2019-2020学年浙江省绍兴市越城区八年级(上)期末数学试卷
绍兴市八年级上册学期期末考试数学试题(有答案)
2019学年第一学期期末教学质量检测试卷(试题卷)初二数学一、选择题(本题共有10小题,每小题3分,共30分)1.下列各组数不可能是一个三角形的边长的是( )A .7,8,9B .5,6,7C .3,4,5D .1,2,3 2.满足﹣1≤x ≤2的数在数轴上表示为( ) A .B .C .D .3.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是( ) A .75° B .65° C .55° D .45° 4.已知正比例函数的图象经过点(﹣2,1),则这个正比例函数的表达式为( ) A .y=2x B .y=﹣2x C .x y 21=D .x y 21-= 5.如图AE∥DF,CE ∥BF ,要使△EAC≌△FDB,需要添加下列选项中的( ) A .∠A=∠D B .∠E=∠F C .AB=BC D .AB=CD6.一次函数y= -x+3的图象经过( )A .第一、二、三象限B .第二、三、四象限C .第一、二、四象限D .第一、三、四象限 7.如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点A (-1,2),B (1,3), C (2,1),D (6,5),则此函数( )A. 当x ﹤1时,y 随x 的增大而减小B. 当x ﹤1时,y 随x 的增大而增大C. 当x ﹥1时,y 随x 的增大而减小D. 当x ﹥1时,y 随x 的增大而增大 8.如图,△ABC ≌△EDC ,BC ⊥CD ,点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A. 55° B. 60° C. 65° D. 70° 9.在平面直角坐标系中,已知A (﹣1,﹣1)、B (2,-3),若要在x 轴上找一点P ,使AP+BP 最短,则点P 的坐标为( ) A .(0,0) B.(﹣1,0)C .(﹣41,0) D .(﹣25,0) 10.如图,在平面直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△ABO ,点C 为x 轴正半轴上一动点(OC >1),连接BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .点E 的坐标随着点C 位置的变化而变化B .(0,3)C .(0,2)D . (0,3)第5题第7题 第8题 第10题二、填空题(本题共有8小题,每小题3分,共24分)11.命题“两直线平行,同位角相等.”的逆命题是 ;12.等腰三角形ABC 中顶角∠A=40°,底角∠B 的度数是 °; 13.不等式4x+1≤5x+3的负整数解为 ;14.在平面直角坐标系中,点(2,3)到x 轴的距离是 ;15.如图是一次函数y=kx+b 的图象,则关于x 的不等式kx+b >0的解集为 ;16. 定义:在平面直角坐标系中,一个图形先向右平移a 个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC 的边长为1,点A 在第一象限,点B 与原点O 重合,点C 在x 轴的正半轴上.△A 1B 1C 1就是△ABC 经γ(1,180°)变换后所得的图形, 则点A 1的坐标是_ __;17.如图,我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是20,小正方形的面积是8,直角三角形的两直角边分别是a 和b ,那么ab 的值为 ;18.如图,△ABC 中,∠ACB=90°,D 在BC 上,E 为AB 中点,AD 、CE 相交于F , AD=DB .若∠B=35°,则∠DFE 等于 °.三、解答题(本题共有6小题,共46分)19.(8分)解不等式(组)(1)4x ﹣7≤3(x ﹣1) (2)⎪⎩⎪⎨⎧+<--≥+1213112x x x20.(6分)如图,△ABC 中,AB=AC=5,D 是BC 中点,AD=4.求BC 的长.A C D 第17题 第16题 第15题第18题21.(6分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.22.(8分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?23.(8分)小敏思考解决如下问题: 原题:如图1,四边形ABCD 中∠B=∠D ,∠B+∠C=180°,AB=AD.点P, Q 分别在四边形ABCD 的边BC ,CD 上,∠PAQ=∠B ,求证: AP=AQ. (1) ∠APC+∠AQC= °;(2)小敏进行探索,如图2,将点P ,Q 的位置特殊化,使AE ⊥BC ,∠EAF=∠B ,点E ,F 分别在边BC ,CD 上,此时她证明了AE=AF.请你证明此时结论;(3)受以上(1) (2)的启发,在原题中,添加辅助线:如图3,作AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,请你继续完成原题的证明.24.(10分)点O 为平面直角坐标系的坐标原点,直线232+-=x y 与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,点B 的坐标;(2)若∠BAO=∠AOC ,求直线OC 的函数表达式;(3)点D 是直线x=2上的一点,把线段BD 绕点D 旋转90∘,点B 的对应点为点E .若点E 恰好落在直线AB 上,则称这样的点D 为“好点”,求出所有“好点”D 的坐标.AB C D2019学年第一学期期末教学质量检测试卷(参考答案)初二数学一、选择题(本题共有10小题,每小题3分,共30分)二、填空题(本题共有8小题,每小题3分,共24分)三、解答题(本题共有6小题,共46分)19.(8分)解不等式(组)(1) 4x-7≤3x-3……………………2分 (2)由①得:x ≥-1……………………1分 x ≤4 ……………………2分 由②得:x <3 ……………………1分 ∴ -1≤x <3 ……………………2分 20.(6分)解:∵AB=AC,DB=DC, ∴AD ⊥BC ……………………2分∵AD=4,AB=5, ∴BD=3 ……………………2分 ∴BC=6 ……………………2分21.(6分)(1)400×0.1+30=70(升) ……………………2分 (2)设b kx y +=⎩⎨⎧=+=3040070b k b ……………………2分 ⎩⎨⎧=-=701.0b k ∴701.0+-=x y ……………………1分 当5=y 时,650=x ……………………1分 22(8分)(1)根据题意,填写下表. ………………1格1分y=-20x+8300 ……………………1分 且10≤x ≤80 ,y 随x 增大而减小 ……………………1分 当x=80时,y=6700 ……………………1分 ∴当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6700元.23.(8分)(1) ∠APC+∠AQC= 180 °; ……………………1分 (2) ∵AE ⊥BC, ∴∠AEC=90°,∵∠EAF=∠B , ∠B+∠C=180°∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°…………………1分 ∴∠AFC=90°, ∴∠AEB=∠AFD=90° ……………………1分∵∠B=∠D ,AB=AD, ∴△ABE ≌△ADF,∴AE=AF ……………………2分 (3)由(2)得AE=AF ,∵∠PAQ=∠EAF=∠B,∴ ∠PAE=∠QAF ……………………1分 ∵∠AEP=∠AFQ=90°∴△APE ≌△AQF, ∴AP=AQ ……………………2分 24.(10分)(1)当x=0时,y=2,∴B (0,2)……………………1分 当y=0时,x=3,∴A (3,0)……………………1分 (2) 当 OC 在二,四象限时,OC ∥AB ,x y 32-=……………………2分 当 OC 在一,三象限时,OC 经过点(3,2),x y 32=……………………2分(3)设点D 的坐标为(2,m ),则E 的坐标为(2+2-m ,m+2),或(2-2+m ,m-2)……………………2分∴()22432+=+--m m 或2232-=+-m m ……………………1分 ∴m=-8或512=m∴E (2,-8)或(2,512)……………………1分。
绍兴市2019-2020学年数学八上期末模拟检测试题(4)
绍兴市2019-2020学年数学八上期末模拟检测试题(4)一、选择题1.关于x 的分式方程无解,则m 的值是( ) A.1B.0C.2D.-2 2.关于x 的方程13x a x -=的解是正数,则a 的取值范围是( ) A.3a > B.3a < C.0<<3a D.0a >3.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路xm .依题意,下面所列方程正确的是( )A.=B.=C.=D.=4.下列计算正确的是( )A .(ab) 2=a 2b 2B .2(a +1)=2a +1C .a 2+a 3=a 6D .a 6÷a 2=a 35.下列各式中正确的有( )个:①-=-a b b a ; ②()()22-=-a b b a ;③()()22-=--a b b a ;④()()33-=--a b b a ;⑤()()()()+-=---+a b a b a b a b ;⑥()()22+=--a b a bA.1B.2C.3D.4 6.下列等式中,计算正确的是( )A .109a a a ÷=B .326x x x ⋅=C .32x x x -=D .222(3)6xy x y -= 7.已知等腰三角形有一个角为100°,那么它的底角为( )A .100° B.40° C.50° D.80°8.下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A .B .C ..D .9.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等腰梯形B .正三角形C .平行四边形D .菱形10.如图,ΔA ¢B ¢C ≌ΔABC,点B ¢在AB 边上,线段A ¢B ¢,AC 交于点D.若∠A =40°,∠B =60°,则∠A ¢CB 的度数为( )A .100°B .120°C .135°D .140° 11.如图,在△ABC 中,AC =BC ,∠C =90°,AD 平分∠BAC ,交BC 于点D ,已CD =1,则AC 的长度等于( )A B .+1 C .2 D +112.如图,BN 为∠MBC 的平分线,P 为BN 上一点,且PD ⊥BC 于点D ,∠APC+∠ABC =180°,给出下列结论:①∠MAP =∠BCP ;②PA =PC ;③AB+BC =2BD ;④四边形BAPC 的面积是△PBD 面积的2倍,其中结论正确的个数有( )A .4个B .3个C .2个D .1个 13.一个多边形的内角和与它的外角和相等,这个多边形的边数是( )A .3B .4C .5D .6 14.如图,点C 在射线BM 上,CF 是∠ACM 的平分线,且CF ∥AB ,∠ACB=50°,则∠B 的度数为( )A.65°B.60°C.55°D.50°15.如图,AB ∥CD ,EG 、EM 、FM 分别平分∠AEF ,∠BEF ,∠EFD ,则下列结论正确的有( )①∠DFE =∠AEF ;②∠EMF =90°;③EG ∥FM ;④∠AEF =∠EGC.A .1个B .2个C .3个D .4个 二、填空题16.化简:22()224x x x x x x -÷+--=________. 17.若x+3y=-4,则(13)x •(127)y =______. 【答案】81 18.如图,在平面直角坐标系中,OA=OB=,AB=.若点A 坐标为(1,2),则点B 的坐标为_____.19.如图,在ABC ∆中,40ABC =∠,60ACB ∠=,AD 是BAC ∠的角平分线,AE 是BC 边上的高,则DAE ∠的度数是__________.20.如图所示,等边△ABC 中,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 翻折后,点A 落在点A'处,且点A'在△ABC 的外部,若原等边三角形的边长为a ,则图中阴影部分的周长为_____.三、解答题21.先化简,再求值: 22212144x x x x--+--,其中5x =. 22.如图:在正方形网格上有一个△ABC .(1)作出△ABC 关于直线MN 的对称图形;(2)若网格上最小正方形的边长为1,求△ABC 的面积.23.(1)分解因式:21128x -;(2)利用分解因式简便计算:222019201940402020-⨯+ 24.如图,已知BC EF ∥,BC EF =,AE BD =.(1)试说明:ABC DEF △≌△;(2)判断DF 与AC 的位置关系,并说明理由.25.已知:如图1,在△ABC 中,CD 是高,若∠A=∠DCB .(1)试说明∠ACB=90°;(2)如图2,若AE 是角平分线,AE 、CD 相交于点F .求证:∠CFE=∠CEF .【参考答案】***一、选择题16.x −617.无18.(﹣2,1).19.1020.3a三、解答题21.2x x +;57. 22.⑴详见解析;(2)5【解析】【分析】(1)根据轴对称性质画图;(2) 结合图可得S △ABC =S 梯形ABED -S △ADC -S △BEC【详解】⑴如图⑵解:如图:S △ABC =S 梯形ABED -S △ADC -S △BEC=12×(3+1)×4-12×1×3-12×1×3 =5【点睛】轴对称的应用23.(1)11111222⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭x x ;(2)1. 24.(1)详见解析;(2)AC DF ∥,理由详见解析【解析】【分析】(1)根据AE DB =,得出AB DE =,再根据BC EF ∥,得出B E ∠=∠即可;(2)根据ACB DFE △≌△得出BAC EDF ∠=∠,再求出DAC ADF ∠=∠即可.【详解】解:(1)∵AE DB =∴DE AD AB AD +=+ ∴AB DE =∵BC EF ∥ ∴B E ∠=∠在ACB △和DFE △中,AB DE B E CB EF =⎧⎪∠=∠⎨⎪=⎩∴ACB DFE △≌△(2)AC DF ∥,理由如下:∵ACB DFE △≌△∴BAC EDF ∠=∠∵180BAC DAC ∠+∠=︒, 180EDF ADF ∠+∠=︒∴DAC ADF ∠=∠∴AC DF ∥.【点睛】本题考查的是平行和全等三角形,熟练掌握平行和全等三角形的性质是解题的关键.25.(1)见解析(2)见解析。
【精选3份合集】2019-2020年绍兴市八年级上学期期末学业质量监测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,AD 为BC 边上的中线,DE 为△ABD 中AB 边上的中线,△ABC 的面积为6,则△ADE 的面积是( )A .1B .32C .2D .52【答案】B 【分析】根据三角形的中线的性质,得△ADE 的面积是△ABD 的面积的一半,△ABD 的面积是△ABC 的面积的一半,由此即可解决问题.【详解】∵AD 是△ABC 的中线,∴S △ABD =12S △ABC =1. ∵DE 为△ABD 中AB 边上的中线, ∴S △ADE =12S △ABD =32. 故选:B .【点睛】此题考查三角形的面积,三角形的中线的性质,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.2.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm )所示.则桌子的高度h=图1 图2A .30cmB .35cmC .40cmD .45cm【答案】C【分析】设小长方形的长为x ,宽为y ,根据题意可列出方程组,即可求解h.【详解】设小长方形的长为x ,宽为y ,由图可得 -6020h y x y x h +=⎧⎨-+=⎩解得h=40cm ,故选C.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据图形列出方程组进行求解.3.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为()A.10B.12C.16D.11【答案】C【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×1=1,∴S阴=1+1=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.4.下列各式从左到右变形正确的是()A.0.220.22a b a b a b a b++=++B.2318432143 32x y x yx y x y++=--C.n n a m m a-=-D .221a b a b a b+=++ 【答案】 B 【分析】根据分式的基本性质,依次分析各个选项,选出正确的选项即可.【详解】A .分式的分子和分母同时乘以10,应得210102a b a b++,即A 不正确, B. 26(3)184321436()32x y x y x y x y ⨯++=-⨯-,故选项B 正确, C .分式的分子和分母同时减去一个数,与原分式不相等,即C 项不合题意,D. 22a b a b++不能化简,故选项D 不正确. 故选:B .【点睛】此题考察分式的基本性质,分式的分子和分母需同时乘以(或除以)同一个不为0的整式,分式的值不变.不能在分子和分母中加减同一个整式,这是错误的.5.下列四个图案中,不是轴对称图案的是( )A .B .C .D .【答案】B【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A .此图案是轴对称图形,不符合题意;B .此图案不是轴对称图形,符合题意;C .此图案是轴对称图形,不符合题意;D .此图案是轴对称图形,不符合题意;故选:B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【分析】根据y 轴的负半轴上的点横坐标等于零,纵坐标小于零,可得m 的值,再根据不等式的性质解答.【详解】解:∵点P (0,m )在y 轴的负半轴上,∴m <0,∴﹣m >0,∴点M (﹣m ,1)在第一象限,故选:A .【点睛】本题主要考查平面直角坐标系有关的概念和不等式及其性质.解题的关键是掌握y 轴的负半轴上的点的特点.7.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 的理由是( )A .SASB .ASAC .SSSD .HL【答案】B 【分析】根据题中信息,得出角或边的关系,选择正确的证明三角形全等的判定定理,即可.【详解】由题意知:AB ⊥BF ,DE ⊥BF ,CD=BC ,∴∠ABC=∠EDC在△EDC 和△ABC 中(ABCEDC BC CDACB ECD 对顶角)∴△EDC ≌△ABC (ASA ).故选B .【点睛】本题主要考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题的关键.8.已知等腰三角形一边长为5,一边的长为7,则等腰三角形的周长为( )A .12B .17C .12或17D .17或19【答案】D【分析】因为等腰三角形的两边分别为5和7,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:(1)当5是腰时,符合三角形的三边关系,所以周长=5+5+7=17;(2)当7是腰时,符合三角形的三边关系,所以周长=7+7+5=1.故答案为:D .【点睛】考查了等腰三角形的性质,注意此题一定要分两种情况讨论.但要注意检查是否符合三角形的三边关系. 9.若关于x 的分式方程3144x m x x ++=--有增根,则m 的值是( ) A . 0或3B . 3C . 0D .﹣1 【答案】D【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程算出m 的值. 【详解】解:3144x m x x++=-- 方程两边同乘(x-4)得3()4x m x -+=-∵原方程有增根,∴最简公分母x-4=0,解得x=4,把x=4代入3()4x m x -+=-,得3(4)44m -+=-,解得m=-1故选:D【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.4的平方根是( )A .2B .±2CD .【答案】B【分析】根据平方根的定义即可求得答案.【详解】解:∵(±1)1=4,∴4的平方根是±1.故选:B .【点睛】本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题11.观察下列各式:(x -1)(x +1)=x 2-1;(x -1)(x 2+x +1)=x 3-1;(x -1)(x 3+x 2+x +1)=x 4-1,根据前面各式的规律可得(x -1)(x n +x n -1+…+x +1)=______(其中n 为正整数).【答案】x n +1-1【解析】观察其右边的结果:第一个是x 2-1;第二个是x 3-1;…依此类推,则第n 个的结果即可求得.(x-1)(x n +x n-1+…x+1)=x n+1-1.12.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.【答案】十【分析】设这个多边形有n 条边,则其内角和为()2180,n -︒ 外角和为360︒,再根据题意列方程可得答案.【详解】解:设这个多边形有n 条边,则其内角和为()2180,n -︒ 外角和为360︒, ()21804360n ∴-︒=⨯︒28,n ∴-=10,n ∴=故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.13.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可.详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.14.已知正比例函数y kx =的图象经过点()3,6则k =___________.【答案】1【分析】根据正比例函数y=kx 的图象经过点(3,6),可以求得k 的值.【详解】解:∵正比例函数y=kx 的图象经过点(3,6),∴6=3k ,解得,k=1,故答案为:1.【点睛】本题考查正比例函数图象上点的坐标特征,解答本题的关键是明确题意,求出k 的值,利用正比例函数的性质解答.15.若关于x 、y 的二元一次方程组213211x y x y +=⎧⎨-=⎩,则x y -的算术平方根为_________. 【答案】2【分析】首先利用消元法解二元一次方程组,然后即可得出x y -的算术平方根.【详解】213211x y x y ①②+=⎧⎨-=⎩①+②,得3x =代入①,得1y =-∴()314x y -=--=∴其算术平方根为2,故答案为2.【点睛】此题主要考查二元一次方程组以及算术平方根的求解,熟练掌握,即可解题.16.如图,一次函数1y x b =+与一次函数21y kx =-的图像相交于点P ,则关于x 的不等式1x b kx +>-的解集为__________.【答案】x >-1.【分析】根据一次函数的图象和两函数的交点横坐标即可得出答案.【详解】∵一次函数1y x b =+与一次函数21y kx =-的图像相交于点P ,交点横坐标为:x=-1, ∴不等式1x b kx +>-的解集是x >-1.故答案为:x >-1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.17.如图,AB ∥CD ,AD 与BC 交于点E .若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.【解析】试题分析:∵AB ∥CD ,∠B=35°,∴∠C=35°,∵∠D=45°,∴∠AEC=∠C+∠D=35°+45°=80°,故答案为80°.考点:1.平行线的性质;2.三角形的外角性质.三、解答题18.下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下: (1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为22,面积为6的等腰三角形.【答案】(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)画图见解析.【解析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【详解】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示;(4)如图(4)所示.【点睛】此题主要考查了等腰三角形的性质、等腰直角三角形的性质以及作图;熟练掌握等腰三角形的性质是关键. 19.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图,点B ,C ,E 在同一条直线上,连结DC(1)请判断DC 与BE 的位置关系,并证明(2)若2CE =,4BC =,求DCE ∆的面积【答案】(1)DC ⊥BE ,见解析;(2)6【分析】(1)根据等腰直角三角形的性质可以得出△ABE ≌△ACD,得出∠AEB =∠ADC ,进而得出∠AEC =90°,就可以得出结论;(2)根据三角形的面积公式即可得到结论.【详解】(1)证明: ∵△ABC 和△ADE 是等腰直角三角形∴AB=AC ,AE=AD ,∠BAC=∠EAD=90°∴∠BAC+∠EAC=∠DAE+∠EAC∴∠BAE=∠CAD在△ABE 和△ACD 中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACD (SAS )∴∠AEB=∠ADC∵∠ADC+∠AFD=90°∴∠AEB+∠AFD=90°∵∠AFD=∠CFE∴∠AEB+∠CFE=90°∴∠FCE=90°∴DC ⊥BE(2)解:∵CE=2,BC=4∴BE=6∵△ABE ≌△ACD∴CD=BE=6 ∴11•26622DCE S CE CD ∆==⨯⨯=. 【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.。
