全等三角形知识点总结及经典例题复习教案

合集下载

完整版-全等三角形总复习教学课件

完整版-全等三角形总复习教学课件

判定 到角的两边的距离相等的点在角平分线上 2
全等三角形的判定方法
三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
2024/9/30
3
三角形全等判定方法2
∴ △ABC≌△DEF(AAS)
2024/9/30
6
三角形全等判定方法5
有一条斜边和一条直角边对应相等的两个直角 三角形全等(HL)。
在Rt△ABC和Rt△DEF中
A
D
AB=DE (已知 ) AC=DF(已知 )
C ∴ △ABC≌△DEF(HL)
2024/9/30
B
F
E
7
知识点
1.全等三角形的性质: 对应边、对应角、对应线段相等, 周长、面积也相等。
A.1对 B.2对 C.3对 D.4对
2024/9/30
17
例3. 已知: AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
D
C
A
B
2024/9/30
18
▪例4:下面条件中, 不能证出Rt△ABC≌Rt△A' B'C'的是[ C] (A.)AC=A'C' , BC=B'C' (B.)AB=A'B' , AC=A'C' (C.) AB=B'C' , AC=A'C' (D.)∠B=∠B' , AB=A'B'

三角形全等的判定(复习)

三角形全等的判定(复习)
(1):全等三角形的对应边相等、对应角相等。 (2):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
SSS、SAS、ASA、AAS、HL(RT△)
方法指引
证明两个三角形全等的基本思路:
(1):已知两边----
找第三边
(SSS)
找夹角
(SAS)
例3:如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC AO平分∠BAC吗?为什么?
O
C
B
A
答: AO平分∠BAC
理由:∵ OB⊥AB,OC⊥AC ∴ ∠B=∠C=90° 在Rt△ABO和Rt△ACO中 OB=OC AO=AO ∴ Rt△ABO≌Rt△ACO (HL) ∴ ∠BAO=∠CAO ∴ AO平分∠BAC
E
C
A
B
2
1
D
(2)怎样变换△ABC和△AED中的一个位置,可使它们重合?
(3)观察△ABC和△AED中对应边有怎样的位置关系?
例6:如图所示,AB与CD相交于点O, ∠A=∠B,OA=OB 添加条件 所以 △AOC≌△BOD 理由是
A
O
D
C
B
∠C=∠D
∠AOC=∠BOD
图6
知识应用:
1.已知△ABC和△DEF,下列条件中,不能保证△ABC和△DEF全等的是( ) AB=DE,AC=DF,BC=EF ∠A= ∠ D, ∠ B= ∠ E,AC=DF C.AB=DE,AC=DF, ∠A= ∠D D.AB=DE,BC=EF, ∠ C= ∠ F
F
E
D
C
B
A
例9:如图,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,还需要补 充的条件可以是

全等三角形复习导学案

全等三角形复习导学案

全等三角形复习导学案一、学习目标1、理解全等三角形的概念,掌握全等三角形的性质和判定方法。

2、能够运用全等三角形的性质和判定解决相关的几何问题。

3、通过复习,提高逻辑推理能力和空间想象能力。

二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应线段(角平分线、中线、高线)相等;(4)全等三角形的面积相等,周长相等。

