离子交换树脂污染及复苏处理

合集下载

阳离子交换树脂的污染及复苏方法研究_张翠玲

阳离子交换树脂的污染及复苏方法研究_张翠玲

收稿日期:2006-11-08基金项目:甘肃省自然科学基金项目(20577018)阳离子交换树脂的污染及复苏方法研究张翠玲,郝火凡,赵保卫,欧乙成(兰州交通大学环境与市政工程学院,甘肃兰州 730070)摘 要: 研究了不同浓度的铁离子、亚铁离子和油类物质对树脂污染的影响程度.同时采用 盐酸一食盐一亚硫酸钠 复苏法对污染树脂的复苏进行了探讨.结果表明:在相同时间内,树脂的污染程度随污染物浓度的增加而增大;同浓度的铁离子对树脂的影响比亚铁离子要大;复苏效果总体较好,亚铁离子污染树脂的复苏效果最好,铁离子次之,油类最差.关键词: 阳离子交换树脂;污染;复苏;交换容量中图分类号: TQ 460 文献标识码: A 文章编号:1004-0366(2007)04-0071-03A Study on Pollution and Recovery of Cation Exchanges ResinZH ANG Cu-i ling,H A O H uo -fan,ZH A O Bao -w ei,OU Y-i cheng(S chool of Env ir onmental Science and M unicip al Engineer ing ,L anz hou J iaoto ng Univ er s ity ,Lanz hou 730070,China)Abstract: T he impacts of po llution of different concentrations of iron,fer rous iro n and o il on the resin material ar e investig ing H C-l NaC-l N a 2SO 3 recovery metho d,the po llutied resin recovery is dis -cussed.Results show that in the equal time,the extent of po llution increases with the co ncentration of po-l lutants ;the im pact of po llution of iron o n the resin is larger than that of the ferrous ions w ith the same concentration.The recovery is beetter as a w hole.T he recovery of ferrous io n po llution r ecovery is the best,and that o f ir on ion pollutio n is beltter than that of oil.Key words: cation ex chang e resin;pollutio n;reco ver y;exchange capacity 离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由3部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子.离子交换树脂通常制成珠状的小颗粒,多数通用的树脂产品的有效粒径在0.4mm ~0.6m m 之间,活性基团一般都处在树脂网孔内,外来离子必须进入网孔内才能进行离子交换.离子交换树脂具有强稳定的化学性质,母体本身不与酸、碱起作用.阳离子交换树脂是指分子中含有酸性基团的离子交换树脂,它在水及其他极性溶剂中发生溶胀,能在水中离解出H +而使溶液呈酸性[1].树脂离解后余下的负电基团,如R -COO -(R 为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用.一些阳离子被吸附的顺序如下:Fe 3+>A l 3+>Pb 2+>Ca 2+>M g 2+>K +>Na +>H +[2].自从1935年亚当斯(A dams)和霍姆斯(H olm es)研究合成了第1批离子交换树脂 聚酚醛系强酸性阳离子交换树脂和聚苯胺醛系弱碱性阴离子交换树脂以来,尤其是20世纪70年代以后,离子交换树脂的合成及应用技术得到了长足发展.阳离子交换树脂目前主要用于:水处理、食品工业、制药工业、合成化学和石油化学工业、环境保护、湿法冶金、原子能、半导体、电子工业等,其中水处理领域离子交换树脂的需求量最大,约占离子交换树脂产量的90%.随着离子交换树脂的广泛使用,树脂的污染及修复问题已受到人们的重视[3,4],经研究发现阳离子交换树脂主要的污染物有水预处理过程残留的混凝剂,水中含有的铁离子、输送管道中腐蚀产生的铁化物,有机物、油类、自来水中残留的余氯第19卷 第4期2007年12月 甘肃科学学报J ournal of Gansu S cien cesVol.19 No.4Dec.2007等.污染后的树脂颜色明显加深,由淡黄色变为棕色、紫红色、甚至近似黑色,交换容量有较大幅度下降,周期产水量随树脂污染程度的加剧而急剧下降.我们以铁离子、亚铁离子、菜籽油为目标污染物,主要研究了阳离子交换树脂的污染程度随溶液中铁离子、亚铁离子、菜籽油浓度的变化关系及其对污染树脂复苏效果的影响.1 实验部分1.1 主要仪器及药品主要仪器有:电动离心沉淀机(A nke T DL-40B),202-1型电热恒温干燥箱(上海实验仪器有限公司),电子天平,电热恒温水浴锅,电导仪,分液漏斗,玻璃离心过滤管,秒表,称量瓶,具塞三角烧瓶.药品包括:强酸性阳离子交换树脂,盐酸,氢氧化钠,甲基红,次甲基蓝,酚酞,甲基橙,无水乙醇,氯化钙,硫酸亚铁,硫酸铁,菜籽油.1.2 污染树脂的制备及测定(1)树脂的预处理 预处理按GB5476-85离子交换树脂预处理方法进行.(2)污染树脂的制备 配制浓度分别为0.25mg/L、0.50mg/L、0.75m g/L、1.00m g/L、1.25mg/L的亚铁离子溶液和浓度分别为0.25mg/L、0.50mg/L、0.75m g/L、1.00m g/L、1.25m g/L的铁离子溶液,各取5mL移入装有200mL阳离子交换树脂的容器中,分别加入500mL的蒸馏水,30 恒温振荡30min后密封静置,30d后测定全交换容量; 各取1mL、2mL、3 mL、4mL、5mL的菜籽油放入装有200m L阳离子交换树脂的容器中,分别加入500mL的蒸馏水, 30 恒温振荡30min后密封静置,30d后测安全交换容量.(3)测定 按GB8144-87阳离子交换树脂交换容量测定方法测定,交换容量越小说明树脂所受的污染越严重.1.3 污染树脂的复苏及效果测定(1)复苏方法 相关研究[5,6]证明 盐酸 食盐 亚硫酸钠 复苏法是修复受污染阳离子树脂比较好的方法,以下采用的是4%的盐酸、4%的食盐和0.08%的亚硫酸钠混合液,取制备好的污染树脂,加人到一定比例的混合液中进行浸泡处理.(2)复苏效果测定 复苏效果通过测定复苏后树脂的全交换容量来衡量,全交换容量越高说明复苏效果越好[7].2 结果与讨论2.1 树脂污染程度与污染物浓度的关系随着污染物浓度(体积)的增加全交换容量逐渐下降;相同浓度条件下,铁离子污染的树脂全交换容量明显低于亚铁离子污染的树脂.由图1和图2所示.图1 树脂全交换容量与铁离子和亚铁离子浓度Fe2+ Fe3+图2 树脂全交换容量与溶液中菜籽油的体积2.2 树脂污染程度与污染物浓度的关系盐酸 食盐 亚硫酸钠 复苏法对铁和油污染的树脂都有较好的复苏效果,绝大多数树脂的全交换容量恢复到了空白的80%以上,树脂的复苏效果随受污染时污染物浓度的增大而略成下降趋势,同时可看出受铁离子污染的树脂复苏效果整体比受亚铁离子污染树脂复苏效果要差.由图3和图4所示.图3 复苏后树脂交换容量与铁的浓度Fe2+ Fe3+72 甘肃科学学报 2007年 第1期图4 复苏后树脂交换容量与油的浓度的关系3 结论随着污染物浓度(体积)的增加树脂全交换容量逐渐下降,时间相同时树脂的污染程度随污染物浓度的增加而增加;相同浓度条件下,铁离子对树脂的影响明显高于亚铁离子对树脂的影响,而且在相同的复苏条件下,亚铁离子污染的树脂的复苏效果优于铁离子污染的树脂的复苏效果[8],所以树脂使用或再生过程中应适当添加还原剂降低铁离子含量,减少铁对树脂的污染.参考文献[1] 武银华.水处理技术的研究进展.[J].广东化工,2004,20(z1):49-50.[2] 王广珠,汪德良,崔焕芳.离子交换树脂使用及诊断技术[J].北京:化学工业出版社,2004.[3] 贾波,周柏青,李芹.阳离子交换树脂的污染与复苏[J].工业用水与废水,2003,34(5):16-18.[4] 郑成远.离子交换树脂污染的诊断及处理方法[J ].冶金动力,2007,120(2):42-45.[5] 袁锡妹.铁污染阳离子交换树脂的复苏比较及测定[J].腐蚀与防护,2002,23(10):458-459.[6] 贾波,周柏青,李芹.阳离子交换树脂铁污染的复苏研究[J ].热力发电,2004,33(04):20-23[7] 张国珍,宋小三.活性炭吸附T NT 废水实验研究.[J ].甘肃科学学报,2007,19(3):150-153.[8] 武福平.受严重污染的强碱阳树脂复苏实验研究.[J ].甘肃科学学报,2006,18(4):102-105.作者简介:张翠玲,(1973-)女,山东省梁山人,1996年毕业于兰州铁道学院环工系,现任兰州交通大学环境与市政工程学院讲师.73第19卷 张翠玲等:阳离子交换树脂的污染及复苏方法研究。