浙江省绍兴市越城区2019-2020八年级上学期期末数学试卷 及答案解析
浙江省绍兴市越城区2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.在平面直角坐标系中,点M(3,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.下面哪个点不在函数y=−2x+3的图象上()A. (−5,13)B. (0.5,2)C. (3,0)D. (1,1)3.不等式x−2>0的解集在数轴上表示为()A. B.C. D.4.若x>y,则下列式子中正确的是()A. x−2>y−2B. x+2<y+2C. −2x>−2yD. x2<y25.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(−3,4)且与y轴垂直,则L也会通过下列哪一点?()A. AB. BC. CD. D6.如图,△ABC中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,求∠EAF的度数为()A. 113°B. 124°C. 129°D. 134°7.按如图所示的运算程序,能使运算输出的结果为7的是()A. x=−2,y=3B. x=−2,y=−3C. x=8,y=−3D. x=−8,y=38.如图,△ABC中,∠A=60°,∠B=58°.甲、乙两人想在△ABC外部取一点D,使得△ABC与△DCB全等,其作法如下:(甲)1.作∠A的角平分线L.2.以B为圆心,BC长为半径画弧,交L于D点,则D即为所求.(乙)1.过B作平行AC的直线L.2.过C作平行AB的直线M,交L于D点,则D即为所求.对于甲、乙两人的作法,下列判断何者正确?()A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确9.一次函数y1=ax+c,y2=bx+c在同一平面直角坐标系中的大致图象可能是()A. B. C. D.10.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A. 73°B. 56°C. 68°D. 146°二、填空题(本大题共8小题,共24.0分)11.在Rt△ABC中,∠C=90°,∠A=3∠B,则∠B=______ °.12.在平面直角坐标系中,将点A(−1,−1)向左平移4个单位长度得到点B,点B关于x轴对称的点的坐标是 ________.13.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y随自变量x的增大而减少,则这个函数的表达式为______.14. 命题“对顶角相等”的逆命题是______.15. 不等式2x +5>4x −1的正整数解是__________.16. 长度分别为3,4,5,7的四条线段首尾相接,相邻两线段的夹角可调整,则任意两端点的距离最大值为______.17. 一辆汽车匀速通过某段公路,所需时间t(ℎ)与行驶速度v(km/ℎ)满足函数关系:y =kv (k ≠0),其图象为如图的一段曲线,若这段公路行驶速度不得超过60km/ℎ,则该汽车通过这段公路最少需要______ℎ.18. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =______度.三、解答题(本大题共6小题,共46.0分)19. 解不等式或不等式组,并在数轴上表示它们的解集(1)5x −1≤6x +1.(2){3(x −1)<5x +1x+12≥2x −4.20. 在平面直角坐标系中,一次函数y =kx +b(k,b 都是常数,且k ≠0)的图象经过点(1,0)和(0,2).(1)当−2<x ≤3时,求y 的取值范围;(2)已知点P(m,n)在该函数的图象上,且m −n =4,求点P 的坐标.21.如图,在△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22.某公司要购买一种笔记本,供员工学习时使用.在甲文具店不管一次购买多少本,每本价格为2元,在乙文具店购买同样的笔记本,一次购买数量不超过20时,每本价格为2.4元;一次购买数量超过20时,超过部分每本价格为1.8元.设在同一家文具店,一次购买这种笔记本的数量为x(x为非负整数)(Ⅰ)根据题意,填写下表:一次购买(本)10203040…甲文具店付款金额(20______ 60______ …元)乙文具店付款金额(24______ 66______ …元)(Ⅱ)设在甲文具店购买这种笔记本的付款金额为y1元,在乙文具店购买这种笔记本的付款金额为y2元,分别写出y1,y2关于x的函数关系式;(Ⅲ)当x≥50时,在哪家文具店购买这种笔记本的花费少?请说明理由.23.等腰三角形的一个角比另一个角大30°,求这个等腰三角形的顶角的度数.x+3交x轴于点A,交y轴于点B,点C 24.已知:如图1,在平面直角坐标系中,一次函数y=34是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD 上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.-------- 答案与解析 --------1.答案:A解析:解:∵点P的横坐标为3>0,纵坐标为2>0,∴点P在第一象限,故选:A.根据第一象限点的横坐标、纵坐标都为正数,即可解答.本题考查了点的坐标,解决本题的关键是明确第一象限点的横坐标、纵坐标都为正数.2.答案:C解析:本题考查了一次函数图像上点的坐标特点,当点的横纵坐标满足函数解析式时,点在函数图象上.把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.解:A.当x=−5时,y=−2x+3=13,点在函数图象上;B.当x=0.5时,y=−2x+3=2,点在函数图象上;C.当x=3时,y=−2x+3=−3,点不在函数图象上;D.当x=1时,y=−2x+3=1,点在函数图象上;故选C.3.答案:D解析:解:x−2>0,x>2,在数轴上表示不等式的解集为:,故选:D.先根据不等式的基本性质求出不等式的解集,再在数轴上表示出来即可判定.本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,解此题的关键是求出不等式的解集,难度适中.4.答案:A解析:此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.利用不等式的基本性质,注意不等式两边同乘以一个负数不等号方向改变判断即可.A、由x>y可得:x−2>y−2,正确;B、由x>y可得:x+2>y+2,错误;C、由x>y可得:−2x<−2y,错误;D、由x>y可得:x2>y2,错误;故选:A.5.答案:D解析:解:如图所示:有一直线L通过点(−3,4)且与y轴垂直,故L也会通过D点.故选:D.直接利用点的坐标,正确结合坐标系分析即可.此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.6.答案:D解析:此题考查轴对称的性质,关键是利用轴对称的性质解答.连接AD,利用轴对称的性质解答即可.解:连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=62°,∠C=51°,∴∠BAC=∠BAD+∠DAC=180°−62°−51°=67°,∴∠EAF=2∠BAC=134°.故选D.7.答案:C解析:解:A、当x=−2,y=3时,原式=−4+9=5,不符合题意;B、当x=−2,y=−3时,原式=−4+9=5,不符合题意;C、当x=8,y=−3时,原式=16−9=7,符合题意;D、当x=−8,y=3时,原式=−16+9=−7,不符合题意,故选:C.把x与y的值代入程序中计算,判断即可.此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.8.答案:D解析:解:(甲)如图一所示,∵∠A=60°,∠B=58°,∴∠ACB=62°,∴AB≠BC≠CA,由甲的作法可知,BC=BD,故△ABC和△DCB不可能全等,故甲的作法错误;(乙)如图二所示,∵BD//AC,CD//AB,∴∠ABC=∠DCB,∠ACB=∠DBC,在△ABC和△DCB中,{∠ABC=∠DCB BC=CB∠ACB=∠DBC∴△ABC≌△DCB(ASA),∴乙的作法是正确的.故选:D.根据题意先画出相应的图形,然后根据题意进行推理即可得到哪个正确哪个错误,本题得以解决.本题考查作图−复杂作图,全等三角形的判定,解题的关键是明确题意,作出相应的图形,进行合理的推理证明.9.答案:C解析:本题考查的是一次函数的图象及一次函数与坐标轴的交点.分别求出这两个函数与y轴的交点,即可解答本题.解:一次函数y1=ax+c与y轴交于点(0,c);一次函数y2=bx+c与y轴交于点(0,c);则函数y1=ax+c,y2=bx+c交于点(0,c);符合题意的图象是C.故选C.10.答案:A解析:本题考查了折叠问题,这道题目比较容易,根据折叠的性质得出∠ABC=∠ABE=12∠CBE是解答本题的关键.根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=12∠CBE,可得出∠ABC的度数.解:∵∠CBD=34°,∴∠CBE=180°−∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.故选:A.11.答案:22.5解析:根据直角三角形两锐角互余列方程求解即可得到结果.本题考查了直角三角形两锐角互余的性质,熟记性质并列出关于∠B的方程是解题的关键.解:∵∠C=90°,∴∠A+∠B=90°,∵∠A=3∠B,∴3∠B+∠B=90°,解得∠B=22.5°.故答案为:22.5.12.答案:(−5,1)解析:此题主要考查了坐标与图形变化−平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.解:点A(−1,−1)向左平移4个单位长度得到的B的坐标为(−1−4,−1),即(−5,−1),则点B关于x轴的对称点C的坐标是(−5,1),故答案为(−5,1).13.答案:y=1x等.解析:解:该题答案不唯一,可以为y=1x.故答案是:y=1x根据反比例函数、一次函数以及二次函数的性质作答.本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.14.答案:相等的角为对顶角解析:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.交换原命题的题设与结论即可得到其逆命题.解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.15.答案:1,2解析:解:移项,得:2x−4x>−1−5,合并同类项,得:−2x>−6,系数化成1得:x<3.则正整数解是:1,2.故答案是:1,2.首先移项、然后合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数即可.16.答案:9解析:解:如图,已知4条线段的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7;7−5<7<7+5,能构成三角形,此时任意两端点的最长距离为7;②选3、4+5、7作为三角形,则三边长为3、9、7;7−3<9<7+3,能构成三角形,此时任意两端点的最大距离为9.故答案为:9.若任意两端点的距离最大,则此时四条线段的形状为三角形,可根据三条线段的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.此题主要考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形的组合方法是解答的关键.17.答案:23解析:解:由题意可得:k=xy=40,则y≥4060=23,即该汽车通过这段公路最少需要23ℎ.故答案为:23.直接利用已知图象得出函数解析式进而得出答案.此题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.18.答案:52解析:【分析】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=α2,∵∠BAC=102°,∴∠DAC=102°−α2,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°−α2=180°,解得:α=52°.故答案为:52.19.答案:解:(1)5x−6x≤1+1−x≤2x≥−2在数轴上表示为:(2)由①得,x >−2,由②得,x ≤3,不等式组的解集为−2<x ≤3.在数轴上表示为:解析:(1)去分母,移项、合并同类项即可解答,然后在数轴上表示出来;(2)分别求出不等式的解集,再求出其公共部分,然后在数轴上表示出来.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.答案:解:设解析式为:y =kx +b ,将(1,0),(0,2)代入得:{k +b =0b =2, 解得:{k =−2b =2, ∴这个函数的解析式为:y =−2x +2;(1)∵y =−2x +2中,k =−2<0,∴y 随x 的增大而减小,把x =−2代入y =−2x +2得,y =6,把x =3代入y =−2x +2得,y =−4,∴y 的取值范围是−4≤y <6.(2)∵点P(m,n)在该函数的图象上,∴n =−2m +2,∵m −n =4,∴m −(−2m +2)=4,解得m =2,n =−2,∴点P 的坐标为(2,−2).解析:本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式是解题的关键.(1)先利用待定系数法求一次函数解析式,然后利用一次函数增减性即可得出答案.(2)根据题意得出n =−2m +2,联立方程,解方程即可求得.21.答案:证明:∵AB =AC ,∴∠DBM =∠ECM ,∵M 是BC 的中点,∴BM =CM ,在△BDM 和△CEM 中,∵BD =CE ,∠DBM =∠ECM ,BM =CM ,∴△BDM≌△CEM(SAS),∴MD =ME .解析:本题考查了全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM =∠ECM ,可证△BDM≌△CEM ,可得MD =ME ,即可解题.22.答案:40 80 48 84解析:解:(Ⅰ)由题意可得,当购买20本时,甲文具店需要付款:2×20=40(元),乙文具店需要付款:2.4×20=48(元), 当购买40本时,甲文具店需要付款:2×40=80(元),乙文具店需要付款:2.4×20+1.8×(40−20)=84(元),故答案为:40,80;48,84;(Ⅱ)由题意可得,y 1=2x ;y 1={2.4x (0≤x ≤20)2.4×20+1.8(x −20)(x >20); (Ⅲ)令2x =2.4×20+1.8(x −20),解得,x =60,∴当50≤x<60时,在甲文具店购买这种笔记本的花费少,当x=60时,两家文具店花费一样多,当x>60时,在乙文具店购买这种笔记本的花费少.(Ⅰ)根据题意可以将表格中的数据补充完整;(Ⅱ)根据题意可以直接写出y1,y2关于x的函数关系式;(Ⅲ)根据题意和y1,y2关于x的函数关系式,可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.答案:解:分两种情况讨论:①设底角是x°,顶角是x°+30°时:x+x+x+30=180,3x+30=180,3x=150,解得:x=50,则顶角=x°+30°=50°+30°=80°;②设底角是x°,顶角是x°−30°时,则x+x+x−30=180,3x=210,解得:x=70,顶角=x°−30°=70°−30°=40°.综上所述顶角度数为80º或40º.解析:本题主要考查等腰三角形的性质和三角形内角和定理.如果底角是x°,顶角是x°+30°或x°−30°,根据三角形内角和定理,分两种情况讨论即可.24.答案:解:(1)令x=0,则y=3,∴B(0,3),x+3=0,令y=0,则34∴x=−4,∴A(−4,0);(2)∵点C是点A关于y轴对称的点,∴C(4,0),∵CD⊥x轴,∴x=4时,y=6,∴D(4,6),∴AC=8,CD=6,AD=10,由折叠知,AC′=AC=8,∴C′D=AD−AC′=2,设PC=a,∴PC′=a,DP=6−a,在Rt△DC′P中,a2+4=(6−a)2,∴a=8,3∴P(4,8);3(3)设P(4,m),∴CP=m,DP=|m−6|,∵S△CPQ=2S△DPQ,∴CP=2PD,∴2|m−6|=m,∴m=4或m=12,∴P(4,4)或P(4,12),x+3①,∵直线AB的解析式为y=34当P(4,4)时,直线OP的解析式为y=x②,联立①②解得,x=12,y=12,∴Q(12,12),当P(4,12)时,直线OP解析式为y=3x③,,y=4,联立①③解得,x=43∴Q(4,4),3,4).即:满足条件的点Q(12,12)或(43解析:(1)利用坐标轴上点的特点建立方程即可得出结论;(2)先求出C(4,0),D(4,6),进而求出AC=8,CD=6,AD=10,由折叠知,AC′=8,C′D=2,再用勾股定理即可得出结论;(3)利用三角形面积关系求出点P坐标,再联立直线AB解析式求出交点坐标即可得出结论.此题是一次函数综合题,主要考查了坐标轴上点的特点,对称性,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.。
2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)
