个极复杂的神经系统活动, 包括动机系统、运动程序设计系统、启动系统、 监测系统和细微调节系统、实施系统等。
动机系统在脑干网状结构和边缘系统; 运动程序设计在运动关联区、小脑、基底核及丘脑;
运动的启动和监测调节系统位于大脑运动区、小脑、 脑干、脊髓通路、锥体(外)系、感受器及传入通路等 部分。
调节机制
随意运动的产生,首先在动机系统产生运动动 机,激活皮质连合区,确定运动形式,将冲动 经过大量神经元联系至皮质运动区,形成运动 指令,经过锥体系传至脊髓,兴奋或抑制相应 的运动神经元,产生运动。
同时,末梢传入的运动感觉信息又传入小脑、 基底核,并且与大脑皮质传来的指令进行比较、 修正或调整,再经丘脑传给皮质,也有部分修 正后指令直接进入锥体外系传至脊髓中枢。
内容
第一节 与运动相关的神经系统结构与反射 第二节 运动控制的调节 第三节 运动控制
第二节 运动控制的调节
学习内容
1 运动控制的调节 2 影响运动控的因素
1.运动控制的调节
随意运动(voluntary movement):主要由锥体束来支配
不随意运动(involuntary movement):主要由锥体外系和 小脑系统来调节
调节机制
运动控制理论
调节机制
随意运动包括运动感觉和运动调节机制,是学习和记 忆的结果。当初始一个随意动作时,运动者需要判断 最初的运动目标和自体在空间的相对位置,决定动作 方式、时间及速度,随后进入动作临界状态。每次运 动时,边确认动作执行如何,边完成整个运动。
随意动作的反复进行是熟练动作的过程,对每个动作 变得逐渐无意识,就能自动地完成运动过程。特点是 由大脑高级中枢控制的,精细、协调、准确的运动。 它随人本身的需要,可以是单关节的分离运动,也可 以是选择性的多关节的复合运动,甚至高度复杂的动 作。
相关文档
最新文档