阴阳离子交换树脂再生原理

阴阳离子交换树脂再生原理

阴阳离子交换树脂再生原理
阴阳离子交换树脂再生原理是一种将污染了的阴阳离子交换树脂(IEX),进行回收再利用的原理。

通常,阴阳离子交换树脂是用来处理水质或污水中的无机离子的,可以起到净化的作用,其中的部分成分经过长期的使用会受到污染,失去净化的能力。

再生原理是使用一种设备将污染的树脂放入高温水中,并加入除去各种离子结合污染物的脱脂剂,容器内的温度一般保持在80℃-120℃。

污染物会被轻松分离和沉积,树脂也会通过加入酸酸性离子洗礼,从而大幅度减少污染物的含量,恢复阴阳离子交换树脂的可用性和性能。

污染的阴阳离子交换树脂重新经过补充离子替换和专业的再生设备处理后,其性能得到了明显改善,可以重新运用于脱盐、净水、还原水和其他离子束分离,实现成本节约、资源循环利用、污染物提取和处理。

;。

离子交换树脂常见难题及解决途径

离子交换树脂常见难题及解决途径

离子交换树脂常见难题及解决途径1. 引言离子交换树脂是一种广泛应用于水处理、废水处理、化学品分离纯化等领域的重要材料。

然而,在使用离子交换树脂的过程中,常常会遇到一些难题,如吸附容量降低、流动阻力增加、压力波动等。

针对这些常见难题,本文将介绍解决途径,帮助解决实际应用中可能遇到的问题。

2. 吸附容量降低当离子交换树脂长时间使用后,吸附容量可能会降低,造成效果下降。

解决这个问题的途径有以下几点:- 树脂再生:使用酸、碱等溶液进行树脂再生,去除吸附物,恢复树脂的吸附能力。

- 高温处理:将树脂暴露在高温下,能够除去附着在树脂上的有机物质,提高树脂的吸附能力。

- 曝气处理:通过曝气使树脂表面的污染物脱附,增加树脂的吸附容量。

3. 流动阻力增加随着使用时间的增长,离子交换树脂的颗粒会逐渐堆结,导致流动阻力增加,降低树脂的吸附效率。

以下是解决流动阻力增加的一些途径:- 调整进出水流量:适当调整进出水流量,控制流速,防止颗粒堆结过快。

- 清洗树脂床层:定期使用清水或清洗剂冲洗树脂床层,去除堆结的颗粒,恢复流动性。

- 筒罐倒转:定期倒转离子交换柱或筒罐,使床层颗粒重新混合,减少堆结。

4. 压力波动在使用离子交换树脂的过程中,压力波动是一个常见的问题,可能会影响系统的稳定性。

以下是一些解决压力波动的途径:- 检查进出水口是否堵塞:清洗或更换进出水口,保持流量畅通。

- 调整进出水流量:适时调整进出水流量,避免波动过大。

- 检查压力传感器:确保压力传感器的准确性,及时进行维护和更换。

5. 结论离子交换树脂在应用过程中常常会遇到吸附容量降低、流动阻力增加和压力波动等问题。

本文介绍了相应的解决途径,包括树脂再生、高温处理、曝气处理、调整进出水流量、清洗树脂床层、筒罐倒转、检查进出水口是否堵塞、调整进出水流量以及检查压力传感器等。

通过采取合适的解决措施,可以有效解决这些问题,保持离子交换树脂的良好工作状态。

强碱性阴离子交换树脂污染原因分析及复苏工艺研究

强碱性阴离子交换树脂污染原因分析及复苏工艺研究

强碱性阴离子交换树脂污染原因分析及复苏工艺研究一、离子交换树脂的变质离子交换树脂在水处理系统运行的过程中,由于氧化或降解,树脂结构遭受破坏,这是一种不可逆的树脂的劣化,成为树脂的变质。

(一)阳离子交换树脂的氧化1.阳树脂氧化的原因和现象阳树脂氧化的主要原因是由于水中有氧化剂,如游离氯、硝酸根等,水中重金属离子能起催化作用,当温度高时,树脂受氧化剂浸蚀更为严重,其结果是使树脂交换基团降解和交换骨架断裂,树脂颜色变淡和其体积增大。

2.防止树脂被氧化的方法(1)活性炭过滤用活性炭过滤水进行脱氧是防止树脂被氧化的常用方法,其原理是基于吸附作用,并在被吸附的活性炭表面上进行下面的化学反应。

其反应为:C-+HOCl→CO-+HCl活性炭脱氯是一种简单、经济、行之有效的方法,故得到普通应用。

(2)化学还原法化学还原法是在含有余氯的水中,投加一定量还原剂(如SO2或Na2SO3)进行脱氯。

(3)选用高交联度的大孔阳树脂。

(4)避免使用质量差的盐酸其中含有氧化剂对阳树脂造成危害。

(二)强碱性阴树脂的降解在离子交换水处理系统中,强碱性阴树脂通常是置于阳树脂后使用,一般是遭受水中溶解氧的氧化,以及再生过程中碱中所含的氧化剂(如ClO3-和FeO42-)的氧化,其结果是强碱性季铵基团逐渐降解,但不会发生骨架的断链。