2019-2020学年浙教新版八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.49.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是.14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=度.15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是cm.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点最近;(2)第四次相遇时甲与最近顶点的距离是厘米.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.参考答案一、选择题(每小题3分.共30分)1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣解:∵函数y=,∴2x+3≥0,∴x≥﹣,故选:B.3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.解:为△ABC中BC边上的高的是A选项.故选:A.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个解:A、2x<6的解集是x<3,故此选项正确;B、﹣x<﹣4的解集是x>4,故此选项错误;C、x<3的整数解有无数个,故此选项正确;D、x<3的正整数解有1,2两个,故此选项正确;故选:B.5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D.6.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个解:当2边长分别为7,6时,1<第3边<7,可取2,3,4,5,6共5个数;当2边长为7,5时,2<第3边<7,可取3,4,5,6共4个数;当2边长为7,4时,3<第3边<7,可取4,5,6共3个数;当2边长为7,3时,4<第3边<7,可取5,6共2个数;当2边长为7,2时,5<第3边<7,可取6共1个数;去掉重合的7,6,5;7,6,4;7,6,3;7,6,2,4组,这样的三角形共有5+4+3+2+1﹣4=11(组).故选:D.8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.4解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故选:D.9.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是﹣1<m<2.解:∵点P(m﹣2,m+1)在第二象限,∴,解得,﹣1<m<2,故答案为:﹣1<m<2.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是2x﹣5≥0.解:根据题意,得2x﹣5≥0.故答案是:2x﹣5≥0.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是(1,2).解:联立,解这个方程组得,所以,交点坐标为(1,2).故答案为:(1,2).14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=25度.解:由光的反射可知∠PMC=∠AMN,又PM∥AB,∴∠PMC=∠A,∴∠A=∠AMN,又∠BNM为△AMN的外角,且∠BNM=∠AND,∴∠BNM=∠A+∠AMN=2∠A,即∠AND=2∠A,在△ADN中,∠ADN=105°,则180°﹣∠ADN=∠A+∠AND=3∠A,即3∠A=75°,所以∠A=25°.故答案为:25°15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是2<a≤3cm.解:∵关于x的一元一次不等式x﹣1<a有3个正整数解,∴关于x的一元一次不等式x﹣1<a的3个正整数解,只能是3、2、1,∴a的取值范围是:3<a+1≤4,即2<a≤3.故答案为:2<a≤3.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点C最近;(2)第四次相遇时甲与最近顶点的距离是C厘米.解:(1)设出发x秒后甲乙第一次相遇,根据题意得:x+3x=12×3,解得x=9,所以第一次相遇时甲离顶点C最近;(2)第二次相遇的时间为:9+36÷(2+4)=16(秒),第三次相遇的时间为:16+36÷(3+5)=20.5(秒),第四次相遇的时间为:20.5+36÷(4+5)=24.5(秒),甲所走路程为:9+2×(16﹣9)+3×(20.5﹣16)+4×(24.5﹣20.5)=52.5(cm),52.5﹣12×4=4.5(cm),所以第四次相遇时甲离顶点C最近.故答案为:(1)C;(2)C.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)解:(1)3(x﹣1)+4≥2x,去括号,得3x﹣3+4≥2x,移项及合并同类项,得x≥﹣1,故原不等式的解集是x≥﹣1;(2),由不等式①,得x<8,由不等式②,得x>,故原不等式组的解集是<x<8.18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.解:设一次函数解析式为y=kx+b,将x=3,y=﹣2;x=2,y=﹣3代入得:,解得:k=1,b=﹣5,则一次函数解析式为y=x﹣5.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.解:(1)∵A(6,0),B(0,8),∴OA=6,OB=8,∴AB ===10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴OM=3,BM=OB﹣OM=5,∴S△ABM =×BM×AO =×5×6=15.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?解:(1)依题意,得600x+400(20﹣x)≥480×20,解得x≥8.∴至少需要购买甲种原料8千克,答:至少需要购买甲种原料8千克.(2)根据题意得:y=9x+5(20﹣x),即y=4x+100,∵k=4>0,∴y随x的增大而增大,∵x≥8,∴当x=8时,y最小,y=4×8+100=132,∴购买甲种原料8千克时,总费用最少,是132元,答:购买甲种原料8千克时,总费用最少,是132元.22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,∴∠ADC=60°,∵∠ADC=∠B+∠BAD,∴∠B=∠BAD=30°,∴DB=DA,∵CD=2AD,∴BC=3BD.(2)解:过点A作AH⊥BC于H.∵AB=AC=20,AH⊥BC,∴BH=CH=16,∵cos∠C==,∴=,∴CD=25,∴BD=BC﹣CD=32﹣25=7.∴CD=BH﹣DH=16﹣9=7.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600),所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲;(3)∵点A(8,120),点O(0,0),∴AB解析式为y=15x,当0<t≤8时,20t﹣15t=20,∴t=4,当8<t<10时,20t﹣(40t﹣200)=20,∴t=9,当10≤t<30时,40t﹣200﹣20t=20,∴t=11,综上所述:当t=4或9或11时,甲乙之间的路程为20米.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.解:(1)如图1中,∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3cm.(2)如图2中,作NT∥OB,过点Q作QR⊥NT于R,过点B作BH⊥NT于H.在Rt△MON中,∵∠OMN=30°,OM=6cm,∴ON=OM•tan30°=2(cm),∵∠NOB=∠ONH=∠BHN=90°,∴四边形OBHN是矩形,∴BH=ON=2(cm),∵NT∥OB,∴∠MNT=∠OMN=30°,∵QR⊥NT,∴QR=NQ,∴2BQ+NQ=2(BQ+NQ)=2(BQ+QR),∵BQ+QR≥BH,∴BQ+QR≥2,∴2BQ+NQ≥4,∴2BQ+NQ的最小值为4.(3)存在,有4种情况:如图3中,①当点P在线段AB上时,点P在AB上运动的时间为s,∵△PEF为等腰三角形,∠PEF=90°,∴PE=EF,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴=t或=t,解得t=或>(故舍去),②当点P在AF上时,若PE=PF时,点P为EF的垂直平分线与AC的交点,此时P为直角三角形PEF斜边AF的中点,∴PF=AP=2t﹣3,∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,∴0<t<3,在直角三角形中,cos30°=,∴=,解得:t=2,若FE=FP,AF===t,则t﹣(2t﹣3)=t,解得:t=12﹣6;③当PE=EF,P在AF上时无解,④当P点在CF上时,AP=2t﹣3,AF=t,则PF=AP﹣AF=t﹣3=EF,所以t﹣3=t,解得t=12+6>3,不合题意,舍去.综上,存在t值为或12﹣6或2时,△PEF为等腰三角形.。
绍兴八年级上册数学期末测试试题有答案-(浙教版)
A.22.5°
B.45°
C.60°
D.67.5°
9. 四个全等的直角三角形按图示方式围成正方形 ABCD,过各较长直角边的中点作垂线,
围成面积为 S 的小正方形 EFGH.已知 AM 为 Rt△ABM 较长直角边,AM= 2 3 EF,则
正方形 ABCD 的面积为( )
A.11SB.12S NhomakorabeaC.13S
八年级数学第 4 页(共 4 页)
2019-2020 学年第一学期八年级期末测试数学试题卷 参考答案及评分建议
一、单选题(共 10 题 ,共 30 分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C B C B D D D D C B
二、填空题(共 6 题 ,共 24 分)
11.m<2
的面积为
m2.
13.若等腰三角形一腰上的中线把这个三角形的周长分成为 12 cm 和 21 cm 两部分,则这个
等腰三角形的底边长为
.
14.已知点(3,5)在直线 y=ax+b(a,b 为常数,且 a≠0)上,则 a 的值为
.
b5
15 . 以 点 A( - 4 , 1) , B( - 4 , - 3) 为 端 点 的 线 段 AB 上 的 任 意 一 点 的 坐 标 可 表 示
D.14S
10.如图,直线
l1:y=x+1
与直线
l2:y=
1 2
x+
1 2
相交于点
P,直线
l1 与
y
轴交于点
A,一动
点 C,从点 A 出发,先沿平行于 x 轴的方向运动,到达直线 l2 上的点 B1 处后,改为垂
直于 x 轴的方向运动,到达直线 l1 上的点 A1 处后,再沿平行于 x 轴的方向运动,到达直
2019-2020学年浙江省绍兴市越城区八年级(上)期末数学试卷 (解析版)
2019-2020学年浙江省绍兴市越城区八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)在平面直角坐标系中,点(3,2)P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)下面哪个点在函数23y x =-+的图象上( ) A .(5,3)-B .(1,2)C .(3,0)D .(1,1)3.(3分)不等式10x -> 的解在数轴上表示为( ) A . B .C .D .4.(3分)若x y >,则下列式子中正确的是( ) A .22x y ->-B .22x y +<+C .22x y ->-D .22x y< 5.(3分)如图的坐标平面上有原点O 与A 、B 、C 、D 四点.若有一直线L 通过点(3,4)-且与y 轴平行,则L 也会通过的点为( )A .点AB .点BC .点CD .点D6.(3分)如图,ABC ∆中,D 点在BC 上,62B ∠=︒,53C ∠=︒,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .则EAF ∠的度数为( )A .124︒B .115︒C .130︒D .106︒7.(3分)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =8.(3分)如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求 (乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确9.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .10.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数为( )A .60︒B .45︒C .22.5︒D .30︒二、填空题(本题共有8小题,每小题3分,共24分)11.(3分)在Rt ABC ∆中,90C ∠=︒,70A ∠=︒,则B ∠= .12.(3分)将点(2,1)A 变换到点(2,1)B -,写出一种轴对称或平移方法: . 13.(3分)请写出一个过点(0,1)的函数的表达式 . 14.(3分)命题“对顶角相等”的逆命题是 . 15.(3分)不等式3618x ---的正整数解为 .16.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为 .17.(3分)某日上午,甲,乙两车先后从A 地出发沿同一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是 .18.(3分)如图,MAN∠是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足AB BC CD DE EF FG=====,则ABC∠的度数最大为度.三、解答题(本题共有6小题,共46分)19.(8分)(1)解不等式215x x+<+(2)解不等式组.并把不等式组的解集在数轴上表示出来.2(1)4 31212x xxx+-<⎧⎪⎨-+⎪⎩20.(6分)已知一次函数的图象过(1,3)A,(1,1)B--两点(1)求该一次函数的表达式;(2)当0x>时,求y的取值范围.21.(6分)已知:如图,AB AD=,BC DC=,E、F分别是DC、BC的中点.(1)求证:D B∠=∠;(2)当2AE=时,求AF的值.22.(8分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格均为7元/kg;一次性购买超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg的部分价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为(0)xkg x>(1)根据题意填表:a=b=;一次购买数量()kg 30 50 150 ⋯ 甲批发店花费(元) 180 300 900 ⋯乙批发店花费(元)a350b⋯(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?23.(8分)数学课上,张老师举了下面的例题:例1等腰三角形ABC 中,110A ∠=︒,求B ∠的度数.(答案:35)︒例2等腰三角形ABC 中,40A ∠=︒,求B ∠的度数.(答案:40︒或70︒或100)︒ 张老师启发同学们进行变式,小敏编了如下两题: 变式1:等腰三角形ABC 中,100A ∠=︒,求B ∠的度数. 变式2:等腰三角形ABC 中,45A ∠=︒,求B ∠的度数. (1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=︒,当B ∠只有一个度数时,请你探索x 的取值范围. 24.(10分)已知:如图1,在平面直角坐标系中,一次函数443y x =+的图象交x 轴于点A ,交y 轴于点B ,点C 是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点. (1)求点A 、B 的坐标.(2)如图2,将ACP ∆沿着AP 翻折,当点C 的对应点E 落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q (不与点D 重合),连接CQ ,是否存在点P ,使得2CPQ DPQ S S ∆∆=,若存在,请直接写出点P 坐标;若不存在,请说明理由.参考答案一、选择题(本题共有10小题,每小题3分,共30分) 1.(3分)在平面直角坐标系中,点(3,2)P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限解:点P 的横坐标为30>,纵坐标为20>, ∴点P 在第一象限,故选:A .2.(3分)下面哪个点在函数23y x =-+的图象上( ) A .(5,3)-B .(1,2)C .(3,0)D .(1,1)解:函数23y x =-+,∴当5x =-时,13y =;当1x =时,1y =;当3x =时,3y =-;(5,3)∴-,(1,2)和(3,0)不在函数23y x =-+的图象上; (1,1)在函数23y x =-+的图象上;故选:D .3.(3分)不等式10x -> 的解在数轴上表示为( ) A . B .C .D .解:10x ->, 1x >,在数轴上表示为,故选:C .4.(3分)若x y >,则下列式子中正确的是( ) A .22x y ->-B .22x y +<+C .22x y ->-D .22x y< 解:A 、由x y >可得:22x y ->-,正确; B 、由x y >可得:22x y +>+,错误; C 、由x y >可得:22x y -<-,错误;D 、由x y >可得:22x y>,错误; 故选:A .5.(3分)如图的坐标平面上有原点O 与A 、B 、C 、D 四点.若有一直线L 通过点(3,4)-且与y 轴平行,则L 也会通过的点为( )A .点AB .点BC .点CD .点D解:如图所示:有一直线L 通过点(3,4)-且与y 轴平行,故L 也会通过A 点. 故选:A .6.(3分)如图,ABC ∆中,D 点在BC 上,62B ∠=︒,53C ∠=︒,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .则EAF ∠的度数为( )A .124︒B .115︒C .130︒D .106︒解:连接AD ,D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,EAB BAD ∴∠=∠,FAC CAD ∠=∠, 62B ∠=︒,53C ∠=︒,180625365BAC BAD DAC ∴∠=∠+∠=︒-︒-︒=︒, 2130EAF BAC ∴∠=∠=︒,故选:C .7.(3分)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =解:当1m =,1n =时,21213y m =+=+=, 当1m =,0n =时,211y n =-=-, 当1m =,2n =时,213y m =+=, 当2m =,1n =时,211y n =-=, 故选:D .8.(3分)如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求 (乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确解:如图1,PQ 垂直平分AD , PA PD ∴=,QA QD =,而PQ PQ =,()APQ DPQ SSS ∴∆≅∆,所以甲正确;如图2,//PD AQ ,//DQ AP , ∴四边形APDQ 为平行四边形,PA DQ ∴=,PD AQ =,而PQ QP =,()APQ DQP SSS ∴∆≅∆,所以乙正确.故选:A .9.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .解:A 、由图可知:直线1y ,0a >,0b >.∴直线2y 经过一、二、三象限,故A 正确;B 、由图可知:直线1y ,0a <,0b >.∴直线2y 经过一、四、三象限,故B 错误;C 、由图可知:直线1y ,0a <,0b >.∴直线2y 经过一、二、四象限,交点不对,故C 错误;D 、由图可知:直线1y ,0a <,0b <,∴直线2y 经过二、三、四象限,故D 错误.故选:A .10.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数为( )A .60︒B .45︒C .22.5︒D .30︒解:在折叠过程中角一直是轴对称的折叠, 则22.5245AOB ∠=︒⨯=︒; 故选:B .二、填空题(本题共有8小题,每小题3分,共24分)11.(3分)在Rt ABC ∆中,90C ∠=︒,70A ∠=︒,则B ∠= 20︒ . 解:Rt C ∠=∠,70A ∠=︒, 90907020B A ∴∠=︒-∠=︒-︒=︒.故答案为:20︒.12.(3分)将点(2,1)A 变换到点(2,1)B -,写出一种轴对称或平移方法: 向下平移2个单位或关于x 轴对称 .解:将点(2,1)A 向下平移2个单位得到点(2,1)B -, 点A 关于x 轴的对称点为(2,1)B -, 故答案为向下平移2个单位或关于x 轴对称13.(3分)请写出一个过点(0,1)的函数的表达式 1y x =-+(答案不唯一) . 解:函数图象过点(0,1) ∴函数图象与y 轴相交,设该函数的表达式为y x b =-+,过点(0,1) 1b ∴=∴函数的表达式为1y x =-+故答案为:1y x =-+(答案不唯一).14.(3分)命题“对顶角相等”的逆命题是 相等的角为对顶角 . 解:命题“对顶角相等”的逆命题是“相等的角为对顶角”. 故答案为:相等的角为对顶角.15.(3分)不等式3618x ---的正整数解为 1、2、3、4 . 解:3618x ---, 移项得:3186x --+ 合并同类项得:312x --, 把x 的系数化为1得:4x ,∴不等式3618x ---的正整数解为1、2、3、4.故答案为1、2、3、4.16.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为 7 .解:已知4条木棍的四边长为2、3、4、6;①选23+、4、6作为三角形,则三边长为5、4、6;65465-<<+,能构成三角形,此时两个螺丝间的最长距离为6;②选34+、6、2作为三角形,则三边长为2、7、6;62762-<<+,能构成三角形,此时两个螺丝间的最大距离为7;③选46+、2、3作为三角形,则三边长为10、2、3;2310+<,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7. 故答案为:7.17.(3分)某日上午,甲,乙两车先后从A 地出发沿同一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是 6080v .解:根据图象可得,甲车的速度为120340÷=(千米/时). 由题意,得2402340v v ⨯⎧⎨⨯⎩,解得6080v . 故答案为6080v .18.(3分)如图,MAN ∠是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足AB BC CD DE EF FG =====,则ABC ∠的度数最大为 150 度.解:AB BC CD DE EF FG =====,A ACB α∴∠=∠=,2CBD A ACB α∠=∠+∠=, 2CDB CBD α∴∠=∠=, 3ECD DEC α∴∠==∠, 4EDF EFD α∴∠==∠,5FEQ EQF α∴∠=∠=,75590α∴︒<︒, 1518α∴︒<︒,A ∴∠最小为15︒,ABC ∴∠的度数最大为150︒,故答案为:150.三、解答题(本题共有6小题,共46分) 19.(8分)(1)解不等式215x x +<+(2)解不等式组.并把不等式组的解集在数轴上表示出来.2(1)431212x x x x +-<⎧⎪⎨-+⎪⎩解:(1)215x x +<+ 移项,得251x x -<-, 合并同类项,得4x <; (2)()21431212x x x x +-<⎧⎪⎨-+⎪⎩①②由①得2x <, 由②得3x -,所以原不等式组的解集是32x -<;20.(6分)已知一次函数的图象过(1,3)A ,(1,1)B --两点 (1)求该一次函数的表达式; (2)当0x >时,求y 的取值范围. 解:(1)设一次函数为y kx b =+, 根据题意得31k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,则函数的解析式是21y x =+;(2)在21y x =+中,令0x =,则1y =, ∴直线与y 轴的交点为(0,1),画出直线如图:由图象可知,当0y>.x>时,121.(6分)已知:如图,AB AD=,BC DC=,E、F分别是DC、BC的中点.(1)求证:D B∠=∠;(2)当2AE=时,求AF的值.