3、全等三角形的判定方法(1)“SSS”(边边边):三边对应相等的两个三角形全等。

(2)“SAS”(边角边):两边和它们的夹角对应相等的两个三角形全等。

(3)“ASA”(角边角):两角和它们的夹边对应相等的两个三角形全等。

(4)“AAS”(角角边):两角和其中一角的对边对应相等的两个三角形全等。

(5)“HL”(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

三、典型例题例 1:已知:如图,△ABC ≌△DEF,∠A = 70°,∠B = 50°,BF = 4,求∠DFE 的度数和 EC 的长。

解:因为△ABC ≌△DEF,所以∠DFE =∠ACB。

在△ABC 中,∠ACB = 180°∠A ∠B = 180° 70° 50°= 60°,所以∠DFE = 60°。

因为△ABC ≌△DEF,所以 BC = EF。

又因为 BF = 4,所以 EC = BC BF = EF BF = 0。

例 2:如图,在△ABC 中,AD 是中线,BE 交 AD 于点 F,且 AE = EF,求证:AC = BF。

证明:延长 AD 至点 G,使 DG = AD,连接 BG。

因为 AD 是中线,所以 BD = CD。

在△ADC 和△GDB 中,AD = GD,∠ADC =∠GDB,CD = BD,所以△ADC ≌△GDB(SAS),所以 AC = GB,∠CAD =∠G。

17第12章全等三角形小结与复习教案

17第12章全等三角形小结与复习教案

第12章全等三角形小结与复习一、教学目标1.全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.掌握全等三角形的判定条件,并能进行简单的证明和计算,掌握综合法证明的格式;3.掌握角平分线的性质及判定,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.二、教学重点、难点重点:全等三角形判定、性质及角平分线的性质和判定,建立本章知识结构.难点:运用全等三角形的知识解诀问题.三、教学过程知识梳理一、全等三角形的性质能够完全重合的两个图形叫全等图形,能够完全重合的两个三角形叫全等三角形.性质:全等三角形的对应边相等,对应角相等.应用格式:∵ △ABC ≌△DEF∴ AB=DE ,BC=EF ,AC=DF∠A=∠D ,∠B=∠E ,∠C=∠F二、三角形全等的判定方法三边分别相等的两个三角形全等.(“边边边”或“SSS ”)定理应用格式:在△ABC 和△A ′B ′C ′中,∴ △ABC ≌△A ′B ′C ′(SSS)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS ”).定理应用格式:在△ABC 和△A ′B ′C ′中,∴ △ABC ≌△A ′B ′C ′(SAS)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA ”).定理应用格式:在△ABC 和△A ′B ′C ′中,∴ △ABC ≌△A ′B ′C ′(ASA)两角和其中一个角对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS ”).定理应用格式:⎪⎩⎪⎨⎧′′′′′′C A =AC C B =BC B A =AB ⎪⎩⎪⎨⎧∠∠′′′′′C A =AC A =A B A =AB ⎪⎩⎪⎨⎧∠∠∠∠′′′′B =B B A =AB A =A在△ABC 和△A ′B ′C ′中,∴ △ABC ≌△A ′B ′C ′(AAS)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).注意:(1)“HL”定理是仅适用于R t △的特殊方法. 因此,判定两个直角三角形全等的方法除了可以使用“SSS”、“SAS”、“ASA”、“AAS ”外还可以使用“HL”.(2)应用HL 定理时,虽只有两个条件,但必须先有两个R t △. 书写格式为:在R t △ABC 和R t △A ′B ′C ′中,∴ R t △ABC ≌R t △A ′B ′C ′(HL)三、角平分线的性质与判定考点讲练考点一 全等三角形的性质例1 如图,已知△ACE ≌△DBF ,AD =8,BC =2.(1)求AC 的长度;(2)试说明CE ∥BF.解:(1)∵ △ACE ≌△DBF ,∴ AC=BD∴ AC-BC=BD-BC ,即 AB=CD∵ AD=AB+BC+CD ,AD=8,BC=2∴ 2AB+2=8,解得 AB=3∴ AC=AB+BC=3+2=5(2)∵ △ACE ≌△DBF∴ ∠ECA=∠FBD ,∴ CE ∥BF方法总结两个全等三角形的长边与长边,短边与短边分别是对应边,大角与大角,小角与小角分别是对应角.有对顶角的,对顶角一定为一对对应角.有公共边的,公共边一定是对应边.有公共角的,公共角一定是对应角.针对训练1.如图所示,点B 、D 、C 在一条直线上,△ABD ≌△ACD ,∠BAC =90°.(1)求∠B ;(2)判断AD ⎪⎩⎪⎨⎧∠∠∠∠′′′′C B =BC B =B A =A ⎩⎨⎧′′′′C B =BC B A =AB与BC 的位置关系,并说明理由.解:(1)∵ △ABD ≌△ACD ,∴ ∠B=∠C∵ ∠BAC=90°,∴ ∠B=∠C=45°(2)AD ⊥BC. 