在化学除盐工艺中,强碱性阴树脂的降解主要表现为对中性盐的分解容量,特别是对硅的交换容量下降。

季铵基团受氧化后,按叔、仲、伯胺顺序降解的过程如下:2.防止强碱性阴树脂降解的方法(1)真空除气法通过使用真空除气器,减少阴床进水中的氧含量。

(2)降低再生液中含铁量降低再生液中含铁良,必须认真做好碱液系统中的铁的腐蚀控制。

(3)选用隔膜法生产的烧碱,降低碱液中NaClO3的含量(可降至6~7㎎/L)。

二、离子交换树脂的污染与复苏在离子交换处理系统中,由于水中杂质浸入,至使树脂性能下降,因尚未涉及树脂结构的破坏,故这种劣化现象称树脂的污染。

离子交换树脂的再生方法

离子交换树脂的再生方法

离子交换树脂的再生方法离子交换树脂是一种广泛应用于水处理、化学工业和生物科学等领域的重要材料。

随着使用时间的增长,离子交换树脂会逐渐失去对离子的吸附能力,需要进行再生以恢复其吸附性能。

本文将介绍离子交换树脂的再生方法,包括酸洗法、碱洗法、盐洗法和热解法等。

1. 酸洗法酸洗法是一种常用的离子交换树脂再生方法,适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂。

具体步骤如下:•将需要再生的离子交换树脂放入酸性溶液中浸泡,通常使用稀硫酸或盐酸;•在适当的温度下进行搅拌或循环,促使酸性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除酸性溶液。

酸洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。

但需要注意的是,酸洗法只适用于耐酸性的离子交换树脂。

2. 碱洗法碱洗法是一种适用于强碱型阳离子交换树脂和强酸型阴离子交换树脂的再生方法。

具体步骤如下:•将需要再生的离子交换树脂放入碱性溶液中浸泡,通常使用氢氧化钠或氢氧化钾;•在适当的温度下进行搅拌或循环,促使碱性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除碱性溶液。

碱洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。

但需要注意的是,碱洗法只适用于耐碱性的离子交换树脂。

3. 盐洗法盐洗法是一种适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂的再生方法。

具体步骤如下:•将需要再生的离子交换树脂放入盐水中浸泡,通常使用氯化钠溶液;•在适当的温度下进行搅拌或循环,促使盐水与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除盐水。

盐洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。

但需要注意的是,盐洗法只适用于耐盐性的离子交换树脂。

4. 热解法热解法是一种适用于各种类型离子交换树脂的再生方法。

本溪阳离子交换树脂活化

本溪阳离子交换树脂活化

本溪阳离子交换树脂活化
阳离子交换树脂是一种吸附性材料,可以有效地去除水中的阳离子污染物,如重金属离子、有机物离子等。

但在长期使用中,阳离子交换树脂会逐渐失去活性,需要进行活化处理,以保证其吸附效果和使用寿命。

本溪阳离子交换树脂活化的方法通常有以下几种:
1. 酸活化法:将树脂浸泡在酸性溶液中,如硫酸、盐酸等,以去除树脂中的碱性杂质,并恢复其酸性功能。

2. 碱活化法:将树脂浸泡在碱性溶液中,如氢氧化钠、氢氧化钾等,以去除树脂中的酸性杂质,并恢复其碱性功能。

3. 盐酸-氯化钠活化法:将树脂浸泡在盐酸-氯化钠混合溶液中,以去除树脂中的杂质和污染物,并恢复其吸附功能。

4. 熱活化法:将树脂加热至一定温度,使其发生化学变化,从而恢复其吸附能力和活性。

以上活化方法均需要严格控制处理时间、处理温度、溶液浓度等参数,以避免对树脂材料产生副作用或损坏。

同时,活化后的阳离子交换树脂需要进行彻底的洗涤,以去除残留的处理剂和杂质,以保证其正常使用。

阴离子交换树脂使用方法

阴离子交换树脂使用方法

阴离子交换树脂使用方法
阴离子交换树脂是一种可以去除水中阴离子污染物的材料,常用于水处理领域。

以下是阴离子交换树脂的使用方法:
1. 准备树脂:将阴离子交换树脂放入水中进行净化。

可用直接净水或去离子水冲洗树脂,以去除杂质。

2. 负荷树脂:树脂吸附阴离子污染物的能力是有限的,需要将树脂进行负荷。

负荷树脂的方法包括将树脂直接与水中的阴离子污染物接触,或者将水通过装有树脂的固定装置中。

3. 冲洗树脂:当树脂已经负荷满后,需要进行树脂的冲洗,以去除吸附的阴离子污染物。

常用的是用盐水进行冲洗,将吸附的污染物溶解释放出来。

4. 再生树脂:当树脂的吸附能力逐渐减弱时,需要进行树脂的再生。

再生树脂的方法包括用酸或碱溶液进行树脂的反应,以去除吸附的污染物,并恢复树脂的吸附能力。

5. 使用周期:阴离子交换树脂的使用周期取决于水中的阴离子污染物浓度、树脂的吸附能力以及水处理设备的使用情况。

根据实际情况,可以设定适当的更换或再生周期。

需要注意的是,阴离子交换树脂的使用方法和具体操作流程会受到各个实际情况和设备配置的影响。

因此,在使用阴离子交换树脂之前,应根据实际情况详细了解树脂使用指南,并跟随相关的技术指导或专业人士的建议进行操作。

固定床离子交换树脂复苏方法探讨

固定床离子交换树脂复苏方法探讨

在 固定 床 离子 交 换 水 处 理 工 艺 中 , 阳离 子 交 阴 换 树 脂失 效 后 , 用再 生 剂 进行 树 脂 的再 生 , 树脂 利 使 的交 换 能力 得 以恢 复 , 常 情 况下 , 脂 的再 生 程 度 正 树
只能恢 复 到 原 来 的 6 % 一8 %左 右uJ 但 在 特 殊 0 0 。
p ct n e e ea in itn i r to u e a iya drg n r t n e st weei r d c d o y n Ke wo d r e e ain o ei d sl ain wa e c ro in c n a iain saef r ain y r s e n r t fr n g o s e ai t tr o rso o t n t c l o m t n o m o o
i h s p p r e p rm e tc r id o tt e t r e i u l o t m i a e e i s a d t u mp o e t e e c a g a n t i a e x e i n a re u o r s o e s ro sy c n a n t d r n n h si r v h x h n e c — s
树 脂 的工 作 交 换 容 量 和 再 生 程 度 。 关键词 树脂复 苏 脱 盐水 腐蚀 污染 结 垢
Ex o a i n o he M e ho f Re t r to f Fi e d I n- x ha e Re i pl r to n t t d o s o a i n o x d Be o e c ng sn
降, 再生 剂 消耗 增 大 。此 时 说 明树 脂 严 重 污染 , 要 需 进 行 树 脂复 苏 。所 以无论 从 降低 生 产所 需物 料 的消 耗 方 面来 说 , 还是 从 脱 盐 水 水 质 对 生 产 系 统 的腐 蚀 结垢 等 影 响方 面来 说 , 好 树 脂 的 复 苏 工 作 具 有 很 搞