【解答】证明:(1)AB AD=,BC DC=,=,AC AC∴∆≅∆ADC ABC SSS()∴∠=∠;D B(2)E、F分别是DC、BC的中点,BC DC=,=∠=∠,AB ADDE BF∴=,且D B∴∆≅∆,()ADE ABF SAS∴==.2AF AE22.(8分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格均为7元/kg;一次性购买超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg的部分价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为(0)xkg x>(1)根据题意填表:a=210b=;一次购买数量()kg3050150⋯(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?解:(1)730210a =⨯=,750(15050)5850b =⨯+-⨯=, 故答案为:210,850; (2)由题意可得, 16y x =,当050x <时,27y x =,当50x >时,2507(50)55100y x x =⨯+-⨯=+, 由上可得,27(050)5100(50)x x y x x <⎧=⎨+>⎩;(3)在甲店可以购买360660÷=(千克) 360507>⨯,∴令5100360x +=,得52x =,6052>,∴在甲店购买的数量多.23.(8分)数学课上,张老师举了下面的例题:例1等腰三角形ABC 中,110A ∠=︒,求B ∠的度数.(答案:35)︒例2等腰三角形ABC 中,40A ∠=︒,求B ∠的度数.(答案:40︒或70︒或100)︒ 张老师启发同学们进行变式,小敏编了如下两题: 变式1:等腰三角形ABC 中,100A ∠=︒,求B ∠的度数. 变式2:等腰三角形ABC 中,45A ∠=︒,求B ∠的度数. (1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=︒,当B ∠只有一个度数时,请你探索x 的取值范围. 解:(1)变式1:100A ∠=︒,A ∴∠只能为ABC ∆的顶角, ABC ∆为等腰三角形,1(180100)402B C ∴∠=∠=⨯︒-︒=︒; 变式2:若A ∠为顶角,则(180)267.5B A ∠=︒-∠÷=︒; 若A ∠为底角,B ∠为顶角,则18024590B ∠=︒-⨯︒=︒; 若A ∠为底角,B ∠为底角,则45B ∠=︒; 故67.5B ∠=︒或90︒或45︒; (2)分两种情况:①当90180x <时,A ∠只能为顶角, B ∴∠的度数只有一个;②当090x <<时,当60x =时,等腰三角形ABC 是等边三角形, B ∴∠的度数只有一个,∴当B ∠只有一个度数时,请你探索x 的取值范围为90180x <或60.24.(10分)已知:如图1,在平面直角坐标系中,一次函数443y x =+的图象交x 轴于点A ,交y 轴于点B ,点C 是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点. (1)求点A 、B 的坐标.(2)如图2,将ACP ∆沿着AP 翻折,当点C 的对应点E 落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q (不与点D 重合),连接CQ ,是否存在点P ,使得2CPQ DPQ S S ∆∆=,若存在,请直接写出点P 坐标;若不存在,请说明理由.解:(1)一次函数443y x =+的图象交x 轴于点A ,交y 轴于点B , 则点A 、B 的坐标分别为:(3,0)-、(0,4);(2)D 的坐标为(3,8)10AD =,设CP y =,8DP y =-,EP y =,4ED =, 在直角三角形DEP 中,由勾股定理得:3y =, 点P 的坐标(3,3);(3)设点(3,)P m , 得11()()22CPQ Q P Q P S CP x x m x x ∆=⨯⨯-=⨯⨯-, 2()|8|DPQ Q P S PD x x m ∆=⨯-=-,即1|8|2m m -=, 解得:16m =或163.。
浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷 解析版
2019-2020学年八年级(上)期末数学试卷一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或163.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6二.填空题(共6小题)11.下列图形中全等图形是(填标号).12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.三.解答题(共7小题)17.解不等式组18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或16【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【解答】解:根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选:D.3.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论【分析】利用反例判断命题为假命题的方法对各选项进行判断.【解答】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称【分析】根据轴对称的性质解决问题即可.【解答】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°【分析】此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.【解答】解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四【分析】由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选:C.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.二.填空题(共6小题)11.下列图形中全等图形是⑤和⑦(填标号).【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.【解答】解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).【分析】由图知1号同学比2号同学矮,据此可解答.【解答】解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是2.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.【解答】解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为(,);(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为(0,)或(0,)或(0,).【分析】(1)解析式联立,解方程即可求得;(2)求得BM的长,分两种情况讨论即可.【解答】解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).三.解答题(共7小题)17.解不等式组【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:,解①得:x<10,解②得:1≤x,故不等式组的解为:1≤x<10.18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.【分析】将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形,将△ABC中的各点A、B、C旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:如图所示:.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【解答】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【解答】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC =∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。
浙江省绍兴市2019-2020学年数学八上期末模拟调研试卷(4)
浙江省绍兴市2019-2020学年数学八上期末模拟调研试卷(4)一、选择题1.分式方程的解是( ) A.3 B.-3 C. D.92.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .723.下列式子是分式的是( ) A .1x x - B .3a b + C .1x - D .12a +4.将图 1 中阴影部分的小长方形变换到图 2 位置,根据两个图形的面积关系可以得到一个关于 a ,b 的恒等式为( )A .a 2﹣2ab+b 2=(a ﹣b )2B .a 2+2ab+b 2=(a+b )2C .2a 2+2ab =2a (a+b )D .a 2﹣b 2=(a+b )(a ﹣b ) 5.下列各等式中,从左到右的变形是因式分解的是( )A.()2x x y x xy ⋅-=-B.()23131x x x x +-=+-C.()22()2x y y x x y --=-D.222x x x x ⎛⎫-=- ⎪⎝⎭6.下列各数能整除的是( ) A.62 B.63 C.64D.66 7.下列命题中,是真命题的是( )A .有两条边相等的三角形是等腰三角形B .同位角相等C .如果||||=a b ,那么a b =D .等腰三角形的两边长是2和3,则周长是78.如图,将△OAB 绕O 点逆时针旋转60°得到△OCD ,若OA =4,∠AOB =35°,则下列结论错误的是( )A .∠BDO =60°B .∠BOC =25° C .OC =4D .BD =49.如图,若△ABC 与△A′B′C′关于直线 MN 对称,BB′交 MN 于点 O ,则下列说法不一定正确的是( )A .AC =A′C′B .BO =B′OC .AA′⊥MND .AB ∥B′C′ 10.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=6,DE=3,则△BCE的面积等于( )A.10B.9C.8D.6 11.到三角形三边距离相等的点是三角形( )的交点。
绍兴市2019-2020学年数学八上期末模拟检测试题(2)
绍兴市2019-2020学年数学八上期末模拟检测试题(2)一、选择题1.已知x 为整数,且222218339x x x x ++++--为整数,则符合条件的x 有( ) A .2个 B .3个 C .4个 D .5个2.非洲猪瘟病毒的直径达0.0000002米,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学计数法表示为( )A .7210-⨯B .6210-⨯C .80.210-⨯D .7210-⨯ 3.分式23x x --有意义的x 的取值为( ) A .2x ≠B .3x ≠C .2x =D .3x = 4.若()2214x m x +-+是一个完全平方式,则m 的值等于( )A .2B .3C .1-或3D .2或2- 5.已知a =255,b =344,c =433,则a 、b 、c 的大小关系为( ) A .a >b >c B .a >c >bC .b >c >aD .b >a >c 6.按一定规律排列的一列数:,,,,,,…,若、、依次表示这列数中的连续三个数,猜想、、满足的关系式是( )A. B. C. D.7.如图,正五边形ABCDE 中,直线l 过点B ,且l ⊥ED ,下列说法:①l 是线段AC 的垂直平分线;②∠BAC=36°;③正五边形ABCDE 有五条对称轴.正确的有( ).A .①②B .①③C .②③D .①②③8.下列“运动图形”中是轴对称图形的是( )A .B .C .D .9.下列图形选自历届世博会会徽,其中是轴对称图形的是( )A. B. C. D.10.如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .用尺规作图法在BC 边上找一点P ,使得点P 到AC 的距离等于BP 的长,下列作法正确的是( )A.作∠BAC 的角平分线与BC 的交点B.作∠BDC 的角平分线与BC 的交点C.作线段BC的垂直平分线与BC的交点D.作线段CD的垂直平分线与BC的交点11.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD 和AC上的动点,则PC+PQ的最小值是()A.2.4B.4.8C.4D.512.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.513.已知三角形三边的长度分别是6cm,10cm和xcm,若x是偶数,则x可能等于( )A.8cm B.16cm C.5cm D.2cm14.如图,OC是∠AOB的平分线,∠BOD=13∠DOC,∠BOD=12°,则∠AOD的度数为( )A.70°B.60°C.50°D.48°15.已知三角形的两边分别为5和8,则此三角形的第三边可能是()A.2 B.3 C.5 D.13二、填空题16.化简:a ba b b a+--22= __________.17.把多项式x3y﹣6x2y+9xy分解因式的结果是_____.18.如图,在△ABC中,CD=DE,AC=AE,∠DEB=110°,则∠C=_____.19.一个多边形的每一个内角都等于它相邻外角的2倍,则这个多边形的边数是__________.20.在直角ΔABC中,∠BAC=90°,AC=3,∠B=30°,点D在BC上,若ΔABD为等腰三角形,则BD=___________。
浙江省绍兴越城区五校联考2019年数学八上期末检测试题
浙江省绍兴越城区五校联考2019年数学八上期末检测试题一、选择题1.某机械加工车间共有52名工人,现要加工4200个A 零件,2400个B 零件.已知每人每天加工A 零件-3=个或B 零件40个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( ) A.(,)M x y B.4200240052x x =- C.420024004060(52)x x =- D.42006024004052x x⨯⨯=- 2.把分式x yy x +中的x ,y 的值都扩大为原来的5倍,则分式的值( ) A .缩小为原来的15 B .不变C .扩大为原来的10倍D .扩大为原来的5倍 3.解分式方程2211x x x++--=3时,去分母后变形为( ) A.2-(x +2)=3 B.2+(x +2)=3C.2+(x +2)=3(x -1)D.2-(x +2)=3(x -1) 4.如图,从边长为+a b 的正方形纸片中剪去一个边长为-a b 的正方形(a b >),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4abB .2abC .2bD .2a5.下列各式中,不可以用公式分解因式的是( )A .﹣a 2+b 2B .x 2﹣4x+4C .22139a a -+D .x 2+2x+46.下列各式从左到右的变形为分解因式的是( )A .x (x ﹣y )=x 2﹣xyB .x 2+2xy+1=x (x+2y )+1 C .(y ﹣1)(y+1)=y 2﹣1D .x (x ﹣3)+3(x ﹣3)=(x+3)(x ﹣3) 7.如图,在直角三角形中,,,,点为的中点,点在上,且于,则=( )A. B. C. D.8.如图,有一底角为 35°的等腰三角形纸片,现过底边上一点, 沿与腰垂直的方向将其剪开,分成三角形和四边形两部分, 则四边形中,最大角的度数是( )A.110°B.125°C.140°D.160°9.下列各组所述几何图形中,一定全等的是( )A .一个角是45°的两个等腰三角形B .腰长相等的两个等腰直角三角形C .两个等边三角形D .各有一个角是40°,腰长都是8cm 的两个等腰三角形10.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②S △PAC :S △PAB =AC :AB ;③BP 垂直平分CE ;④∠PCF =∠CPF .其中,正确的有( )A.1个B.2个C.3个D.4个 11.若ABO ∆关于y 轴对称,O 为坐标原点,且点A 的坐标为(1,3)-,则点B 的坐标为( )A.(3,1)B.(1,3)-C.(1,3)D.(1,3)-- 12.如图,已知ABC DCB ∠=∠,下列所给的条件不能证明ABC DCB △≌△的是( )A.A D ∠=∠B.AC BD =C.ACB DBC ∠=∠D.AB DC = 13.如图,中,、分别为、的中点,,则阴影部分的面积是( )A.18B.10C.5D.114.如图,点C 在射线BM 上,CF 是∠ACM 的平分线,且CF ∥AB ,∠ACB=50°,则∠B 的度数为( )A.65°B.60°C.55°D.50°15.一个多边形截去一个角后,形成新多边形的内角和为2 520°,则原多边形的边数为( )A .15B .16C .13或15D .15或16或17二、填空题16.根据变化完成式子的变形:()22333x xy x xy y -=-.17.如果a 2-ka+81是完全平方式,则k=________.【答案】±18.18.如图,AB ∥DC ,请你添加一个条件使得△ABD ≌△CDB ,可添条件是__________19.如图所示,D 是 BC 的中点,E 是 AC 的中点,若 S △ADE =1,则 S △ABC =__________20.已知在平面直角坐标系中,点A (-1,-2),点B (4,12),试在x 轴上找一点P ,使得|PA -PB |的值最大,求P 点坐标为_________。
浙江省绍兴市2019届数学八上期末考试试题
浙江省绍兴市2019届数学八上期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.某中学制作了108件艺术品,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装5件艺术品,单独使用B 型包装箱比单独使用A 型包装箱可少用2个.设B 型包装箱每个可以装x 件艺术品,根据题意列方程为( )A .10810825x x =+- B .10810825x x =-- C .10810825x x =-+ D .10810825x x =++ 2.纳米是非常小的长度单位,已知1纳米610-=毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( )A.410B.610C.810D.9103.甲乙两地相距300km ,新修的高速公路开通后,在甲乙两地间行驶的长途客运车的平均速度提高了40%,而从甲乙两地的时间缩短了1.6h ,试确定原来的车速.设原来的车速为xkm/h ,下列列出的方程正确的是( ) A.3003000.4x x -=1.6 B.300300x 1.4x - =1.6 C.3003001.4x x - =1.6 D.300300x 0.6x-=1.6 4.下列运算中,正确的是( ) A .a 2+a 2=2a 4B .(a-b )2=a 2-b 2C .(-x 6)•(-x )2=x 8D .(-2a 2b )3÷4a 5=-2ab 35.()201920200.1258-⨯等于( ) A .-8 B .8 C .0.125 D .-0.1256.下列运算正确的是( )A .a 0=1B .2=4C .()=3D .(-3)=97.点A 、B 均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。
浙江省绍兴市2019-2020学年数学八上期末模拟调研试卷(2)