理由如下:∵ △ABD ≌△ACD ,∴ ∠BDA=∠CDA∵ ∠BDA+∠CDA=180°∴ ∠BDA=∠CDA=90°∴ AD ⊥BC考点二 全等三角形的判定例2 如图,已知∠ABC =∠DCB ,∠ACB =∠DBC.求证:△ABC ≌△DCB.证明:在△ABC 和△DCB 中∴ △ABC ≌△DCB (ASA)针对训练2.在下列条件中,不能保证△ABC ≌△DEF 的是( )A.AB =DE ,AC =DF ,BC =EFB.∠A =∠D ,∠B =∠E ,AC =DFC.AB =DE ,AC =DF ,∠A =∠DD.AB =DE ,BC =EF ,∠C =∠F3.如图所示,AB 与CD 相交于点O ,OA =OB.添加条件___________(一个即可),所以△AOC ≌△BOD 理由是_______.考点三 全等三角形的性质与判定的综合应用例3 如图,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于点G ,交AB 于点E ,EF ∥BC 交AC 于点F. 求证:∠DEC =∠FEC.证明:∵ CE ⊥AD ,∴ ∠AGE=∠AGC=90°∵ AD 平分∠BAC ,∴ ∠EAG=∠CAG在△AGE 和△AGC 中∴ △AGE ≌△AGC (ASA)∴ GE=GC在△DGE 和△DGC 中∴ △DGE ≌△DGC (SAS)∴ ∠DEG=∠DCG∵ EF ∥BC ,∴ ∠FEC=∠DCE∴ ∠DEC=∠FEC方法总结⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(已知公共边已知DBC ACB CB BC DCB ABC ⎪⎩⎪⎨⎧∠=∠=∠=∠CAG EAG AGAG AGC AGE ⎪⎩⎪⎨⎧==∠=∠=DG DG CGD EGD GC GE90利用全等三角形证明角相等,首先要找到两个角所在的两个三角形,看它们全等的条件够不够;有时会用到等角转换,等角转换的途径很多,如:余角,补角的性质、平行线的性质等,必要时要想到添加辅助线.针对训练4.如图,OB ⊥AB ,OC ⊥AC ,垂足为B ,C ,OB =OC ,∠BAO =∠CAO 吗?为什么?解:∠BAO=∠CAO理由:∵ OB ⊥AB ,OC ⊥AC∴ ∠B=∠C=90°在R t △ABO 和R t △ACO 中∴ R t △ABO ≌R t △ACO (HL)∴ ∠BAO=∠CAO5.如图,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于E ,DE =FE ,求证:AE =CE.证明:∵ AD ∥CF∴ ∠ADE=∠CFE在△ADE 和△CFE 中∴ △ADE ≌△CFE (ASA)∴ AE=CE考点四 利用全等三角形解决实际问题例4 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面垂直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的距离相等吗?解:相等,理由如下:∵ AD ⊥BC∴ ∠ADB=∠ADC=90°在R t △ADB 和R t △ADC 中∴ R t △ADB ≌R t △ADC (HL)∴ BD=CD方法总结利用全等三角形可以测量一些不易测量的距离和长度,还可对某些因素作出判断,一般采用以下步骤:⎩⎨⎧==OCOB AO AO ⎪⎩⎪⎨⎧∠=∠=∠=∠CEF AED FEDE CFE ADE ⎩⎨⎧==ADAD ACAB(1)先明确实际问题;(2)根据实际抽象出几何图形;(3)经过分析,找出证明途径;(4)书写证明过程.针对训练6.如图,有一湖的湖岸在A 、B 之间呈一段圆弧状,A 、B 间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A 、B 间的距离吗?解:要测量A 、B 间的距离,可用如下方法:过点B 作AB 的垂线BF ,在BF 上取两点C 、D ,使CD=BC ,再作出BF 的垂线DE ,使A 、C 、E 在一条直线上.∵ ∠ACB=∠ECD ,CB=CD ,∠ABC=∠EDC=90°∴ △ABC ≌△EDC (ASA)∴ AB=ED∴ 测出ED 的长就是A 、B 之间的距离.考点五 角平分线的性质与判定例5 如图,∠1=∠2,点P 为BN 上的一点,∠PCB +∠BAP =180°,求证:PA =PC.证明:过点P 作PE ⊥BA ,PF ⊥BC ,垂足分别为E ,F.∵ ∠1=∠2,PE ⊥BA ,PF ⊥BC∴ PE=PF ,∠PEA=∠PFC=90°∵ ∠PCB+∠BAP=180°又 ∠BAP+∠PAE=180°∴ ∠PAE=∠PCB在△APE 和△CPF 中∴ △APE ≌△CPF (AAS)∴ PA=PC针对训练7.如图,∠1=∠2,点P 为BN 上的一点,PA =PC ,求证:∠PCB +∠BAP =180°.证明:过点P 作PE ⊥BA ,PF ⊥BC ,垂足分别为E ,F.∵ ∠1=∠2,PE ⊥BA ,PF ⊥BC∴ PE=PF ,∠PEA=∠PFC=90°在R t △APE 和R t △CPF 中∴ R t △APE ≌R t △CPF (HL)∴ ∠PAE=∠PCF∵ ∠PAE+∠BAP=180°∴ ∠PCB+∠BAP=180°⎪⎩⎪⎨⎧==∠=∠∠=∠PF PE PFC PEA PCF PAE90⎩⎨⎧==PFPE PCPA。