离子交换树脂的再生

离子交换树脂的再生

离子交换树脂的再生一、常规的再生处理离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能;在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为 70~80% ;如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降;树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件;树脂的再生特性与它的类型和结构有密切关系;强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值;此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间;再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐;例如:钠型强酸性阳树脂可用 10%NaCl 溶液再生,用药量为其交换容量的 2 倍用NaCl 量为117g/ l 树脂 ;氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物;为此,宜先通入 1~2% 的稀硫酸再生;氯型强碱性树脂,主要以 NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + %NaOH 的碱盐液再生,常规用量为每升树脂用150~ 200g NaCl ,及 3~4g NaOH; OH 型强碱阴树脂则用 4%NaOH 溶液再生;树脂再生时的化学反应是树脂原先的交换吸附的逆反应;按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平;为加速再生化学反应,通常先将再生液加热至 70~80℃;它通过树脂的流速一般为1~ 2 BV/h ;也可采用先快后慢的方法,以充分发挥再生剂的效能;再生时间约为一小时;随后用软水顺流冲洗树脂约一小时水量约4BV ,待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止;一些树脂在再生和反洗之后,要调校 pH 值;因为再生液常含有碱,树脂再生后即使经水洗,也常带碱性;而一些脱色树脂特别是弱碱性树脂宜在微酸性下工作;此时可通入稀盐酸,使树脂 pH 值下降至6左右,再用水正洗,反洗各一次;树脂在使用较长时间后,由于它所吸附的一部分杂质特别是大分子有机胶体物质不易被常规的再生处理所洗脱,逐渐积累而将树脂,使树脂效能降低;此时要用特殊的方法处理;例如:阳离子树脂受含氮的两性化合物污染,可用 4%NaOH 溶液处理,将它溶解而排掉;阴离子树脂受有机物污染,可提高碱盐溶液中的 NaOH 浓度至~%,以溶解有机物;二、特殊的再生处理污染较严重的树脂,可用酸或碱性食盐溶液反复处理,如先用 10%NaCl +1%NaOH 碱盐溶液溶解有机物,再用 4%HCl 或分别用 10%NaOH 及 1%HCl 溶解无机物,随后再用10%NaCl +1%NaOH 处理,在约 70℃下进行;如果上述处理的效果未达要求,可用氧化法处理;即用水洗涤树脂后,通入浓度为 % 的次氯酸钠溶液,控制流速 2~4BV/h ,通过量 10~20BV ,随即用水洗涤,再用盐水处理;应当注意,氧化处理可能将树脂结构中的大分子的连接键氧化,造成树脂的降解,膨胀度增大,容易碎裂,故不宜常用;通常使用 50 周期后才进行一次氧化处理;由于氯型树脂有较强的耐氧化性,故树脂在氧化处理前应用盐水处理,变为氯型,这还可避免处理过程中的 pH 值变化,并使氧化作用比较稳定;三、再生废液的处置糖厂用树脂脱色,树脂再生的废液含有大量的色素和有机物,颜色很深;用原糖生产精糖时,每 100 吨糖的再生废液量约为 6~9m3 ;要经过处理才能排放或循环,这也是一个难题;Bento 详细研究了用化学方法处理再生液,使色素和其他有机物沉淀,除去杂质后再循环使用,减少排放,并充分利用其中的氯化钠;由于再生液中色素的浓度比糖汁中高 10 倍以上,液体数量较小,没有糖液的粘性,并能容许强烈的条件如强碱性和高温等而无需顾虑糖的分解,用化学处理比较方便;再生液加入 5~10% 容积的石灰乳浓度为含CaO100g/ l ,加热到60℃并轻微搅拌,大量的有色物沉淀析出;再加入碳酸钠或二氧化碳、磷酸钠或磷酸并保持碱性,都可使较多的有色物沉淀;处理后的液体添加少量食盐可返回作树脂的初级再生液,其后再用新的盐水再生;对废液的处理还研究过多种方法:用颗粒活性炭吸附,用次氯酸钠、次氯酸钙、氯气或臭氧将它氧化,用超过滤或反渗透法分离它的有机物,或用粉状树脂吸附等;最近Guimaraes 等研究用将它的有色物降解,取得较好效果钠型阳离子交换树脂使用寿命及工作原理,阴阳离子交换树脂,全自动软化水设备时间:2010-08-21 13:40:17来源:作者:钠型阳离子交换树脂使用寿命及工作原理,,全自动软化水设备国内目前常用的优级阳离子软化树脂为中英合资生产的“漂莱特”钠型阳离子交换树脂,厂家提供的软化水树脂使用年限工业上为5-8年理论值,实际运行当中,树脂受原水影响的主要原因为:A、原水管路一般为碳钢管道,水与管路发生氧化反应,生成铁离子,进入树脂后,随运行时间的延长,树脂的功能交换基团下降,其表现为耗盐量高,再生水质差;B、树脂反复再生:由于树脂的长时间频繁再生,每次再生时,树脂间都做相互擦洗运动,受水压及树脂间的机械磨损,树脂的交联值机械强度逐渐下降,骨架变形,运行中其表现为出水有时为黄褐色,产水周期明显缩短,再生效果不理想;C、树脂的理化值:聚合物骨架-----------------------------------------------聚苯乙烯-二乙烯苯功能基------------------------------------------------------聚苯乙烯磺酸基出厂型式---------------------------------------------------钠型外观---------------------------------------------------------淡色球壮颗粒水份钠型---------------------------------------------46--50%粒度---------------------------------------------------- +<5%; <1%全交钠型-----------------------------------------------≥L湿树脂----------------------------------------------≥kg干树脂膨胀率Na+→H+-------------------------------------≤5%pH稳定性----------------------------------------------------0-14比重钠型操作温度钠型---------------------------------------------≤150℃离子交换法的工作原理钠离子交换软化处理的原理是将原水通过钠型阳离子交换树脂,使水中的硬度成分Ca2+、Mg2+与树脂中的Na+相交换,从而吸附水中的Ca2+、Mg2+,使水得到软化;如以RNa代表钠型树脂,其交换过程如下:2RNa + Ca2+ = R2Ca + 2Na+2RNa + Mg2+ = R2Mg + 2Na+即水通过钠离子交换器后,水中的Ca+、Mg+被置换成Na+;当钠离子交换树脂失效之后,为恢复其交换能力,就要进行再生处理;再生剂为价廉货广的食盐溶液;再生过程反应如下:R2Ca + 2NaCl = 2RNa + CaCl2R2Mg + 2NaCl = 2RNa + MgCl2为了使您易于理解接受,以下的说法是尽量通俗的说法,与标准工具书的说法可能不尽一致但不会出现技术性错误;离子交换树脂是一种聚合物,带有相应的功能基团;一般情况下,常规的钠离子交换树脂带有大量的钠离子;当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降;硬水就变为软水,这是软化水设备的工作过程;当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”;由于实际工作的需要, 软化水设备的标准工作流程主要包括:工作有时叫做产水,下同、反洗、吸盐再生、慢冲洗置换、快冲洗五个过程;不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程;任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的其中,全自动软化水设备会增加盐水重注过程;反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证;反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走;这个过程一般需要5-15分钟左右;吸盐再生:即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入只要进水有一定的压力即可;在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响;慢冲洗置换:在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换;这个过程一般与吸盐的时间相同,即30分钟左右;快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水;一般情况下,快冲洗过程为5-15分钟; 3、特点管路简化,节省占地空间;运行稳定可靠;节约再生用盐;运行费用低;免维护;适用性广:可用于工业锅炉、热交换器、中央空调及食品、制药、电子等行业4、技术要求原水硬度:3-10mmol/L;出水残余硬度:≤L;工作压力:;工作温度:2 -50℃;自控电源:220V 50Hz;耗电量:10W;树脂型号:001×7型强酸性阳离子交换树脂;入口压力低于需加装管道泵;设备总压损:;PH范围:1-14最高使用温度:钠型≤120°C型变膨胀率%:H+-Na+8-10再生液浓度:NaCl:3-10%;HCl:4-5%;NaOH:4-5% 再生液用量:NaCl:8-10%;体积:树脂体积=:1HC14-5%体积:树脂体积=2-3:1NaOH4-5%;体积:树脂体积=2-3:1再生液流速:5-8m/h;再生接触时间:30-60min正洗流速:10-20m/h;正洗时间:约30min运行流速:10-40m/h钠型阳离子交换树脂使用寿命及工作原理,,全自动软化水设备。