浙江省绍兴市2019-2020学年数学八上期末模拟调研试卷(2)一、选择题1.关于x 的分式方程无解,则m 的值是( ) A.1 B.0 C.2 D.-22.下列式子中不是分式的是( )A. B. C. D.3.已知a ,b 为实数,且1ab =,1a ≠,设11=+++a b M a b ,1111=+++N a b ,则M ,N 的大小关系是( ).A.M N >B.M N <C.M N =D.无法确定 4.下列计算结果等于4a 6的是( ) A .2a 3+2a 3B .2a 2•2a 3C .(2a 3)2D .8a 6÷2a 6 5.下列分解因式错误的是( ) A.()()2422x x x x x -+=+-+B.()()22x y x y y x -+=+-C.()2212x x x x -+=--D.()22211x x x -+=-6.已知边长分别为a 、b 的长方形的周长为10,面积4,则ab 2+a 2b 的值为( ) A .10 B .20C .40D .80 7.下列命题中,是真命题的是( )A .有两条边相等的三角形是等腰三角形B .同位角相等C .如果||||=a b ,那么a b =D .等腰三角形的两边长是2和3,则周长是78.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD//BE ,∠1=40°,则∠2的度数是( )A .70°B .55°C .40°D .35° 9.如图,在等腰直角△ABC 中,腰长AB=4,点D 在CA 的延长线上,∠BDA=30°,则△ABD 的面积是( )A.4B.4C.8D.810.如图,把一张长方形的纸片ABCD 沿EF 折叠,若∠AED′=40°,则∠DEF 的度数为( )A.40°B.50°C.60°D.70°11.如图在△ABC中,∠C=900,BC=12AB,BD平分∠ABC,BD=2,则以下结论错误的是()A.点D在AB的垂直平分线上B.点D到AB的距离为1C.点A到BD的距离为2 D.点B到AC12.如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F13.若一个二角形的三条边长分别为3,2a-1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,514.已知:如图,在△ABC中,∠A=60°,∠C=70°,点D、E分别在AB和AC上,且DE∥BC.则∠ADE的度数是()A.40°B.50°C.60°D.70°15.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM的度数为()A.38°B.152°C.150°D.142°二、填空题16.21a ab-,21a ab+的最简公分母为___.17.已知实数m ,n 满足13m n m n -=⎧⎨+=⎩,则代数式22m n -的值为_____. 【答案】3. 18.如图,在平面直角坐标系中,以A (2,0),B (0,t )为顶点作等腰直角△ABC (其中∠ABC=90°,且点C 落在第一象限内),则点C 关于y 轴的对称点C’的坐标为___.(用t 的代数式表示)19.如图,在ABC ∆中,已知点,D E 分别为,BC AD 的中点2EF FC =,且ABC ∆的面积为18,则BEF ∆的面积为____________.20.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的点S 称为“亮点”.如图,对于封闭图形ABCDE ,S 1是“亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC ,AB =2,AE =1,∠B =∠C =60°,那么该图形中所有“亮点”组成的图形的面积为_____.三、解答题21.解分式方程(1)21233x x x-=---; (2)2111x x x +=-+ 22.因式分解:3436x x -23.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形,如图,已知整点A (2,2),B (4,1),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个等腰△PAB ,使点P 的横坐标大于点A 的横坐标.(2)在图2中画一个直角△PAB ,使点P 的横坐标等于点P ,B 的纵坐标之和.24.如图,AD 平分BDC ∠,12∠=∠,180B F ∠+∠=︒.(1)写出3个∠B 的同旁内角:(2)若105B ∠=︒,求∠ADC 的度数.(3)求证://CD EE .25.如图,已知AB ∥CD ,60B ∠=︒,CM 平分BCE ∠,90MCN ∠=︒,求DCN ∠的度数.【参考答案】***一、选择题16.a (a+b )(a-b )17.无18.(,2)t t -+19.620..三、解答题21.()1无解;()23x =-22.4x(x+3)(x −3)23.(1)、(2)见解析.【解析】【分析】(1)根据等腰三角形的定义以及题目条件,画出三角形即可.(2)根据直角三角形的定义以及题目条件,画出三角形即可.【详解】解:(1)如图1中,图中的点P 即为所求.(答案不唯一)(2)如图2中,图中的点P 即为所求.【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理以及逆定理等知识.解题的关键是学会利用数形结合的思想思考问题,并准确作出图形.24.(1)∠B 的同旁内角有:∠2、∠BDC 、∠F ;(2)375ADC ∠=︒.;(3)见解析.【解析】【分析】(1)根据同旁内角的定义进行求解即可得到答案;(2)根据角平分线的性质得到122ADC BDC ∠=∠=∠,根据平行线的判定和性质得到答案; (3)根据平行线的性质即可得到答案.【详解】(1)∠B 的同旁内角有:∠2、∠BDC 、∠F(2)∵AD 平分∠BDC 122ADC BDC ∴∠=∠=∠ 12∠=∠1ADC ∴∠=∠//AB CD ∴180********BDC B ︒︒︒︒∴∠=-∠=-=1753752ADC BDC ∴∠=︒=︒. (3)由(2)得//AB CD 180B F ∠+∠=︒//AB EF ∴//EF CD ∴.【点睛】本题考查同旁内角的定义、角平分线的性质及平行线的判定和性质,解题的关键是掌握平行线的判定和性质. 25.30°。
2020年绍兴市八年级数学上期末试卷附答案
2020年绍兴市八年级数学上期末试卷附答案一、选择题1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.1515112x x-=+B.1515112x x-=+C.1515112x x-=-D.1515112x x-=-2.已知三角形的两边长分别为4cm和9cm,则下列长度的线段能作为第三边的是()A.13cm B.6cm C.5cm D.4m3.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107 B.5×10﹣7 C.0.5×10﹣6 D.5×10﹣64.若ba b-=14,则ab的值为()A.5B.15C.3D.135.下列运算中,结果是a6的是( )A.a2•a3B.a12÷a2C.(a3)3D.(﹣a)66.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2B.2C.4D.-47.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km,现在高速路程缩短了20km,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h,则根据题意可列方程为()A.150201501.52.5x x--=B.150150201.52.5x x--=C.150150201.52.5x x--=D.150201501.52.5x x--=8.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°9.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°10.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 11.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 12.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A .3B .4C .6D .12 二、填空题13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.14.如图,AC =DC ,BC =EC ,请你添加一个适当的条件:______________,使得△ABC ≌△DEC .15.因式分解:3x 3﹣12x=_____.16.计算:()201820190.1258-⨯=________.17.若=2m x ,=3n x ,则2m n x +的值为_____.18.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E , AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是____ ___19.计算33的结果是______.20.因式分解34x x -= .三、解答题 21.解分式方程2212323x x x +=-+. 22.“丰收1号”小麦的试验田是边长为a 米(a>1)的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(1a -)米的正方形,两块试验田里的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍? 23.解方程:22161242x x x x +-=--+ 24.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-25.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通.在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.2.B解析:B【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a ,根据三角形三边关系9494a -<<+解得513a <<.只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.3.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.4.A解析:A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b , 所以a b =55b b=. 故选A. 5.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C 、(a 3)3=a 9,故此选项错误;D 、(-a )6=a 6,故此选项正确.故选D .【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.6.D解析:D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .7.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】 根据题意可得,走高速所用时间150202.5x -小时,走国道所用时间150x小时 即15015020 1.52.5x x--= 故答案选择C.【点睛】 本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.8.B解析:B【解析】试题解析:∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A =∠ABD =30°,∴∠BDC =60°,∴∠CBD =180°﹣75°﹣60°=45°.故选B .9.D解析:D【解析】试题解析::(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选D.10.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.11.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C是轴对称图形,故选C.12.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.二、填空题13.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠ 解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.14.CE=BC 本题答案不唯一【解析】再加利用SSS 证明≌故答案为解析:C E =BC .本题答案不唯一.【解析】AC DC =,BC EC =,再加AB DE =,利用SSS,证明ABC V ≌DEC V .故答案为AB DE =.15.3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x 然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x (x2﹣4)=3x (x+2)(x ﹣2)故答案为3x (x+2)(x ﹣2)【点睛】本题考查解析:3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8)20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯8= (−0.125×8)2018⨯8=8,故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.17.18【解析】【分析】先把xm+2n变形为xm(xn)2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm(xn)2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【详解】∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.18.15cm【解析】【分析】【详解】在△ABC中边AB的垂直平分线分别交BCAB 于点DEAE=3cmAE=BEAD=BD△ADC 的周长为9cm即AC+CD+AD=9则△ABC的周长=AB+BC+AC=【解析】【分析】【详解】在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,AE=BE ,AD=BD ,△ADC•的周长为9cm ,即AC+CD+AD=9,则△ABC 的周长=AB+BC+AC=AE+BE+BD+CD+AC=AE+BE+AD+CD+AC=6+9=15cm【点睛】本题考查垂直平分线,解答本题的关键是掌握垂直平分线的概念和性质,运用其来解答本题19.-1【解析】【分析】由于式子复合平方差公式的特点则由平方差公式展开可得()-2即可解答【详解】由平方差公式得()-2由二次根式的性质得3-2计算得-1【点睛】此题考查平方差公式的性质解题关键在于利用解析:-1【解析】【分析】由于式子复合平方差公式的特点,则由平方差公式展开可得 )2-22即可解答【详解】由平方差公式,得2-22由二次根式的性质,得3-22计算,得-1【点睛】此题考查平方差公式的性质,解题关键在于利用平方差公式的性质进行计算20.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 三、解答题【解析】【分析】先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x ﹣3)(2x +3),得4x +6+4x 2﹣6x =4x 2﹣9,解得:x =7.5,经检验x =7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.22.(1) “丰收2号”小麦的试验田小麦的单位面积产量高;(2)单位面积产量高是低的11a a +-倍. 【解析】【分析】 (1)先用a 表示出两块试验田的面积,比较出其大小,再根据其产量相同可知面积较小的单位面积产量高即可得出结论;(2)根据(1)中两块试验田的面积及其产量,求出其比值即可.【详解】(1)∵“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a−1)米的正方形, ∴“丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,∵a 2−1−(a−1)2=a 2−1−a 2+2a−1=2(a−1),由题意可知,a >1,∴2(a−1)>0,即a 2−1>(a−1)2,∴“丰收2号”小麦的试验田小麦的单位面积产量高;(2)∵丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,两块试验田的小麦都收获了500千克, ∴“丰收2号”小麦的试验田小麦的单位面积产量高,∴()()222500500500(1)(1)150011a a a a a +-÷=⋅---=11a a +-. 答:单位面积产量高是低的11a a +-倍. 【点睛】本题考查了分式的混合运算,把分式的分子分母正确分解因式是解题的关键. 23.5x =-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】()22162x x +-=-23100x x +-=解得15x =-,22x =经检验:2x =不符合题意.原方程的解为: 5.x =-【点睛】考查分式方程的解法,掌握分式方程的解题的步骤是解题的关键.注意检验.24.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【解析】【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)应选甲工程队单独完成;理由见解析.【解析】【分析】(1)设甲工程队单独完成这项工程需要x 天,则乙工程队单独完成这项工程需要1.5x天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y 元,则乙工程队每天的费用是(y ﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y 的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x 天,依题意,得:12121.5x x+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.【点睛】本题主要考查了分式方程的实际应用,解题的关键是合理设出未知数,找到等量关系,列出方程.。
浙江省绍兴市2019-2020学年数学八上期末模拟调研试卷(1)
浙江省绍兴市2019-2020学年数学八上期末模拟调研试卷(1)一、选择题1.若分式31a -有意义,则a 的取值范围是( ) A.任意实数B.1a ≠-C.1a ≠D.0a ≠ 2.一次学习小组交换出题检测的活动中,小刚的作答如下: ①()363a a a ÷-=-;②23325a a a +=;③()()32255a bb a b ⋅-=; ④22144a a -=, 请问小刚做对了( ) A .1道 B .2道C .3道D .4道 3.关于x 的方程13x x --=2+3k x -有增根,则k 的值是( ) A .3 B .2 C .-2D .﹣3 4.下列计算,结果等于a 4的是( ) A .a+3aB .a 5-aC .(a 2)2D .a 8÷a 2 5.下列运算中,正确的是( ) A .(﹣3a 2)2=6a 4B .(﹣a 3)2=﹣a 6C .(﹣x 2)3=﹣x 5D .x 3•x 2=x 5 6.若x 2+bx+c =(x+5)(x ﹣3),其中b 、c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是( )A .(﹣2,﹣15)B .(2,15)C .(﹣2,15)D .(2,﹣15) 7.下列计算中,正确的是( )A .a 2•a 4=a 8B .(a 2)4=a 6C .a 2+a 4=a 6D .a 6÷a 4=a 2 8.如图,矩形ABCD 中,AB=7,BC=4,按以下步骤作图:以点B 为圆心,适当长为半径画弧,交AB,BC 于点E,F;再分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧在∠ABC 内部相交于点H,作射线BH,交DC 于点G,则DG 的长为( )A .1B .112C .3D .2129.下列说法错误的是( )A .等腰三角形底边上的高所在的直线是它的对称轴B .线段和角都是轴对称图形C .连接轴对称图形的对应点的线段必被对称轴垂直平分D .则ABC DEF ∆∆≌,ABC ∆与DEF ∆—定关于某条直线对称10.如图,BC ∥EF ,BC=BE ,AB=FB ,∠1=∠2,若∠1=55°,则∠C 的度数为( )A.25°B.55°C.45°D.35°11.下列说法正确的是( )A .所有的等边三角形都是全等三角形B .全等三角形是指面积相等的三角形C .周长相等的三角形是全等三角形D .全等三角形是指形状相同、大小相等的三角形12.如图,在△ABC 中,∠C=90°,AC=BC ,AB=4cm ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则以下结论:①AD 平分∠CDE ;②DE 平分∠BDA ;③AE-BE=BD ;④△BDE 周长是4cm .其中正确的有( )A .4个B .3个C .2个D .1个13.如图,在四边形ABCD 中,A D α∠+∠=,ABC ∠的平分线与BCD ∠的平分线交于点P ,则P ∠=( )A .1902α︒- B .1902α︒+ C .12α D .300α︒-14.三角形内有一点到三角形三边的距离相等,则这个点一定是三角形的( )A .三条高的交点B .三条角平分线的交点C .三边中线的交点D .三边垂直平分线的交点15.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( )A .7条B .8条C .9条D .10条二、填空题16.已知x+2y+7z=0,x-2y-3z=0(xyz ¹0),则x y z x y z ++-+=.17.我们知道下面的结论:若a m =a n (a >0,且a≠1),则m =n .利用这个结论解决下列问题:设2m =3,2n =6,2p=12.现给出m ,n ,p 三者之间的三个关系式:①m+p =2n ,②m+n =2p ﹣3,③n 2﹣mp =1.其中正确的是___.(填编号)【答案】①②③.18.如图,ABC ∆中,E 是BC 的中点,AD 平分BAC ∠,BD AD ⊥于点D ,若4AB =,6AC =,则DE 的长度为_____.19.把一副三角板按如图所示的方式放置,则图中钝角α是______o .20.如图,△ABC 中,AB=AC ,D 是AC 上一点,且BC=BD ,若∠CBD=44°,则∠A=______°.三、解答题21.高铁的开通给滕州人民出行带来极大的方便,从滕州到北京相距700km ,现在乘高铁列车比以前乘特快列车少用4.5h ,已知高铁列车的平均速度是特快列车的2.8倍,求高铁列车的平均行驶速度.22.先化简,再求值:2(21)(21)5(1)(1)x x x x x +---+-,其中13x =-. 23.如图1,点P 是线段AB 上的动点(点P 与,A B 不重合),分别以,AP PB 为边向线段AB 的同一侧作正APC ∆和正PBD ∆.(1)请你判断AD 与BC 有怎样的数量关系?请说明理由;(2)连接,AD BC ,相交于点Q ,设AQC α∠=,那么α的大小是否会随点P 的移动而变化?请说明理由;(3)如图2,若点P 固定,将PBD ∆绕点P 按顺时针方向旋转(旋转角小于180),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)24.已知:如图,在△ABC 中,∠BAC 的平分线AP 与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PM ⊥AC 于点M ,PN ⊥AB 交AB 延长线于点N ,连接PB ,PC .求证:BN=CM .25.如果一个多边形的所有内角都相等,我们称这个多边形为“等角多边形”,现有两个等角多边形,它们的边数之比为1:2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.【参考答案】***一、选择题16..17.无18.19.10520.44三、解答题21.高铁列车平均速度为280/km h .22.-123.(1)AD BC =,见解析;(2)α的大小不会随点P 的移动而变化,见解析;(3)此时α的大小不会发生改变,始终等于60.【解析】【分析】(1)先根据SAS 证明APD ∆≌CPB ∆,再根据全等三角形的性质即得结论;(2)如图3,根据APD ∆≌ CPB ∆可得PAD PCB ∠=∠,再在△APF 和△CQF 中用三角形内角和定理即可证得结论;(3)旋转的过程中,(2)中的两个三角形的全等关系不变,因而角度不会变化.【详解】解:(1)AD BC =.理由如下:因为APC ∆是等边三角形,所以,60PA PC APC =∠=,又因为BDP ∆是等边三角形,所以,60PB PD BPD =∠=,又因为,,A P D 三点在同一直线上,所以120APD CPB ∠=∠=.在APD ∆和CPB ∆中AP CP APD CPB DP BP =⎧⎪∠=∠⎨⎪=⎩所以APD ∆≌ CPB ∆(SAS ).所以AD BC =.(2)α的大小不会随点P 的移动而变化。