全等三角形的判定复习与总结

全等三角形的判定复习与总结

全等三角形的判定复习与总结教学目标:1.复习和巩固全等三角形的判定方法;2.总结全等三角形判定的规律和技巧;3.小组合作,培养学生的合作能力和思维能力。

教学准备:1.教学素材:全等三角形判定题目,活动卡片;2.教学工具:黑板、彩色粉笔、计算器。

教学过程:一、引入课题(5分钟)1.引入话题:今天我们要来复习和总结全等三角形的判定方法。

2.引发思考:请回顾一下,全等三角形的判定条件是什么?二、复习全等三角形的判定法(15分钟)1.复习SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。

2.复习SAS判定法:如果两个三角形的一边和两个角度分别相等(这个边是两个角的夹边),则这两个三角形全等。

3.复习ASA判定法:如果两个三角形的两个角度和一边分别相等(这个边是两个角的边),则这两个三角形全等。

4.复习AAS判定法:如果两个三角形的两个角度和一边分别相等(这个边不是两个角的边),则这两个三角形全等。

三、总结全等三角形判定的规律和技巧(15分钟)1.全等三角形判定的基本规律:要判断两个三角形是否全等,只需对应两边相等且夹角相等即可。

2.技巧一:当给出两个三角形的三个边的长度时,先比较三边的长度是否相等,再比较夹角是否相等。

3.技巧二:当给出两个三角形的两边和夹角时,先比较两边的长度是否相等,再比较夹角是否相等。

四、小组合作活动(30分钟)1.分成若干小组,每组3-4个学生,每组发放一组活动卡片。

2.活动内容:每组成员轮流拿一张卡片,上面写有一组给定的边长和角度。

学生根据卡片上的数据,判断这两个三角形是否全等,并给出理由。

其他组员通过提问和讨论来验证判断的正确性。

3.活动要求:每个学生都要积极参与,提出问题和表达自己的观点;每个小组要有一个组长,负责组织小组讨论和总结。

五、展示与总结(20分钟)1.每个小组派出一位学生上台展示他们分析判断的过程,并给出判断的结果和理由。

2.全班一起讨论和比较不同小组的判断结果和理由,总结全等三角形判定的规律和技巧。

全等三角形知识总结及典型例题

全等三角形知识总结及典型例题

全等三角形知识总结及典型例题知识点 1:全等三角形的定义和表示方法(1)定义:能够完整重合的两个三角形叫做全等三角形。

重合的极点叫做对应极点,重合的边叫做对应边,重合的角叫做对应角(2)“全等”用“≌”表示,读作“全等于”,记两个三角形全等时,往常把表示对应极点的字母写在对应的地点上。

例 1.如下图,图中两个三角形能完整重合,以下写法正确的选项是()A.△ ABE≌△ AFB B.△ ABE≌△ ABF C.△ ABE≌△ FBA D.△ ABE≌△ FAB 知识点 2:全等三角形的性质FB AE性质:全等三角形中,对应边相等,对应角相等。

【注意:全等三角形的对应线段(对应边上的中线,对应边上的高,对应角的均分线)相等;全等三角形的周长相等,面积相等。

】例 2. 如图,△ ABD≌△ ACE,点 B 和点 C 是对应极点, AB=8,AD=6,BD=7,则 BE的长是()A.1 B .2C.4 D .6C D例 3. 如图,△ ABD≌△ EBC, AB=3cm, BC=.(1)求 DE的长;(2)判断AC与BD的地点关系,并说明原因.A BEDEAB C(1)“边边边” ( SSS):三边对应相等的两个三角形全等。