离子交换树脂常见问题及应对方案

离子交换树脂常见问题及应对方案

离子交换树脂常见问题及应对方案问题一:树脂的颗粒化现象现象描述:在使用离子交换树脂的过程中,可能会出现树脂颗粒化或结块的情况,导致树脂床层不均匀,降低了离子交换效率。

在使用离子交换树脂的过程中,可能会出现树脂颗粒化或结块的情况,导致树脂床层不均匀,降低了离子交换效率。

可能原因:树脂长时间接触水分,或树脂的质量不合格,质量不一致。

树脂长时间接触水分,或树脂的质量不合格,质量不一致。

应对方案:1. 检查树脂包装是否完好,防潮措施是否到位。

2. 如发现树脂结块现象,可将结块的部分用硬物轻轻敲打,使其恢复颗粒状,但需注意不要过度敲打。

3. 定期更换树脂,确保树脂的质量。

问题二:树脂吸附效果下降现象描述:在使用离子交换树脂的过程中,发现树脂吸附效果明显下降,处理效果不佳。

在使用离子交换树脂的过程中,发现树脂吸附效果明显下降,处理效果不佳。

可能原因:1. 树脂饱和,需要进行再生。

2. 树脂表面被污染,需要进行清洗。

3. 树脂老化,需更换。

应对方案:1. 根据树脂使用情况,定期进行再生处理。

2. 如发现树脂表面污染,可通过清洗树脂表面或更换树脂层来解决。

3. 定期更换树脂,以保证吸附效果。

问题三:树脂吸附剂溢出现象描述:在使用离子交换树脂的过程中,可能会出现树脂吸附剂溢出的情况,造成设备故障或损坏。

在使用离子交换树脂的过程中,可能会出现树脂吸附剂溢出的情况,造成设备故障或损坏。

可能原因:1. 树脂床层高度不当,超过设备规定高度。

2. 设备操作不当,造成树脂床层动荡。

应对方案:1. 根据设备规定,调整树脂床层高度,以避免过高。

2. 操作时要避免剧烈摇晃或震动设备,以保持树脂床层稳定。

问题四:树脂流速受限现象描述:在使用离子交换树脂的过程中,发现树脂流速受限,导致处理效率低下。

在使用离子交换树脂的过程中,发现树脂流速受限,导致处理效率低下。

可能原因:1. 树脂床层紧实,导致流速减慢。

2. 设备管道堵塞。

应对方案:1. 调整树脂床层,使其适度紧实,但不要过度压实。

离子交换树脂污染的处理及预防

离子交换树脂污染的处理及预防

( ) 生系统 5再
阴、 阳离子 交换 树脂 失效后 , 分
别用 一定 浓度 的 N O a H溶 液和 H S 液再 生 。 2O 溶
表 1 各 离 子 交 换 器 中装 填 树 脂 类 别
T b 1 Re i l s i c t n i i e e tin e c a g r a. sn c a sf ai n d f r n o — x h n e i o f
子 交换 后 ,当再 生液 中 c 和 s 离 子 浓度 的乘 a 0
积 超 过 C S 度 积 至 一定 范 围后 , aO 沉 淀 就 aO 溶 CS 会 从水 溶 液 中析 出覆 盖在 树 脂表 面上 , 而造 成钙 对
50蒸 气 冷凝 液 回收 , 一级 除盐水 混合 。 0) 与
Ab ta t s r c :The r a o fp lut n s h a ac u ,ion a r a c n c e ia tr te t e ts se t e s nso o l i uc sc li m r nd og nis i h m c lwa e r am n y t m o o i n-e c a e r sn o x h ng e i we e a a y e r n l z d.Th oc s t o o e o e i x h ng c pa i r i r d e ,a d e pr e s me h ds fr r c v rng e c a e a ct we e nto uc d n y


要: 了化学水处理系统 中钙 、 、 分析 铁 有机物等污染树脂的原因 , 介绍 了恢 复树脂 的交换能力的处理
方 法 , 出 了合 理 的 预 防措 施 。 提

树脂使用注意事项

树脂使用注意事项

使用离子交换树脂的一些注意事项肖进华江苏省特种设备安全监督检验研究院盐城分院1.新购离子交换树脂的验收离子交换树脂的物理化学性质的优劣对电厂水处理车间的水质和运行经济性有直接影响。

目前各生产厂家均制定了本厂生产的离子交换树脂的产品质量标准。

国家质量技术监督局正式批准发布了001×7、201×7、D001和D201四种离子交换树脂的产品标准,标准代号分别为GB13659、GB13660、GB/T13579和GB/T13580。