绍兴市2019-2020学年数学八上期末模拟检测试题(1)
绍兴市2019-2020学年数学八上期末模拟检测试题(1)一、选择题1.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 2.科学家发现了一种新型病毒,其直径约为0.00000012mm ,数据0.00000012用科学记数法表示正确的是( )A .71.210⨯B .71.210-⨯C .81.210⨯D .81.210-⨯ 3.关于x 的方程237111k x x x +=+--有增根,则增根是( ) A .1B .﹣1C .±1D .0 4.()201920200.1258-⨯等于( ) A .-8 B .8 C .0.125 D .-0.1255.计算2222449,322v R m g h B r g=-等于( ) A .31n x -B .31n x --C .33n x -D .33n x --6.如果的乘积不含和项,那么和值分别是( )A.B.C. D. 7.如图,已知D 为ABC ∆边AB 的中点,E 在AC 上,将ABC ∆沿着DE 折叠,使A 点落在BC 上的F 处,若65B ∠=,则BDF ∠等于( )A .65B .50C .60D .57.58.已知ABC ∆的三边为a b c ,,,且a b c ,,满足222 1.53.252a b a b c c+++=⨯,则ABC ∆是( )A .直角三角形B .等腰三角形C .等边三角形D .以上都有可能9.如图,已知在Rt △ABC 中,∠ABC =90°,点D 是BC 边的中点,分别以B ,C 为圆心,大于线段BC 长度一半的长为半径画圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连结BE ,AB =5cm ,△AEB 的周长为18cm ,则△ABC 的周长是( )cm .A.36B.23C.18D.3010.点A (﹣3,2)与点B (﹣3,﹣2)的关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上各项都不对11.如图,AC DF =,ACB DFE ∠∠=,下列哪个条件不能判定ABC ≌DEF( )A.A D ∠∠=B.BE CF =C.AB DE =D.AB//DE12.如图,在Rt ABC ∆中, 090BAC ∠=.ED 是BC 的垂直平分线,BD 平分ABC ∠,3AD =.则CD 的长为( )A .6B .5C .4D .313.如图,点A ,A 1,A 2,A 3,……在同一直线上,AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,……,若∠B 的度数为m ,则∠A 99A 100B 99的度数为A. B. C. D.14.如图,AE ∥BF ,∠1=110°,∠2=130°,那么∠3的度数是( )A.40°B.50°C.60°D.70°15.如图,△ABC 的面积为12cm 2,点D 在BC 边上,E 是AD 的中点,则△BCE 的面积是( )A .4cm 2B .6cm 2C .8cm 2D .6cm 2二、填空题16.分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为__________。
绍兴市2019-2020学年数学八上期末模拟检测试题(3)
绍兴市2019-2020学年数学八上期末模拟检测试题(3)一、选择题1.若分式在实数范围内有意义,则x 的取值范围是( )A. B. C. D.2.现装配30台机器,在装配好6台以后,之后采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,求原来每天装配机器的台数.若设原来每天装配机器台,则下列所列方程中正确的是( )A. B. C. D.3.一家工艺品厂按计件方式结算工资.暑假里,大学生小华去这家工艺品厂打工,第一天得到工资60元,第二天比第一天多做了10件,得到工资75元.如果设小华第一天做了x 件,依题意列方程正确的是( )A .607510x x =- B .607510x x =- C .607510x x =+ D .607510x x =+ 4.下列分解因式错误的是( ) A.()()2422x x x x x -+=+-+B.()()22x y x y y x -+=+-C.()2212x x x x -+=--D.()22211x x x -+=-5.下列计算中,正确的是( ) A.﹣a (3a 2﹣1)=﹣3a 3﹣aB.(a ﹣b )2=a 2﹣b 2C.(﹣2a ﹣3)(2a ﹣3)=9﹣4a 2D.(2a ﹣b )2=4a 2﹣2ab+b 26.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为3和16,则正方形,A B 的面积之和为 ( )A .13B .11C .19D .21 7.如图,在△ABC 中,∠C =90°,∠B =30°,AC =3.若点P 是BC 边上任意一点,则AP 的长不可能是( )A .7B .5.3C .4.8D .3.58.如图,平行河岸两侧各有一城镇P ,Q ,根据发展规划,要修建一条公路连接P ,Q 两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )A .B .C .D .9.下列标志中,可以看作是轴对称图形的是( )A. B.C. D.10.下列说法:①有一个角是60的等腰三角形是等边三角形;②如果三角形的一个外角平分线平行三角形的一边,那么这个三角形是等腰三角形;③三角形三边的垂直平分线的交点与三角形三个顶点的距离相等;④有两个角相等的等腰三角形是等边三角形.其中正确的个数有( )A .1个B .2个C .3个D .4个11.如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .A D ∠=∠B .EC BF =C .AB CD =D .AB BC =12.已知:如图,点P 是线段AB 外,且PA PB =,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作APB ∠的平分线PC 交AB 于点CB.过点P 作PC AB ⊥于点C 且AC BC =C.取AB 中点C ,连接PCD.过点P 作PC AB ⊥,垂足为C13.如图所示,已知直线AB ,CD 被直线AC 所截,AB CD ∥,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+;②αβ-;③βα-;④180αβ--o ;⑤360αβ--o ,AEC ∠的度数可能是( )A .①②③④B .①②④⑤C .①②③⑤D .①②③④⑤ 14.一个三角形三边长分别是2,7,x ,则x 的值可以是( )A .3B .5C .6D .9 15.下列长度的三条线段能组成三角形的是( )A .3,4,8B .5,6,11C .5,6,10D .6,6,13二、填空题16.21a ab -,21a ab+的最简公分母为___. 17.当x =________________时,代数式222x x ++取得最小值. 【答案】-118.如图,平行四边形ABCD 中,E 为AD 的中点,连接CE ,若平行四边形ABCD 的面积为224cm ,则CDE ∆的面积为____2cm .19.一个多边形的内角和是它的外角和的4倍,这个多边形是______边形.20.如图,点D 、E 在△ABC 边上,沿DE 将△ADE 翻折,点A 的对应点为点A′,∠A′EC=α,∠A′DB =β,且α<β,则∠A 等于______(用含α、β的式子表示).三、解答题21.某幼儿园计划购进一批甲、乙两种玩具,已知一件甲种玩具的价格与一件乙种玩具的价格的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的价格分别是多少元?(2)该幼儿园计划用3500元购买甲、乙两种玩具,由于采购人员把甲、乙两种玩具的件数互换了,结果需4500元,求该幼儿园原计划购进甲、乙两种玩具各多少件?22.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 23.已知ABC ∠及其边BC 上一点D .在ABC ∠内部求作点P ,使点P 到ABC ∠两边的距离相等,且到点B ,D 的距离相等.24.如图,90AOB =︒,OC 平分AOB ∠.将一块足够大的三角尺的直角顶点落在射线OC 的任意一点P 上,并使三角尺的一条直角边与AO (或AO 的延长线)交于点D ,另一条直角边与BO 交于点E .(1)如图1,当PD 与边AO 垂直时,证明:PD PE =;(2)如图2,把三角尺绕点P 旋转,三角尺的两条直角边分别交,AO BO 于点,D E ,在旋转过程中,PD 与PE 相等吗?请直接写出结论:PD PE (填>,<,=),(3)如图3,三角尺绕点P 继续旋转,三角尺的一条直角边与AO 的延长线交于点D ,另一条直角边与BO 交于点E .在旋转过程中,PD 与PE 相等吗?若相等,请给出证明;若不相等,请说明理由.25.如图,点A ,O ,B 在同一直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)当∠BOE=25°时,求∠AOD 的度数(2)在图中找出∠COD 的补角,并说明理由.【参考答案】***一、选择题16.a (a+b )(a-b )17.无18.619.十20.β﹣α.三、解答题21.(1)甲,乙两种玩具分别是15元/件,25元/件;(2)原计划购进甲、乙两种玩具各150件,50件.22.-3x+y 2,31923.见解析.【解析】【分析】由点P 到∠ABC 两边的距离相等知点P 在∠ABC 平分线上,由点P 到点B ,D 的距离相等知点P 在线段BD中垂线上,两者的交点即为所求.【详解】解:如图所示,点P 即为所求.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握角平分线和线段垂直平分线的性质.24.(1)证明过程见解析;(2)=;(3)相等,证明过程见解析.【解析】【分析】(1)证明△DPO ≌△EPO ,即可得出答案;(2)PD=PE ;(3)作PM 垂直AO 于M ,PN 垂直OB 于N ,证明△PMD ≌△PNE ,即可得出答案.【详解】(1)证明:∵90AOB =︒,OC 平分AOB ∠∴∠DOP=∠POE=45°又∵90AOB =︒,PD 与边AO 垂直∴OE ∥PD∴∠POE=∠OPD=45°又∠DOE=90°∴∠OPE=45°在△DPO 和△EPO 中DPO EPO OP PODOP EOP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DPO ≌△EPO (ASA )∴PD=PE(2)PD=PE(3)相等证明:作PM 垂直AO 于M ,PN 垂直OB 于N∴∠PMD=∠PNE=90°,∠MPN=90°∵OC 平分AOB ∠∴PM=PN又∠MPN=∠MPD+DPN∠DPE=∠NPE+∠DPN且∠DPE=90°∴∠MPD=∠NPE在△PMD 和△PNE 中MPD NPE PM PNPMD PNE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PMD ≌△PNE (ASA )∴PD=PE故在旋转过程中,PD 与PE 相等.【点睛】本题考查了全等三角形的判定与性质以及角平分线的性质,熟练掌握全等三角形的判定与性质解决本题的关键.25.(1)∠AOD=65°;(2)∠COD 的补角是∠BOD.理由见解析.。
《试卷3份集锦》绍兴市2019-2020年八年级上学期期末监测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,ABC AEF ∆≅∆,AB AE =,B E ∠=∠,则对于结论:①AC AF =,②FAB EAB ∠=∠,③EF BC =,④EAB FAC ∠=∠,其中正确的是( )A .①②B .①③④C .①②③④D .①③【答案】B 【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【详解】解:∵△ABC ≌△AEF ,∴AC=AF ,EF=BC ,∠EAF=∠BAC ,故①③正确;∵∠EAF=∠BAC ,∴∠FAC=∠EAB≠∠FAB ,故②错误,④正确;综上所述,结论正确的是①③④.故选:B .【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键. 2.如图①,从边长为a 的正方形中剪去一个边长为b 的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+【答案】A 【分析】由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【详解】由大正方形的面积-小正方形的面积=矩形的面积得()()22a b a b a b -=+-本题考查了平方差公式的证明,根据题意列出方程得出平方差公式是解题的关键.3.若把分式3x y xy+中的x 与y 都扩大3倍,则所得分式的值( ) A .缩小为原来的13 B .缩小为原来的19 C .扩大为原来的3倍D .不变 【答案】A【分析】根据分式的基本性质即可求出答案. 【详解】解:原式=33333x y x y +⨯⋅=33x y xy +⨯, 故选:A .【点睛】本题考查分式的基本性质,关键在于熟记基本性质.4.①实数和数轴上的点一一对应.②不带根号的数一定是有理数.③一个数的立方根是它本身,这样的1.其中真命题有( )A .1个B .2个C .3个D .4个【答案】A【分析】根据数轴的性质与实数的性质及二次根式的性质依次判断即可.【详解】实数和数轴上的点一一对应,①是真命题;不带根号的数不一定是有理数,例如π是无理数,②是假命题;一个数的立方根是它本身,这样的数有±1,0,共3个,③是假命题;3,④是假命题; 综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了命题真假的判断,熟练掌握各章节的相关概念是解题关键.5.若分式3x x -在实数范围内有意义,则x 的取值范围为( ) A .3x >B .3x ≠C .0x ≥D .0x ≠且3x ≠【答案】B【分析】根据分式意义的条件即可求出答案.【详解】解:x-3≠0,∴x≠3本题考查分式有意义的条件,解题的关键正确理解分母不为0是分式有意义的条件,本题属于基础题型. 6.如图,ABC ∆的周长为26cm ,分别以A B 、为圆心,以大于12AB 的长为半径画圆弧,两弧交于点D E 、,直线DE 与AB 边交于点F ,与AC 边交于点G ,连接BG ,GBC ∆的周长为14cm ,则BF 的长为 ( )A .6cmB .7cmC .8cmD .12cm【答案】A 【分析】将△GBC 的周长转化为BC+AC ,再根据△ABC 的周长得出AB 的长,由作图过程可知DE 为AB 的垂直平分线,即可得出BF 的长.【详解】解:由作图过程可知:DE 垂直平分AB ,∴BF=12AB ,BG=AG , 又∵△GBC 的周长为14,则BC+BG+GC=BC+AC=14,∴AB=26- BC-AC=12, ∴BF=12AB=6. 故选A.【点睛】本题考查了作图-垂直平分线,垂直平分线的性质,三角形的周长,解题的关键是△GBC 的周长转化为BC+AC 的长,突出了“转化思想”.7210x x -+≤,则x 的值为( )A .2或1-B .12x -≤≤C .2D .1- 【答案】C【分析】先根据二次根式有意义的条件求出x 2x -1x +异号,但是20x -=或10x +=,解出x 的值,找到在取值范围内的即可.【详解】2x -有意义∵210x x -+≤ ∴20x -=或10x +=∴2x = 或1x =-∵2x ≥∴2x =故选:C .【点睛】本题主要考查绝对值和二次根式的非负性,二次根式有意义的条件,掌握二次根式有意义的条件,绝对值和二次根式的非负性是解题的关键.8.在等边三角形ABC 中,D E ,分别是BC AC ,的中点,点P 是线段AD 上的一个动点, 当PC PE +的长最小时,P 点的位置在( )A .A 点处B .AD 的中点处C .ABC ∆的重心处D .D 点处【答案】C 【分析】连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】解:连接BP ,∵△ABC 是等边三角形,D 是BC 的中点,∴AD 是BC 的垂直平分线,∴PB=PC ,当PC PE +的长最小时,即PB+PE 最小则此时点B 、P 、E 在同一直线上时,又∵BE 为中线,∴点P 为△ABC 的三条中线的交点,也就是△ABC 的重心,故选:C .本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.9.图中的小正方形边长都相等,若MNP MFQ ≌,则点Q 可能是图中的( )A .点DB .点C C .点BD .点A【答案】A 【分析】根据全等三角形的判定即可解决问题.【详解】解:观察图象可知△MNP ≌△MFD .故选:A .【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,直线//,160a b ︒∠=,则2∠=( )A .60︒B .100︒C .150︒D .120︒【答案】D 【分析】由//,160a b ︒∠=得到∠3的度数为60︒,再根据邻补角即可计算得到∠2的度数.【详解】∵//,160a b ︒∠=,∴∠3=∠1=60︒,∴∠2=180︒-60︒=120︒,故选:D.【点睛】此题考查平行线的性质,邻补角的定义,正确理解题中角度的关系,由此列式计算得出角度值是解题的关键.二、填空题11.使1x +有意义的x 的取值范围是 .【答案】1x ≥-【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.【详解】根据二次根式的定义可知被开方数必须为非负数,列不等式得:x+1≥0,解得x≥﹣1.故答案为x≥﹣1.【点睛】本题考查了二次根式有意义的条件12.如图,ABC ∆中,90BAC ∠=︒,AB AC =,把ABC ∆沿DE 翻折,使点A 落在BC 边上的点F 处,且15EFC ∠=︒,那么ADE ∠的度数为________.【答案】60︒【解析】根据等腰三角形的性质,求得∠C ,然后利用三角形内角和求得∠FEC ,再根据邻补角的定义求得∠AEF ,根据折叠的性质可得∠AED=∠FED=1∠AEF ,在△ADE 中利用三角形内角和定理即可求解.【详解】解:∵ABC ∆中,90BAC ∠=︒,AB AC =,∴∠B=∠C=45°又∵15EFC ∠=︒∴∠FEC=180°-∠EFC-∠C=180°-15°-45°=120°,∴∠AEF=180°-∠FEC =60°又∵∠AED=∠FED=12∠AEF=30°,∠A=90°, ∴∠ADE=180°-∠AED-∠A=180°-30°-90°=60°.故答案为:60°.【点睛】本题考查了等腰三角形等边对等角,三角形内角和的应用,折叠的性质,找出图形中相等的角和相等的线段是关键.13.如图,将等腰Rt ABC ∆绕底角顶点A 逆时针旋转15°后得到'''A B C ∆,如果1AC =,那么两个三角形的重叠部分面积为____.【答案】3 【分析】设B′C′与AB 相交于点D ,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D ,然后利用勾股定理列式求出C′D 的长度,再根据三角形的面积公式列式进行计算即可得解.【详解】设B′C′与AB 相交于点D ,如图,在等腰直角△ABC 中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D ,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=3,∴重叠部分的面积=1331=2⨯⨯.故答案为:3.【点睛】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.14.如图,已知方格纸中是4个相同的小正方形,则12∠+∠的度数为______.【答案】90º【分析】首先证明三角形全等,根据全等三角形的性质可得对应角相等,再由余角的定义和等量代换可得∠1与∠2的和为90°.【详解】解:如图,根据方格纸的性质,在△ABD和△CBE中AB BCB BBD BE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CBE(SAS),∴∠1=∠BAD,∵∠BAD+∠2=90°,∴12∠+∠=90°.故答案为:90°.【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.15.已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5.【解析】设这个多边形是n 边形,由题意得,(n-2) ×180°=540°,解之得,n=5.16.化简22x 11x-1x -2x 1+⎛⎫+÷ ⎪+⎝⎭的结果为__. 【答案】x-1【分析】根据分式的混合运算,可先算括号里面的,再把除化为乘法,约分即可.【详解】解:2211121x x x x +⎛⎫+÷ ⎪--+⎝⎭ =212(1)111x x x x x --⎛⎫+ ⎪--+⎝⎭ =()21111x x x x -+-+ =1x -故答案为:x-1.【点睛】本题考查分式的混合运算,掌握运算法则正确计算是解题关键.17.如图,在菱形ABCD 中,若AC=6,BD=8,则菱形ABCD 的面积是____.【答案】1【详解】试题解析:∵菱形ABCD 的对角线AC=6,BD=8,∴菱形的面积S=12AC•BD=12×8×6=1. 考点:菱形的性质.三、解答题18.已知:如图,AB=AC ,AD=AE ,∠1=∠1.求证:△ABD ≌△ACE .【答案】证明见解析.【分析】首先得出∠EAC=∠BAD ,进而利用全等三角形的判定方法(SAS) 得出即可.【详解】证明:∵∠1=∠1,∴∠EAC=∠BAD ,在△DAB 和△EAC 中,=AB AC BAD EAC AD AE =⎧⎪∠∠⎨⎪=⎩,∴△ABD ≌△ACE(SAS);【点睛】本题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.19.阅读材料:若22228160m mn n n -+-+=,求,m n 的值.解:∵22228160m mn n n -+-+=,∴222(2)8160m mn n n n -++-+=(), 22()(4)0m n n +--=,∴2()0m n -=,2(4)0n -=,∴4,4n m ==.根据你的观察,探究下面的问题:(1)已知2222690x xy y y -+++=,求xy 的值;(2)已知△ABC 的三边长,,a b c ,且满足221012610a b a b +--+=,求c 的取值范围;(3)已知22413P x y =++,2261Q x y x =-+-,比较,P Q 的大小.【答案】(1)xy 的值是9;(2)1<c<11;(3)P>Q .