(2)“边角边” ( SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角” ( ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边” ( AAS):两个角和此中一个角的对边对应相等的两个三角形全等。

(5)“斜边,直角边” ( HL):斜边和一条直角边对应相等的两个直角三角形全等。

【注意:① 三角形全等证明时要注意应用“公共边” 、“公共角” 、“对顶角” 等。

②证明线段或角相等往常变换证明线段或角所在的三角形全等。

③在判断两个三角形全等时,起码有一边对应相等。

④有两边和一角对应相等,角一定是这两边的夹角。

⑤“HL”只合适于 Rt ⊿ 。

⑥利用全等三角形能够测出不可以(或不易)直接丈量长度的线段长,比如,河宽,或利用全等丈量小口瓶的内径等。

《全等三角形》讲义(完整版)

《全等三角形》讲义(完整版)

全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。

补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。

(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。

(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。

(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。

(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。

(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。

完整版-全等三角形总复习

完整版-全等三角形总复习

完整版-全等三角形总复习完整版全等三角形总复习全等三角形是初中数学中的重要内容,它不仅是几何证明的基础,也是解决许多实际问题的工具。

在这篇文章中,我们将对全等三角形进行一次全面的复习。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等三角形的形状和大小完全相同,对应边相等,对应角相等。

二、全等三角形的性质1、全等三角形的对应边相等。

比如,若△ABC ≌△DEF,则 AB = DE,BC = EF,AC = DF。

2、全等三角形的对应角相等。

例如,△ABC ≌△DEF 时,∠A =∠D,∠B =∠E,∠C =∠F。

3、全等三角形的周长相等、面积相等。

三、全等三角形的判定1、“边边边”(SSS)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

2、“边角边”(SAS)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

3、“角边角”(ASA)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

4、“角角边”(AAS)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

5、“斜边、直角边”(HL)如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。

四、全等三角形的常见模型1、平移型两个三角形沿着某一条直线平移,对应边平行且相等,对应角相等。

2、对称型两个三角形沿着某一条直线对称,对应边相等,对应角相等。

3、旋转型两个三角形绕着某一点旋转一定的角度,对应边相等,对应角相等。

五、证明全等三角形的步骤1、分析题目仔细阅读题目,找出已知条件和需要证明的结论。

2、确定方法根据已知条件和图形特点,选择合适的全等三角形判定方法。

3、书写证明按照逻辑顺序,清晰地书写证明过程,每一步都要有依据。

六、全等三角形的应用1、测量可以利用全等三角形测量无法直接测量的距离或长度。

2、证明线段和角的相等关系通过证明两个三角形全等,得出对应线段和角相等。

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

全等三角形的小结与复习教学设计20人教版八年级数学上册

全等三角形的小结与复习教学设计20人教版八年级数学上册
7.家长参与题:鼓励家长参与学生的作业过程,与学生一起探讨全等三角形在实际生活中的应用,共同完成作业。增进家长对学校教学的了解,提高学生的学习兴趣。
8.作业批改与反馈:要求学生在完成作业后,进行自我检查和互评,培养自主学习能力。教师应及时批改作业,给予评价和指导,帮助学生发现问题、提高能力。
4.结合实际案例,讲解全等三角形在实际生活中的应用,如建筑设计、工程测量等,增强学生的应用意识。
(三)学生小组讨论
1.将学生分成若干小组,针对全等三角形的判定方法和性质,设计一些讨论题目,让学生在小组内进行讨论交流。
2.每个小组选派一名代表进行汇报,分享本组的讨论成果和心得体会。
3.教师巡回指导,参与学生讨论,解答疑问,引导学生深入探究全等三角形的性质和判定方法。
(一)导入新课
1.利用多媒体展示生活中全等三角形的实例,如剪纸艺术、建筑图案等,引发学生对全等三角形的关注和兴趣。
2.提问:“我们已经学习过全等三角形的基本概念,那么如何判断两个三角形是全等的呢?”让学生回顾全等三角形的判定方法,为新课的学习做好铺垫。
3.通过一个简单的实际问题,如测量不规则图形的面积,引出全等三角形在实际问题中的应用,激发学生的学习兴趣。
5.培养团队合作精神,学会尊重他人,提高人际沟通能力。
本章小结与复习教学设计旨在帮助学生巩固全等三角形的知识,提高解决问题的能力,培养空间观念和几何直观,以及增强数学情感和价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重启发式教学,引导学生主动探究、发现、总结规律,提高学生的自主学习能力。
5.培养问题解决能力,学会从实际问题中发现全等三角形的问题,并运用所学知识解决。
(三)情感态度与价值观