标准中分列了合格品、一级品和优级品的性能指标。

电力行业针对本行业水处理工艺的要求,制定了相关的行业标准:《火力发电厂水处理用离子交换树脂验收标准》(DL519)。

验收标准中对各种牌号离子交换树脂的外观和出厂形态作了规定,如规定树脂包装件中应无游离水分,当有游离水分时,应扣除后计量。

标准中除规定了通用树脂的各项技术要求外,还对用于双层床、浮动床、混合床、三层床等工艺的树脂中的某些性能提出了特殊的要求。

因此用户在购买离子交换树脂时应掌握此标准,并严格按标准进行验收。

2.新树脂使用前的预处理在新离子交换树脂中,往往含有少量过剩的原料及反应不完全而生成的有机低聚物和一些无机杂质,在使用初期会逐渐溶解释放,影响出水水质,因此新树脂在使用前一般都应事先进行适当的处理,除去这些杂质。

树脂的预处理宜在离子交换器中进行,具体步骤如下:用水先反洗后正洗树脂,洗至排水无色和无泡沫为止,以除去树脂中的机械杂质和细碎树脂。

用约为树脂2倍体积的5%HCl浸泡树脂4-8小时,排去酸液,用水冲洗树脂至出水呈中性。

用约为树脂2倍体积的2%-4%NaOH浸泡树脂4-8小时,放掉碱液,用水冲洗至出水近中性。

酸、碱处理若能反复进行2-3次,效果更佳。

对于没有上述处理条件的场合,可使用1%NaOH+10%NaCl的碱性食盐水浸泡或低流速处理。

更简单的方法是用40-50℃的温水或清水冲洗数小时。

对阴树脂不能使用含有硬度的水进行清洗。

浅谈离子交换树脂污染与复苏

浅谈离子交换树脂污染与复苏

浅谈离子交换树脂污染与复苏孙梓航(武汉石化热电车间)摘要:本文总结了离子的交换对树脂在产生中遇到的各种污染情况,分析了引起树脂污染的各种原因,介绍了判断各种污染的方法,在此基础上总结了国内外有关的复苏树脂的各种方法,为水处理中树脂的复苏提供了借鉴。

关键词:离子交换树脂污染树脂复苏前言目前,使用离子交换法是大多数电厂制取除盐水的主要方法,但随着离子交换树脂投运时间的增长,离子交换树脂的物理及化学性能均会出现各种程度的下降,即出现所谓的"中毒”现象,主要表现为树脂颜色变化、交换容量下降、机械强度下降、流体阻力增大等,这些都会影响除盐水的水质及成本。

因此,准确判断离子交换树脂污染的原因并采取相应的方法进行处理就显得相当必要.一.树脂的污染1。

污染机理简介从树脂的结构和工作过程看,可以发现容易导致树脂污染的主要因素有四个方面田:①某种物质包裹了树脂的表面,导致水中离子通过树脂表面的水合膜后,无法从交换通道进入树脂中,②某种物质部分或完全堵塞了交换孔道,导致水中离子在交换孔道中无法移动,③某种物质和交换基团上的可移动离子发生了交换,导致水中离子无法再与之发生交换,④某种物质使树脂的骨架发生了变化,颗粒变话得更小,导致流体阻力增大2。

离子交换树脂的不同污染形式及解决方法2。

1 混凝剂过量引起的污染为了解决水中悬浮物的问题,预处理中通常要投加混凝剂,一旦混凝剂投加的量不合适就会对后面的阳离子交换树脂产生污染.在使用二甲胺—环氧卤丙烷和二烯丙基二甲胺氯的均聚物作为混凝剂时,若出水中含有1 mg/L的上述混凝剂时就会导致阳离子交换树脂的严重污染,而且发现具有线性结构的混凝剂更容易污染树脂,并能够进入树脂颗粒内部。

当树脂发生上述污染时,如果污染程度不是很严重可以采用如加大反洗流速、延长反洗时间或通人压缩空气等手段予以复苏。

如果污染程度较严重时,可以采用加入表面活性剂和分散剂的方法。

其中表面活性剂可以增加树脂表面的亲水蛀;而分散剂则可以保证从树脂上脱离下来的颗粒可以被分散到水溶液中去。

离子交换树脂污染与复苏处理

离子交换树脂污染与复苏处理

阳树 脂一 旦污 染 , 根据 不 同的 污染 程度 采取 不 同的方 法把 污染 物及 时 除

( 1 ) 压 缩空 气擦 洗法
主要是除去树脂表面的悬浮物, 先将树脂 , 小反洗再大反洗, 待树脂沉降之 后树 脂表 面 留有 3 0 0 mm ̄右 , 用 压缩 空气 从树 脂的最 底部 进入 , 保持 阳床的顶 部 出排 气 口压 力在O . ma 左右 1 O 分左 右 , 再 反洗 至水清 , 这 样如 此循环 几次直 到反洗 出水澄 清为 止就 会到 目的。 ( 2 ) 酸洗 法
从树 脂污染 的状 况来看 , 假若树 脂是被铁 离子 、 铝离 子等污染 , 用压 缩空气 擦洗是 难 以除去 的 , 可 以使用 盐酸 ( 必须 质最 合格 的盐酸 ) 处理。 可 以事先 做个 小型试验 来确 定树脂污 染的程 度 以便确 定酸洗 的浓度 以及酸 洗的 时间 , 可以利 用现 场的再 生系 统 , 配置 合适 的盐酸 浓度进 行 酸洗 。 酸洗 之前 树脂 最好使 用压 缩空气 擦洗 、 反洗 后再 进行 酸洗 或者 酸 的浸泡 。
2 . 2 阳树 脂 的处理 方法
阴树 脂被铁 铝化合 物 的污染 , 主要 是再 生剂 的不合格含 铁 的化合 物超 标 、 入 口水 含铁量 太大 造成 的 , 当进水 含有大 量 的大分 子有机 化合 物时 , 铁 与大分 子有机化合物生成络合物, 进入树脂网, 导致树脂受到污染。 树脂受到污染颜色 变 为黑 色 , 性能 变坏 、 再 生剂 用量 增大 、 自耗 水量增 大 、 出水质量 不 合格 。 ( 3 ) 胶 体硅 的污 染 强碱 阴树 脂一般 不会受到 胶体硅 的污 染 , 它在天 然水 中不 能直接交 换水 中 的胶 体硅 , 当水通 过树脂 时胶体硅 含量有 所下降 , 在正 常 睛况 之下 , 胶体硅 不会 无污 染阴树 脂的 , 但是 , 在外界 的条件 影响之 下 , 如再生 温度 、 再 生 液的纯度 、 再 生液 的浓 度 、 再生液 的流 速调整 不 当以及 强碱 阴树脂 失效后 长 时间不 处理 , 阴 树脂 均 可收到 胶体 硅 的污染 。

废砂浆回收中离子交换树脂的污染与复苏

废砂浆回收中离子交换树脂的污染与复苏

废砂浆回收中离子交换树脂的污染与复苏摘要:本文主要涉及到的时应用在聚乙二醇回收行业中的离子交换树脂污染,指出主要污染物为有机物。

并且选择不同的复苏液进行复苏处理,复苏后树脂交换量大幅度提高。

为离子交换树脂在聚乙二醇回收液中的使用和复苏提供了理论基础。

关键词:聚乙二醇离子交换树脂复苏液交换容量线切割聚乙二醇的回收现在应用日益广泛,由于聚乙二醇在切割过程中会被氧化并带入大量的金属杂质离子,在回收过程想用简单的过滤方法很难将这些杂质完全去除。