【分析】(1)根据x 2-2xy+2y 2+6y+9=0,先仿照例子得出(x-y )2+(y+3)2=0,求出x 、y 的值,从而得出结果;2222条关系,可求出c的取值范围;(3)利用作差法,得出P-Q=x2-6x+y2+4y+14=(x-3)2+(y+2)2+1>0,从而可得出结果.【详解】解:(1)∵x2-2xy+2y2+6y+9=0,∴(x2-2xy+y2)+(y2+6y+9)=0,∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,∴x=-3,y=-3,∴xy=(-3)×(-3)=9,即xy的值是9;(2)∵a2+b2-10a-12b+61=0,∴(a2-10a+25)+(b2-12b+36)=0,∴(a-5)2+(b-6)2=0,∴a-5=0,b-6=0,∴a=5,b=6,根据三角形的三边关系可得,6-5<c<6+5,∴1<c<11;(3)P-Q=x2-6x+y2+4y+14=(x-3)2+(y+2)2+1>0,∴P>Q.【点睛】此题主要考查了因式分解的运用,关键是利用完全平方公式将式子进行配方,然后利用非负数的性质求解,将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.20.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).备用图1 备用图2【答案】(1)AB=5(1)C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(1)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=2,AD=1.∴在Rt△ABD中,AB=25(1)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C1.②以B为直角顶点,过B作l1⊥AB交x轴于C3,交y轴于C2.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C3.(用三角板画找出也可)由图可知,C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.21.如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.【答案】(1)详见解析;(2)OA=OB,理由详见解析.【解析】试题分析:(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边即可得出OA=OB.试题解析:(1)证明:∵在△ADB和△BCA中,AD=BC,AB=BA,BD=AC,∴△ADB≌△BCA(SSS);(2)解:OA=OB,理由是:∵△ADB≌△BCA,∴∠ABD=∠BAC,∴OA=OB.考点:全等三角形的判定与性质;等腰三角形的判定22.某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?【答案】30天【分析】设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工, 依题意,得:1551511.5x x++=, 解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.【点睛】 本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.23.如图,在ABC 中,BE AC ⊥于点E ,BC 的垂直平分线分别交AB 、BE 于点D 、G ,垂足为H ,CD AB ⊥,CD 交BE 于点F ()1求证:BDF ≌CDA ()2若DF DG =,求证:BE ①平分ABC ∠BF 2CE =②.【答案】 (1)见解析;(2)见解析;见解析.【解析】()1由垂直平分线的性质可得BD CD =,由“AAS”可证BDF ≌CDA ;()2①由等腰三角形的性质和对顶角的性质可得DGF DFG BGH ∠∠∠==,由等角的余角相等可得DBF FBC ∠∠=,即BE 平分ABC ∠;②由题意可证ABE ≌CBE ,可得1AE EC AC 2==,由BDF ≌CDA 可得BF AC EC ==. 【详解】证明:()1DH 垂直平分BC ,BD CD ∴=,BE AC ⊥,BA CD ⊥,A DBF 90∠∠∴+=,DBF DFB 90∠∠+=,A DFB ∠∠∴=,且BD CD =,ADC BDF ∠∠=,ADC ∴≌()FDB AAS ,()2DF DG =①,DGF DFG ∠∠∴=,BGH DGF ∠∠=,DGF DFG BGH ∠∠∠∴==,DBF DFB 90∠∠+=,FBC BGH 90∠∠+=,DBF FBC ∠∠∴=,BE ∴平分ABC ∠,DBF FBC ∠∠=②,BE BE =,AEB BEC 90∠∠==ABE ∴≌()CBE ASAAE CE ∴=,AC 2CE ∴=, ADC ≌FDB ,BF AC BF 2CE ∴=∴=【点睛】考查了全等三角形的判定和性质,线段垂直平分线的性质,直角三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.24.已知:如图,C 为线段BE 上一点,//AB DC ,AB EC =,BC CD =.求证:ACD E ∠=∠.【答案】详见解析【分析】由题意利用平行线性质和直接利用全等三角形的判定方法得出△ABC ≌△ECD ,即可得出答案.【详解】证明://AB DCB ECD ∴∠=∠,A ACD ∠=∠在ABC ∆和ECD ∆中,AB EC B ECD BC CD =⎧⎪∠=∠⎨⎪=⎩ABC ECD ∆≅∆()SASA E ∴∠=∠(全等三角形的对应角相等), ACD E ∴∠=∠(等量代换). 【点睛】本题主要考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.25.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠1.(1)求证:AB ∥CD ;(1)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D=111°,求∠1的度数.【答案】 (1)见解析;(1)56°【分析】(1)先证∠1=∠CGF 即可,然后根据平行线的判定定理证明即可;(1)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.【详解】(1)证明:∵FG ∥AE ,∴∠1=∠3,∵∠1=∠1,∴∠1=∠3,∴AB ∥CD .(1)解:∵AB ∥CD ,∴∠ABD+∠D=180°,∵∠D=111°,∴∠ABD=180°﹣∠D=68°,∵BC 平分∠ABD ,∴∠4=12∠ABD=34°, ∵FG ⊥BC ,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,圆柱的底面周长为24厘米,高AB 为5厘米,BC 是底面直径,一只蚂蚁从点A 出发沿着圆柱体的侧面爬行到点C 的最短路程是( )A .6厘米B .12厘米C .13厘米D .16厘米【答案】C 【分析】根据题意,可以将圆柱体沿BC 切开,然后展开,易得到矩形ABCD ,根据两点之间线段最短,再根据勾股定理即可求得答案.【详解】解:∵圆柱体的周长为24cm∴展开AD 的长为周长的一半:AD=12(cm )∵两点之间线段最短,AC 即为所求∴根据勾股定理AC=22AD CD +=22125+=13(cm )故选C .【点睛】本题主要考查了几何体的展开图以及勾股定理,能够空间想象出展开图是矩形,结合勾股定理准确的运算是解决本题的关键.2.点A (3,3﹣π)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】由点A (,)a b 中0a >,0b <,可得A 点在第四象限【详解】解:∵3>0,3﹣π<0,∴点A (3,3﹣π)所在的象限是第四象限,【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 3.下列图形中,由∠1=∠2,能得到AB ∥CD 的是( )A .B .C .D .【答案】C【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A 、由∠1+∠2=180°,得到AB ∥CD ,故本选项错误;B 、∠1=∠2不能判定AB ∥CD ,故本选项错误;C 、由∠1=∠2,得AB ∥CD ,符合平行线的判定定理,故本选项正确;D 、∠1=∠2不能判定AB ∥CD ,故本选项错误.故选:C .【点睛】本题主要主要考查平行线的判定定理,掌握“同位角相等,两直线平行”,“内错角相等,两直线平行”,“同旁内角互补,两直线平行”是解题的关键.4.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 【答案】C【解析】∵234a b c ==, ∴b=32a ,c=2a , 则原式222222222222232943123462a bc c a a a a a abc a a a a -+-+-===-----. 故选C.5.若分式2242x x x ---的值为零,则x 的值是( )A.2或-2 B.2 C.-2 D.4【答案】C【分析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零.【详解】x2-4=0,x=±2,同时分母不为0,∴x=﹣26.给出下列长度的四组线段:①13,4,5;③6,7,8;④a2-1,a2+1,2a(a为大于1的正整数).其中能组成直角三角形的有()A.①②③B.①②④C.①②D.②③④【答案】B【分析】根据勾股定理的逆定理逐一判断即可.【详解】解:①因为12+2=2,所以长度为1的线段能组成直角三角形,故①符合题意;②因为32+42=52,所以长度为3,4,5的线段能组成直角三角形,故②符合题意;③因为62+72≠82,所以长度为6,7,8的线段不能组成直角三角形,故③不符合题意;④因为(a2-1)2+(2a)2 = a4-2a2+1+4a2= a4+2a2+1=(a2+1)2,所以长度为a2-1,a2+1,2a(a 为大于1的正整数)的线段能组成直角三角形,故④符合题意.综上:符合题意的有①②④故选B.【点睛】此题考查的是直角三角形的判定,掌握利用勾股定理的逆定理判定直角三角形是解决此题的关键.7.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.8.若ab是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .0a ≥,0b > D .0ab≥ 【答案】D【分析】根据二次根式有意义的条件解答即可. 【详解】解:∵ab是二次根式, ∴0ab≥, 故选D . 【点睛】本题考查了二次根式的定义,熟练掌握二次根式成立的条件是解答本题的关键,形如()0a a ≥的式子叫二次根式.9.小明和小亮同时从学校出发到新华书店去买书,学校和书店相距7500米,小明骑自行车的速度是小亮步行速度的1.2倍,小明比小亮早15分钟到书店,设小亮速度是x 千米/小时,根椐题意可列方程是( ) A .75007500151.2x x-= B .7500750011.24x x -= C .7.57.5151.2x x-=D .7.57.511.24x x -= 【答案】D【分析】由题意设小亮速度是x 千米/小时,根椐题意小明比小亮早15分钟到书店列出方程即可. 【详解】解:由小明比小亮早15分钟到书店可得小亮的行程时间减去小明的行程时间等于156041=小时,所以列出方程为7.57.511.24x x -=. 故选:D. 【点睛】本题考查由实际问题抽象出分式方程,解题的关键是根据题干数量关系列出分式方程.10.用三角尺可按下面方法画角平分线: 在已知的AOB ∠的两边上,分别截取OM ON =,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分AOB ∠.这样画图的主要依据是( )A .SASB .ASAC .AASD .HL【答案】D【分析】直接利用直角三角形全等的判定HL 定理,可证Rt △OMP ≌Rt △ONP . 【详解】由题意得,OM =ON, ∠OMP =∠ONP =90°,OP =OP 在Rt △OMP 和Rt △ONP 中OP OPOM ON ⎧⎨⎩== ∴Rt △OMP ≌Rt △ONP (HL ) ∴∠AOP =∠BOP 故选:D 【点睛】本题主要考查全等三角形的判定方法和全等三角形的性质,掌握全等三角形的判定方法之一:斜边及一条直角边对应相等的两个直角三角形全等. 二、填空题11.若三角形三个内角的度数之比为2:1:3,最短的边长是5cm ,则其最长的边的长是__________. 【答案】10cm【分析】根据三角形内角和定理可求得三个角的度数分别为30°,60°,90°,再根据30°角所对的直角边是斜边的一半即可求解.【详解】∵三角形三个内角的度数之比为2:1:3, ∴三个角的度数分别为60°,30°,90°, ∵最短的边长是5cm , ∴最长的边的长为10cm . 故答案为:10cm . 【点睛】此题主要考查含30度角的直角三角形的性质及三角形内角和定理的综合运用.12.对于任意实数,规定的意义是a b c d=ad -bc .则当x 2-3x +1=0时,1321x x x x +-- =______.【答案】1【分析】根据题中的新定义得出算式(x+1)(x-1)-3x (x-2),化简后把x 2-3x 的值代入计算即可求解. 【详解】解:根据题意得:(x+1)(x-1)-3x (x-2) =x 2-1-3x 2+6x =-2x 2+6x-1 = -2(x 2-3x )-1, ∵x 2-3x+1=0,∴x 2-3x=-1, 原式= -2×(-1)-1=1. 故答案为1. 【点睛】本题考查整式的混合运算-化简求值,解题的关键是弄清题中的新定义.13.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°.在△ABE 和△DBC 中,∵BD BAABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确;在△ABF 和△DBG 中,60BAF BDG AB DB ABF DBG ∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF ≌△DBG ,∴AF =DG ,BF =BG .∵∠FBG =180°﹣60°﹣60°=60°,∴△BFG 是等边三角形,∴∠BFG=60°,∴②正确; ∵AE =CD ,AF =DG ,∴EF=CG ;∴③正确;∵∠ADB =60°,而∠CDB=∠EAB≠30°,∴AD 与CD 不一定垂直,∴④错误.∵△BFG 是等边三角形,∴∠BFG=60°,∴∠GFB =∠DBA =60°,∴FG ∥AB ,∴⑤正确. 故答案为①②③⑤. 【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.14.如图,将直线OA 向上平移3个单位长度,则平移后的直线的表达式为_____.【答案】y=2x+1【分析】设直线OA的解析式为:y=kx,代入(1,2)求出直线OA的解析式,再将直线OA向上平移1个单位长度,得到平移后的直线的表达式.【详解】设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移1个单位长度,则平移后的直线的表达式为:y=2x+1.故答案是:y=2x+1.【点睛】本题考查了直线的平移问题,掌握直线的解析式以及直线平移的性质是解题的关键.15.分解因式:(x2+4)2﹣16x2=_____.【答案】(x+1)1(x﹣1)1【分析】先利用平方差公式分解,再利用完全平方公式进行二次因式分解.【详解】解:(x1+4)1﹣16x1=(x1+4+4x)(x1+4﹣4x)=(x+1)1(x﹣1)1.故答案为:(x+1)1(x﹣1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,16.如图,∠1=120°,∠2=45°,若使b∥c,则可将直线b绕点A逆时针旋转_________度.【答案】1【分析】先根据邻补角的定义得到(如下图)∠3=60°,根据平行线的判定当b与a的夹角为45°时,b∥c,由此得到直线b绕点A逆时针旋转60°-45°=1°.【详解】解:如图:∵∠1=120°, ∴∠3=60°, ∵∠2=45°,∴当∠3=∠2=45°时,b ∥c ,∴直线b 绕点A 逆时针旋转60°-45°=1°. 故答案为:1. 【点睛】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.17.如图,ABC ∆中,,6AB AC BC ==,DEF ∆的周长是11,AF BC ⊥于F ,BE AC ⊥于E ,且点D 是AB 的中点,则AF =_______.55【分析】根据直角三角形斜边上的中线等于斜边的一半可得12DE DF AB ==,12EF BC =,通过计算可求得AB ,再利用勾股定理即可求得答案. 【详解】∵AF ⊥BC ,BE ⊥AC ,D 是AB 的中点, ∴12DE DF AB ==, ∵AB=AC ,AF ⊥BC , ∴点F 是BC 的中点, ∴132BF FC BC ===, ∵BE ⊥AC , ∴132EF BC ==, ∴DEF 的周长311DE DF EF AB =++=+=, ∴8AB =, 在RtABF 中,222AB BF AF =+即22283AF =+,解得:55AF =.故答案为:55. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质以及勾股定理,熟记各性质是解题的关键. 三、解答题18.如图,已知△ABC 中,AH⊥BC 于H ,∠C=35°,且AB +BH =HC ,求∠B 的度数.【答案】70°【解析】分析:在CH 上截取DH=BH ,通过作辅助线,得到△ABH ≌△ADH ,进而得到CD=AD ,则可求解∠B 的大小.详解:在CH 上截取DH=BH ,连接AD ,如图∵BH=DH ,AH ⊥BC , ∴△ABH ≌△ADH , ∴AD=AB∵AB+BH=HC ,HD+CD=CH ∴AD=CD ∴∠C=∠DAC , 又∵∠C=35° ∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题. 19.解答下列各题(138182(332)--(2)解方程组244523m n m n -=-⎧⎨-=-⎩【答案】(1)6;(2)125 mn⎧=⎪⎨⎪=⎩【分析】(1)原式利用立方根和二次根式的运算法则计算即可求出值;(2)方程组利用加减消元法求出解即可.【详解】解:(1)原式=﹣2+32﹣32+8=6;(2)244523m nm n-=-⎧⎨-=-⎩①②,①×5﹣②得:6m=3,解得:m=12,把m=12代入①得:n=5,则方程组的解为125mn⎧=⎪⎨⎪=⎩.【点睛】此题考查了解二元一次方程组以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.20.甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.其中,甲的折线图为虚线、乙的折线图为实线.甲、乙两人的数学成绩统计表第1次第2次第3次第4次第5次甲成绩90 40 70 40 60乙成绩70 50 70 a 70(1)a=,x乙;(2)请完成图中表示乙成绩变化情况的折线;(3)S2甲=260,乙成绩的方差是,可看出的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,将被选中.【答案】(1)a=40,=x乙60;(2)见解析;(3)160,乙,乙;【分析】(1)由折线统计图直接可得a的值,利用平均数的计算公式计算即可;(2)根据乙的数据补全折线统计图,并注明图例,(3)计算乙的方差,比较做出选择.【详解】解:(1)根据折线统计图得,a=40;x乙=(50+40+70+70+70)÷5=60;故答案为:40,60;(2)甲、乙两人考试成绩折线图,如图所示:(3)S2乙=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160,∵S2甲=260,∴S2乙<S2甲,∴乙的成绩稳定,所以乙将被选中.故答案为:160,乙、乙.【点睛】本题考查折线统计图和统计表、平均数和方差,解题的关键是掌握折线统计图和统计表的信息读取、平均数和方差的计算.21.如图,AB∥CD,AE=DC,AB=DE,EF⊥BC于点F.求证:(1)△AEB≌△DCE;(2)EF平分∠BEC.【答案】(1)见解析;(2)见解析。
2019-2020学年浙江省绍兴市越城区五校联考八年级(上)期末数学试卷