人教版数学八年级上第十二章全等三角形知识点+题案+作业(精品学案)

人教版数学八年级上第十二章全等三角形知识点+题案+作业(精品学案)

第十二章 全等三角形一、全等三角形【全等三角形的概念和性质】 1. 全等形:能够重合的两个图形. 2. 全等三角形:能够重合的两个三角形.把两个全等的三角形重合到一起时,重合的顶点称为对应点..., 重合的边称为对应边...,重合的角称为对应角...。

3. 全等三角形的性质:全等三角形的对应边相等,对应角相等; 表示方法:“全等”用“≌”表示,读作:_________; 【例题一】(1)如图所示,△OCA ≌△OBD ,对应顶点有:点 和点 ,点 和点 ,点 和点 ; 对应角有: 和, 和 ,和 ;对应边有: 和 , 和 , 和 .(2)如图△ABD ≌△CDB,若AB=4,AD=5,BD=6,∠ABD=50°,∠ADB=30°,则BC= ,CD= ,∠BDC= ,∠C= .【基础练习一】1. 已知∆ABC ≌∆EFD ,若59A ∠=︒,31B ∠=︒,8DE =,10EF =,则AB = ,D ∠= .2. 如图,△AOB ≌△ADC ,点B 和点C 是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC ∥OA 时,α与β之间的数量关系为( )A 、α=βB 、α=2βC 、α+β=90°D 、α+2β=180°3. 下列说法错误的是( )DBACOA、全等三角形的公共角是对应角,对顶角也是对应角B、全等三角形的公共边也是对应边C、全等三角形的公共点是对应顶点D、全等三角形中相等的边所对的角是对应角,相等的角所对的边是对应边。

4.如图,已知△ABD≌△ACE,AD=3cm,BD=1cm,BC=6cm,求△ADE的周长.5.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,求AB的长.【全等三角形的判定】1. 全等三角形的判定1:三边分别相等的两个三角形全等(简写“SSS ”)2. 全等三角形的判定2:两边和它们的夹角分别相等的两个三角形全等(简写“SAS ”)3. 证明三角形全等:判断两个三角形全等的推理过程,叫做证明三角形全等 【例题二】1. 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .证明:∵D 是BC ∴ =∴在△和△ 中AB= BD= AD=∴△ABD △ACD( )提示:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好; ②三角形全等书写三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论。

全等三角形知识点总结(精选18篇)

全等三角形知识点总结(精选18篇)

全等三角形知识点总结(精选18篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、合同协议、条据书信、讲话致辞、规章制度、策划方案、句子大全、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work summaries, work plans, contract agreements, document letters, speeches, rules and regulations, planning plans, sentence summaries, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!全等三角形知识点总结(精选18篇)全等三角形知识点总结第1篇全等三角形的课件一、教材分析(一)本节内容在教材中的地位与作用。

(完整版)全等三角形知识总结和经典例题

(完整版)全等三角形知识总结和经典例题

全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。

(SSS)8、两边和它们的夹角对应相等的两个三角形全等。

(SAS)9、两角和它们的夹边对应相等的两个三角形全等。

(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。

(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。

而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。

在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测等距离。

以及等角,用于工业和军事。

有一定帮助。

5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。

全等三角形知识点总结及经典例题复习教案

全等三角形知识点总结及经典例题复习教案

全等三角形只是总结及经典例题[知识要点]一、全等三角形一般三角形 直角三角形 判定边角边〔SAS 〕、角边角〔ASA 〕 角角边〔AAS 〕、边边边〔SSS 〕 具备一般三角形的判定方法 斜边和一条直角边对应相等〔HL 〕 性质 对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注:① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 例1如图,∠E=∠F=90。