离子交换树脂能在液箱中与带相同电荷的离子进行交换反应,此交换反应是可逆的,即可用适当的电解质冲洗,使树脂恢复原有状态,可供再次利用。

利用离子交换去除回收液中的杂质离子,可以提高回收液的品质。

离子交换树脂现在被广泛应用于聚乙二醇回收行业。

虽然离子交换树脂的使用已经非常广泛,但其在聚乙二醇回收液中的应用鲜有报道。

开封万盛新材结合近几年应用的实际情况,对离子交换树脂的污染原因进行了分析,并比较了不同的复苏的方法,成功解决了树脂受污染后产量下降,树脂破碎等问题。

1 树脂污染的原因和主要污染源分析1.1 阴树脂污染原因及污染后特征进水的各种大分子有机物是阴树脂污染的主要来源[1];因为阴树脂的结构和性能使其对大分子有机物存在不可逆反应。

低分子量有机物被树脂吸附后,在再生时可以置换出来,因而不易污染树脂。

此外,来自阳树脂的降解产物也会使阴树脂受到有机物污染。

国外经验认为,氢型阳树脂含水量大于60%时,就会有相当数量的有机物释放到水中污染阴离子。

被污染的强碱阴树脂可出现以下特征。

(1)外观颜色由开始的浅黄色,逐渐污染为淡棕色-深棕色-棕褐色-黑褐色,且树脂破碎严重。

(2)再生后的强碱阴树脂,其冲洗水量会明显增大。

(3)工作交换容量下降,树脂含水量下降,树脂上的交换基团发生变化,其中强碱基团减少,弱碱基团增多。

1.2 树脂受有机物污染的判断浸泡后食盐水的颜色树脂被污染程度如表1所示。

阳离子交换树脂铁中毒复苏方法研究

阳离子交换树脂铁中毒复苏方法研究

阳离子交换树脂铁中毒复苏方法研究阳离子交换软化装置是一种大量使用的工业水处理装置。

该装置在使用过程中往往会接触到含铁地下水或因管道锈蚀造成进水中带有铁离子,导致阳离子交换树脂受到铁离子的污染,通常称为铁中毒。

由于强酸性阳离子交换树脂对水中的三价铁离子亲合力极强,其选择交换顺序为:Fe3+>Al3+>Fe2+>Ca2+>Mg2+>K+>NH4+>Na+>H+。

当进水中含有少量三价或二价铁离子时,阳树脂将会优选与这些铁离子结合,在水中溶解氧的作用下将其中的二价铁离子氧化为三价铁离子,使其牢牢的结合在树脂交换基团上。

虽然水中铁离子含量很少,但年复一年地运行下去,铁离子在交换基团中越积越多,占据了树脂的大部分工作交换容量,导致树脂对Ca2+、Mg2+离子交换能力的下降,出水水质超标,运行周期缩短,产水量减少,再生剂耗量增加等一系列问题,严重时会造成装置无法运行下去。

树脂铁中毒后,用常规低浓度的食盐再生液很难将树脂交换基团上的Fe3+置换下来。

人们采用了各异的树脂铁中毒复苏方法。

虽然均能取得一定的复苏效果,但其经济指标均不理想,复苏时间过长,复苏不够彻底,因而有必要探寻一种新的树脂复苏方法。

我们提出一种新的还原复苏法,取得了较理想的复苏效果。

现介绍如下,供参考。

1 树脂鉴别及常规复苏工艺1.1 树脂铁中毒鉴别方法初步判断:采用正常的软化再生方法无法恢复原有工作交换容量,并且交换容量有较大幅度下降时,可取少量树脂与新树脂进行颜色比较。

新树脂为淡黄色或金黄色,铁中毒树脂颜色明显加深,变为棕色,紫红色,甚至近似黑色。

分析检测:取10 mL颜色发生变化、初步判断为铁中毒的树脂置于100 mL烧杯中,加入30 mL 8.0%的HCl溶液,慢速搅拌15 min,静置0.5 h,取上清液测定总铁含量,以此判断树脂铁中毒程度。

1.2 常规树脂铁中毒复苏工艺常规铁中毒复苏方法可视铁中毒程度不同而异。

轻度铁中毒可在罐内复苏。

离子交换树脂常见问题及处理方法

离子交换树脂常见问题及处理方法

离子交换树脂常见问题及处理方法离子交换树脂的用途十分广泛,如工业领域中的分离、纯化、回收、催化,化学分析中的纯化、富集等都可用离子交换树脂。

随着离子交换技术的不断发展,树脂在水处理领域的应用不断扩大,越来越显示出它的优越性,具有可深度净化、效率高及能达到综合回收等优点。

(以下内容如有不恰当之处,请指正。

)离子交换树脂常见问题处理方法1.树脂使用前的预处理在离子交换树脂的工业产品中,常含有少量有机低聚物及一引起无机杂质。

在使用初期会逐渐溶解释放,影响出水水质或产品质量。

因此,新树脂在使用前必须进行预处理,具体方法如下:(1)、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰,无气味、无细碎树脂为止。

(2)、用约2倍树脂体积的4-5%HCl溶液,以2m/h流速通过树脂层。

全部通入后,浸泡4-8小时,排去酸液,用洁净水冲洗至出水呈中性。

冲洗流速为10-20m/h。

(3)、用约2倍树脂体积的2-5%NaOH溶液,按上面进HCl的方法通入和浸泡。

排去碱液,用洁净水冲洗至出水呈中性。

流速同上。

酸、碱液若能重复进行2-3次,则效果更佳。

经预处理后的树脂,在第一次投入运行时应适当增加再生剂用量,以保证树脂获得充分的再生。

2.树脂硅污染的处理方法硅化合物污染发生在强碱阴离子交换器中,尤其是在强、弱型阴树脂联合应用的设备和系统中,其结果往往导致阴交换器的除硅效率下降。

发生这种污染的原因是再生不充分,或树脂失效后没有及时再生。

处理方法,可用稀的温碱液浸泡溶解。

碱液浓度为2%,温度约40度。

污染严重时,可使用加温的4%氢氧化钠溶液循环清洗。

3.树脂有机污染的处理方法乙烯系强碱性阴树脂易受有机物污染,其征状为:(1)树脂颜色变深;(2)工作交换容量下降;(3)出水电导率增大;(4)出水pH值降低;(5)出水二氧化硅含量增大;(6)清洗水量增加。

防止有机物净化的基本步伐是在预处置惩罚中将水中有机物尽量除去,并采用抗净化树脂,如大孔弱碱阴树脂,丙烯酸系阴树脂对抗有机物净化很有效。

大孔阳离子交换树脂的结构与污染处理

大孔阳离子交换树脂的结构与污染处理

大孔阳离子交换树脂的结构与污染处理大孔阳离子交换树脂的结构与污染处理产品名称:D001大孔型强酸性阳离子交换树脂产品简介:D001是在大孔结构的苯乙烯二乙烯苯共聚体上带有磺酸基(SO3H)的阳离子交换树脂。