2019-2020学年浙江省绍兴市越城区五校联考八年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项,不选、多选、错选,均不给分)1.(3分)以下列各组数为边长,能组成一个三角形的是()A.3,4,5B.2,2,5C.1,2,3D.10,20,402.(3分)若等腰三角形的两边长分别为4和6,则它的周长是()A.14B.15C.16D.14或163.(3分)对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y5.(3分)点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称6.(3分)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°7.(3分)如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四8.(3分)已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.9.(3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.(3分)如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m>nx﹣5n>0的整数解为()A.3B.4C.5D.6二、填空题(本题有6小题,每小题3分,共18分)11.(3分)下列图形中全等图形是(填标号).12.(3分)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).13.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.14.(3分)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.15.(3分)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.16.(3分)如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.三、解答题(本题有7小题,共52分,各小题都必须写出解答过程)17.(6分)解不等式组18.(6分)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC 向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.(6分)在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.20.(8分)在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.(8分)如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.22.(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A 型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.(10分)如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.2019-2020学年浙江省绍兴市越城区五校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项,不选、多选、错选,均不给分)1.【解答】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.2.【解答】解:根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选:D.3.【解答】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.4.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.【解答】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.6.【解答】解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.7.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.8.【解答】解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选:C.9.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.10.【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.二、填空题(本题有6小题,每小题3分,共18分)11.【解答】解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.12.【解答】解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.13.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.14.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.15.【解答】解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.16.【解答】解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).三、解答题(本题有7小题,共52分,各小题都必须写出解答过程)17.【解答】解:,解①得:x<10,解②得:1≤x,故不等式组的解为:1≤x<10.18.【解答】解:如图所示:.19.【解答】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.20.【解答】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).21.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.22.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年浙江省绍兴市越城区八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分) 1.(3分)在平面直角坐标系中,点(3,2)P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)下面哪个点在函数23y x =-+的图象上( ) A .(5,3)-B .(1,2)C .(3,0)D .(1,1)3.(3分)不等式10x -> 的解在数轴上表示为( ) A . B .C .D .4.(3分)若x y >,则下列式子中正确的是( ) A .22x y ->-B .22x y +<+C .22x y ->-D .22x y< 5.(3分)如图的坐标平面上有原点O 与A 、B 、C 、D 四点.若有一直线L 通过点(3,4)-且与y 轴平行,则L 也会通过的点为( )A .点AB .点BC .点CD .点D6.(3分)如图,ABC ∆中,D 点在BC 上,62B ∠=︒,53C ∠=︒,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .则EAF ∠的度数为( )A .124︒B .115︒C .130︒D .106︒7.(3分)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =8.(3分)如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求 (乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确9.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .10.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数为( )A .60︒B .45︒C .22.5︒D .30︒二、填空题(本题共有8小题,每小题3分,共24分)11.(3分)在Rt ABC ∆中,Rt C ∠=∠,70A ∠=︒,则B ∠= .12.(3分)将点(2,1)A 变换到点(2,1)B -,写出一种轴对称或平移方法: . 13.(3分)请写出一个过点(0,1)的函数的表达式 . 14.(3分)命题“对顶角相等”的逆命题是 . 15.(3分)不等式3618x ---…的正整数解为 .16.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为 .17.(3分)某日上午,甲,乙两车先后从A 地出发沿同一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是 .18.(3分)如图,MAN∠是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足AB BC CD DE EF FG=====,则ABC∠的度数最大为度.三、解答题(本题共有6小题,共46分)19.(8分)(1)解不等式215x x+<+(2)解不等式组.并把不等式组的解集在数轴上表示出来.2(1)4 31212x xxx+-<⎧⎪⎨-+⎪⎩…20.(6分)已知一次函数的图象过(1,3)A,(1,1)B--两点(1)求该一次函数的表达式;(2)当0x>时,求y的取值范围.21.(6分)已知:如图,AB AD=,BC DC=,E、F分别是DC、BC的中点.(1)求证:D B∠=∠;(2)当2AE=时,求AF的值.22.(8分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格均为7元/kg;一次性购买超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg的部分价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为(0)xkg x>(1)根据题意填表:a=b=;一次购买数量()kg 30 50 150 ⋯ 甲批发店花费(元) 180 300 900⋯乙批发店花费(元)a350b⋯(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?23.(8分)数学课上,张老师举了下面的例题:例1等腰三角形ABC 中,110A ∠=︒,求B ∠的度数.(答案:35)︒例2等腰三角形ABC 中,40A ∠=︒,求B ∠的度数.(答案:40︒或70︒或100)︒ 张老师启发同学们进行变式,小敏编了如下两题: 变式1:等腰三角形ABC 中,100A ∠=︒,求B ∠的度数. 变式2:等腰三角形ABC 中,45A ∠=︒,求B ∠的度数. (1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=︒,当B ∠只有一个度数时,请你探索x 的取值范围. 24.(10分)已知:如图1,在平面直角坐标系中,一次函数443y x =+的图象交x 轴于点A ,交y 轴于点B ,点C 是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点. (1)求点A 、B 的坐标.(2)如图2,将ACP ∆沿着AP 翻折,当点C 的对应点E 落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q (不与点D 重合),连接CQ ,是否存在点P ,使得2CPQ DPQ S S ∆∆=,若存在,请直接写出点P 坐标;若不存在,请说明理由.2019-2020学年浙江省绍兴市越城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分) 1.(3分)在平面直角坐标系中,点(3,2)P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:Q 点P 的横坐标为30>,纵坐标为20>, ∴点P 在第一象限,故选:A .2.(3分)下面哪个点在函数23y x =-+的图象上( ) A .(5,3)-B .(1,2)C .(3,0)D .(1,1)【解答】解:Q 函数23y x =-+,∴当5x =-时,13y =;当1x =时,1y =;当3x =时,3y =-;(5,3)∴-,(1,2)和(3,0)不在函数23y x =-+的图象上; (1,1)在函数23y x =-+的图象上; 故选:D .3.(3分)不等式10x -> 的解在数轴上表示为( ) A . B .C .D .【解答】解:10x ->,1x >, 在数轴上表示为,故选:C .4.(3分)若x y >,则下列式子中正确的是( ) A .22x y ->-B .22x y +<+C .22x y ->-D .22x y< 【解答】解:A 、由x y >可得:22x y ->-,正确;B 、由x y >可得:22x y +>+,错误;C 、由x y >可得:22x y -<-,错误;D 、由x y >可得:22x y>,错误; 故选:A .5.(3分)如图的坐标平面上有原点O 与A 、B 、C 、D 四点.若有一直线L 通过点(3,4)-且与y 轴平行,则L 也会通过的点为( )A .点AB .点BC .点CD .点D【解答】解:如图所示:有一直线L 通过点(3,4)-且与y 轴平行,故L 也会通过A 点. 故选:A .6.(3分)如图,ABC ∆中,D 点在BC 上,62B ∠=︒,53C ∠=︒,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .则EAF ∠的度数为( )A .124︒B .115︒C .130︒D .106︒【解答】解:连接AD ,D Q 点分别以AB 、AC 为对称轴,画出对称点E 、F ,EAB BAD ∴∠=∠,FAC CAD ∠=∠,62B ∠=︒Q ,53C ∠=︒,180625365BAC BAD DAC ∴∠=∠+∠=︒-︒-︒=︒, 2130EAF BAC ∴∠=∠=︒, 故选:C .7.(3分)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =【解答】解:当1m =,1n =时,21213y m =+=+=, 当1m =,0n =时,211y n =-=-, 当1m =,2n =时,213y m =+=, 当2m =,1n =时,211y n =-=, 故选:D .8.(3分)如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求 (乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确【解答】解:如图1,PQ Q 垂直平分AD ,PA PD ∴=,QA QD =,而PQ PQ =,()APQ DPQ SSS ∴∆≅∆,所以甲正确; 如图2,//PD AQ Q ,//DQ AP , ∴四边形APDQ 为平行四边形,PA DQ ∴=,PD AQ =, 而PQ QP =,()APQ DQP SSS ∴∆≅∆,所以乙正确. 故选:A .9.(3分)已知一次函数1y ax b =+和2()y bx a a b =+≠,函数1y 和2y 的图象可能是( )A .B .C .D .【解答】解:A 、由图可知:直线1y ,0a >,0b >.∴直线2y 经过一、二、三象限,故A 正确;B 、由图可知:直线1y ,0a <,0b >.∴直线2y 经过一、四、三象限,故B 错误;C 、由图可知:直线1y ,0a <,0b >.∴直线2y 经过一、二、四象限,交点不对,故C 错误;D 、由图可知:直线1y ,0a <,0b <,∴直线2y 经过二、三、四象限,故D 错误.故选:A .10.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数为( )A .60︒B .45︒C .22.5︒D .30︒【解答】解:在折叠过程中角一直是轴对称的折叠, 则22.5245AOB ∠=︒⨯=︒; 故选:B .二、填空题(本题共有8小题,每小题3分,共24分)11.(3分)在Rt ABC ∆中,Rt C ∠=∠,70A ∠=︒,则B ∠= 20︒ . 【解答】解:Rt C ∠=∠Q ,70A ∠=︒,90907020B A ∴∠=︒-∠=︒-︒=︒. 故答案为:20︒.12.(3分)将点(2,1)A 变换到点(2,1)B -,写出一种轴对称或平移方法: 向下平移2个单位或关于x 轴对称 .【解答】解:将点(2,1)A 向下平移2个单位得到点(2,1)B -, 点A 关于x 轴的对称点为(2,1)B -, 故答案为向下平移2个单位或关于x 轴对称13.(3分)请写出一个过点(0,1)的函数的表达式 1y x =-+(答案不唯一) . 【解答】解:Q 函数图象过点(0,1) ∴函数图象与y 轴相交,设该函数的表达式为y x b =-+,过点(0,1)1b ∴=∴函数的表达式为1y x =-+故答案为:1y x =-+(答案不唯一).14.(3分)命题“对顶角相等”的逆命题是 相等的角为对顶角 . 【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”. 故答案为:相等的角为对顶角.15.(3分)不等式3618x ---…的正整数解为 1、2、3、4 . 【解答】解:3618x ---…, 移项得:3186x --+… 合并同类项得:312x --…, 把x 的系数化为1得:4x „,∴不等式3618x ---…的正整数解为1、2、3、4.故答案为1、2、3、4.16.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为 7 .【解答】解:已知4条木棍的四边长为2、3、4、6;①选23+、4、6作为三角形,则三边长为5、4、6;65465-<<+,能构成三角形,此时两个螺丝间的最长距离为6;②选34+、6、2作为三角形,则三边长为2、7、6;62762-<<+,能构成三角形,此时两个螺丝间的最大距离为7;③选46+、2、3作为三角形,则三边长为10、2、3;2310+<,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7. 故答案为:7.17.(3分)某日上午,甲,乙两车先后从A 地出发沿同一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是 6080v 剟 .【解答】解:根据图象可得,甲车的速度为120340÷=(千米/时). 由题意,得2402340v v ⨯⎧⎨⨯⎩„…,解得6080v 剟. 故答案为6080v 剟.18.(3分)如图,MAN ∠是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足AB BC CD DE EF FG =====,则ABC ∠的度数最大为 150 度.【解答】解:AB BC CD DE EF FG =====Q ,A ACB α∴∠=∠=,2CBD A ACB α∠=∠+∠=, 2CDB CBD α∴∠=∠=, 3ECD DEC α∴∠==∠, 4EDF EFD α∴∠==∠,5FEQ EQF α∴∠=∠=,75590α∴︒<︒„, 1518α∴︒<︒„, A ∴∠最小为15︒,ABC ∴∠的度数最大为150︒, 故答案为:150.三、解答题(本题共有6小题,共46分) 19.(8分)(1)解不等式215x x +<+(2)解不等式组.并把不等式组的解集在数轴上表示出来.2(1)431212x x x x +-<⎧⎪⎨-+⎪⎩„【解答】解:(1)215x x +<+ 移项,得251x x -<-, 合并同类项,得4x <; (2)()21431212x x x x +-<⎧⎪⎨-+⎪⎩①②„由①得2x <, 由②得3x -…,所以原不等式组的解集是32x -<„;20.(6分)已知一次函数的图象过(1,3)A ,(1,1)B --两点 (1)求该一次函数的表达式; (2)当0x >时,求y 的取值范围. 【解答】解:(1)设一次函数为y kx b =+, 根据题意得31k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,则函数的解析式是21y x =+;(2)在21y x =+中,令0x =,则1y =, ∴直线与y 轴的交点为(0,1),画出直线如图:由图象可知,当0x >时,1y >.21.(6分)已知:如图,AB AD =,BC DC =,E 、F 分别是DC 、BC 的中点. (1)求证:D B ∠=∠; (2)当2AE =时,求AF 的值.【解答】证明:(1)AB AD =Q ,BC DC =,AC AC =,()ADC ABC SSS ∴∆≅∆D B ∴∠=∠;(2)E Q 、F 分别是DC 、BC 的中点,BC DC =,DE BF ∴=,且D B ∠=∠,AB AD =()ADE ABF SAS ∴∆≅∆,2AF AE ∴==.22.(8分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格均为7元/kg ;一次性购买超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 的部分价格为5元/kg . 设小王在同一个批发店一次购买苹果的数量为(0)xkg x > (1)根据题意填表:a = 210 b = ; 一次购买数量()kg3050150⋯(2)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (3)若小王在同一个批发店一次性购买苹果花费了360元,则他在甲、乙两个批发店中批发,哪个批发店购买数量多?【解答】解:(1)730210a =⨯=,750(15050)5850b =⨯+-⨯=, 故答案为:210,850; (2)由题意可得, 16y x =,当050x <„时,27y x =,当50x >时,2507(50)55100y x x =⨯+-⨯=+, 由上可得,27(050)5100(50)x x y x x <⎧=⎨+>⎩„;(3)在甲店可以购买360660÷=(千克)360507>⨯Q ,∴令5100360x +=,得52x =,6052>Q ,∴在甲店购买的数量多.23.(8分)数学课上,张老师举了下面的例题:例1等腰三角形ABC 中,110A ∠=︒,求B ∠的度数.(答案:35)︒例2等腰三角形ABC 中,40A ∠=︒,求B ∠的度数.(答案:40︒或70︒或100)︒ 张老师启发同学们进行变式,小敏编了如下两题: 变式1:等腰三角形ABC 中,100A ∠=︒,求B ∠的度数. 变式2:等腰三角形ABC 中,45A ∠=︒,求B ∠的度数. (1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B ∠的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=︒,当B ∠只有一个度数时,请你探索x 的取值范围. 【解答】解:(1)变式1:100A ∠=︒Q ,A ∴∠只能为ABC ∆的顶角,ABC ∆Q 为等腰三角形,1(180100)402B C ∴∠=∠=⨯︒-︒=︒;变式2:若A ∠为顶角,则(180)267.5B A ∠=︒-∠÷=︒; 若A ∠为底角,B ∠为顶角,则18024590B ∠=︒-⨯︒=︒; 若A ∠为底角,B ∠为底角,则45B ∠=︒; 故67.5B ∠=︒或90︒或45︒; (2)分两种情况:①当90180x <„时,A ∠只能为顶角,B ∴∠的度数只有一个;②当090x <<时,当60x =时,等腰三角形ABC 是等边三角形,B ∴∠的度数只有一个,∴当B ∠只有一个度数时,请你探索x 的取值范围为90180x <„或60.24.(10分)已知:如图1,在平面直角坐标系中,一次函数443y x =+的图象交x 轴于点A ,交y 轴于点B ,点C 是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点. (1)求点A 、B 的坐标.(2)如图2,将ACP ∆沿着AP 翻折,当点C 的对应点E 落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q (不与点D 重合),连接CQ ,是否存在点P ,使得2CPQ DPQ S S ∆∆=,若存在,请直接写出点P 坐标;若不存在,请说明理由.【解答】解:(1)一次函数443y x =+的图象交x 轴于点A ,交y 轴于点B , 则点A 、B 的坐标分别为:(3,0)-、(0,4);(2)D 的坐标为(3,8)10AD =,设CP y =,8DP y =-,EP y =,4ED =, 在直角三角形DEP 中,由勾股定理得:3y =, 点P 的坐标(3,3);(3)设点(3,)P m ,得11()()22CPQ Q P Q P S CP x x m x x ∆=⨯⨯-=⨯⨯-,2()|8|DPQ Q P S PD x x m ∆=⨯-=-,即1|8|2m m -=,解得:16m =或163.。