主要用于纯水、高纯水制备及凝结水净化,废水处理和重金属的回收,有机催化反应等领域。

理化性能指标:指标名称指标执行标准:GB/136592023外观:灰色至褐色不透明球状颗粒出厂型式:Na+含水量:4550质量全交换容量 mmol/g :≥4.35体积全交换容量 mmol/ml :≥1.80湿视密度 g/ml :0.770.85湿真密度 g/ml :1.251.28范围粒度:(0.3151.25mm)≥95 下限粒度:(0.315mm)≤1有效粒径 mm :0.4000.8200均一系数:≤1.70磨后圆球率:≥90使用参考指标:指标名称指标pH范围114高使用温度℃Na:120 H:100转型膨胀率(Na+H+)≤58工作交换容量 mmol/L≥1100运行流速 m/h1530一、树脂的运输和贮存:离子交换树脂内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水份。

如果贮存过程中树脂脱了水,应先用浓食盐水(810)浸泡12小时,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。

树脂在贮存或运输过程中,应保持在540℃的温度环境中,避免过冷或过热,影响质量。

若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。

二、新树脂的予处理:新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。

当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。

所以,新树脂在投运前要进行预处理。

1、阳树脂的预处理阳树脂的预处理步骤如下:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡1820小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用24NaOH溶液,其量与上相同,在其中浸泡24小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;后用5HCL溶液,其量亦与上述相同,浸泡48小时,放尽酸液,用清水漂流至中性待用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与有机物产生 的污染 同时进行 的, 它们相互缔合或 呈共聚状 。在水体中腐殖酸是 以复杂的芳香核为核 心, 通过化学或物理形式如共价健作用力 、 静电作 用力 、 范德华作用力 、 氢键等作用力连接着多糖 、 蛋 白质 、 简单酚 、 金属 。 可见有机 物是产生 阴离子交换树脂污染的主
Po l i n o o c ng sn nd c v r e t e l o fI n Ex ha e Re i a ut Re o e y Tr a m nt
W ANG ng Yo
(et o e ln, iahnI nMie MiigC .Anh nIo n te C .Ld Lo nn 1 0 3 C ia n a P w r atQd sa r n, nn o, s a nadSel o t. i i P o r , , o g1 4 4 , hn)
【 e od ] a rr tet eipl tn r oe aetr iecag pcy K yw rsw t e m n r n ou o; cvr r gn; s h e aai et a ; s li e y e en x n c t
1 问题 的提 出
离子交换树脂 是水 处理主要定额材 料消耗之
有机物、 、 、 铁 硅 微生物胶体或类胶体都会对 阴 离子交换树脂产生污染 , 通常情况下有机物的污染 起主导作用 , 而铁 、 硅等其他杂质对树脂 的污染是
被覆盖 , 离子交换过程就无法进行。在离子交换过
程 中, 交换势能较 高 , 附着力强 的离子或大分子 之 类的物质 , 容易被 交换 或吸附到树脂 , 而在再生 时
果, 进而 阐明树脂污染复苏处理是解决树脂污染 问题 的有效途 径 , 具有很好的经济效 益、 社会效 益和应用价值 。
【 关键词 】 水处理; 树脂污染; 复苏剂; 树脂交换容量 【 中图分类号】T 3 Q2 【 文献标识码】B 【 文章编号】0666(0Oo一o50 10—742 1)3 O7—4
r sn a d s lc in a d a p ia in ef c f e i e o e e g n r r s n e . t h u h a e e i , n ee t p l t fe t s r c v r r a e t o n c o or n y we e p e e td I t o g t h t - t r c v r e t n f o l td r s s l e e t ewa ov o l t n p o lm f e i . I h d g o o e t ame t l e e i wa l f c i y t s l ep l i r b e o s y r op u n a v o u o r n t a o d e o o c n o i l e e t n p l ai nv l e c n mi a d s ca n f sa d a p i t au . b i c o
【 bt c] ehn m dtm nt n f ou o g es na t cvr oi cag A s atM cai ,e r i i l tn er ,t dr a er oe n x n e r s e ao op l i d e a d f re y fo e h
要 因素 。天 然水 中存 在 的有机 物 主要 是腐 殖酸 。腐
却难洗脱下来 , 从而阻碍了离子交换 反应 的进行 或 是在离子交换反应过程 中生成难溶的沉积物 , 并沉
2 1年第 3 00 期 总 第 19期 3
MF A . R lA o R r I , GC LP WE I U
冶 金 动 力
7 5
离子 交换树脂 污染及复苏处理
王 勇
( 鞍钢矿业公司齐大山铁矿热 电分厂, 辽宁鞍 山 144) 03 1
【 摘
要】 介绍了离子交换树脂机理、 污染程度的判断 、 复苏后达到标准 、 脂复苏剂的选 择及 实际应用效 树

阳离子交换树脂 主要 易受 到铁等高价金属离 子的污染 , 尤其是在 以井水作为水源的水处理系统 中更为严重。铁离子对树脂的污染有三种不同的情 况: 一是如果 铁离子 以胶态悬 浮体 出现 的话 , 它会
从过滤器 中漏过而污染 阳离子交换树脂 ; 二是铁 以 二价 铁 离 子 的形 式 交换 到 树脂 上 , 随后 被氧化 成 三 价铁 离 子 , 而 在树 脂 颗粒 上 形 成凝 胶状 的不 溶 于 从
水 的铁 的氢 氧 化 物 ; 三是 可 能 交换 到 树脂 上 的二价
我厂由于几年来定额指标偏低 , 遇到树脂污染 问题时 , 我们只能进行部分更换 , 过去我厂一般每

年更换装填树脂 3 0t ,仅树脂 的价值就达 5 多万 0 元 , 全部 更换 , 若 势必 给企 业 带 来严 重 的经 济 负担 。 这 样 就造 成 阴 、 阳床 新 旧树脂 混 在 一 起 , 而使 用 半 年以上的树脂就会受到水 中铁、 有机物 、 微生物 硅、 的污染 , 污染 的树脂交换容量下 降 , 而引起制水 进 酸、 、 碱 水耗的上升 , 并影 响新树脂作 用的发挥 , 产 生恶性循环。而树脂污染复苏处理是解决问题的有 效途 径 。
铁 离子在树脂 的交 换基 因上直接转化为三价铁离
子, 但在再生过程 中不能被完全除去而残留在树脂
中。
22 阴离 子交换 树 脂污 染机 理 .Βιβλιοθήκη 2 离子 交换树脂污染机理
树脂为多孑 网状立体结构 , L L 多孑 网眼是离子在 树脂内部扩散进出的通道 , 通道内壁具有众多的功 能基团 , 是离子交换反应的活性点 , 一旦此活性 点
相关文档
最新文档