,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN ,其中正确的结论是 (把你认为所有正确结论的序号填上)例2在△ABC 中,AC=5,中线AD=4,则边AB 的取值范围是( )A .1<AB<9B .3<AB<13C .5<AB<13D .9<AB<13例3一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B 、F 、C 、D 在同一条直线上(1)求证:AB ⊥ED(2)假设PB=BC ,请找出图中与此条件有关的一对全等三角形,并给予证明例4假设两个三角形的两边和其中一边上的高分别对应相等,试判断这两个三角形的第三边所对的角之间的关系,并说明理由例5如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE的度数1.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC,B′C′边上的高,且AB=A′B′,AD=A′D ′,假设使△ABC≌△A′B′C′,请你补充条件(只需要填写一个你认为适当的条件)2.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于3.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在以下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.4.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,假设∠1:∠2:∠3=28:5:3,则∠a的度数为5.如图,已知0A=OB,OC=0D,以下结论中:①∠A=∠B;②DE=CE;③连OE,则0E平分∠0,正确的选项是( )A.①②B。

全等三角形复习-教案

全等三角形复习-教案

**教育个性化辅导教案授课老师学生姓名课型一对一学科数学年级初二上课时间10:00-12:00 课题名称全等三角形知识点教学目标1.了解全等形及全等三角形的概念。

2.理解全等三角形的性质。

3.掌握全等三角形的判定。

4.灵活运用全等三角形的判定定理和性质定理,5证明简单的全等三角形问题。

6.掌握角平分线的性质与判定以及综合运用。

教学重点全等三角形的性质和条件以及所学知识的综合应用教学难点加强应用型与探究型题型训练课前检查作业完成情况:优□良□中□差□建议:第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS) 有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直0,吗,角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).例题评析例1 已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.例2 已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.AAB CD EDCBAO 1 234 例3已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①△BEC ≌△DEA ;②DF ⊥BC .(2)达标检测1、如图,∠DCE=90o,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.2 、如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ;(2)BO =DO .BC DEFA3、如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1) △ABC≌△AED;(2) OB=OE .4、已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.5、已知:如图3-50,AB=DE,直线AE,BD相交于C,∠B+∠D=180°,AF∥DE,交BD于F.求证:CF=CD.学生对本次课的小结及评价1、本次课你学到了什么知识2、你对老师下次上课的建议⊙特别满意⊙满意⊙一般⊙差学生签字:课后小结教师签字:审阅签字: 时间:教学主管签字: 时间:出门测:一、选择题1.如图,已知△ACB≌△A'CB',若∠BCB'=30°,则∠ACA'的度数为( ) A.20°B.30°C.35°D.40°2.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取点M,N,使OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由做法得△MOC≌△NOC的依据是( )A.AAS B.SAS C.ASA D.SSS3.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.在如图所示的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数为( )A.330°B.315°C.310°D.320°课后作业:一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.。

全等三角形讲义知识点+典型例题(完美打印版)

全等三角形讲义知识点+典型例题(完美打印版)

BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

《全等三角形的复习》优秀教案.docx

《全等三角形的复习》优秀教案.docx

全等三角形的复习【教学目标】:(1)知识与技能目标:通过对典型例题评析,使学生进一步熟悉三角形全等的判定、性质及其综合应用,提高学生的逻辑推理能力和逻辑表达能力;学生通过参与开放性变式题的练习、分析,培养思维的发散性、探究性、发展性、创新性,进一步深化学生对全等三角形的认识。

(2)过程与方法目标:利用相关的知识和例题,通过学生的观察、思考、论证,培养学生的观察能力、逻辑推理能力、发散思维能力;通过同桌间的合作交流,培养学生的合作探究意识;通过学生的猜想,培养学生敢于发表见解的勇气。

利用“归纳小结”这一环节,培养学生自我反思的习惯及归纳概括能力。

(3)情感与态度目标:利用图形的变换,对学生进行所谓“形变质不变,万变不离其宗”的数学思想渗透;让学生知道数学内容中普遍存在着的运动、变化、相互联系和相互转化的规律,体会事物之问相互联系相互转化的辩证唯物主义观点;通过展示多彩的几何变换图形,激发学生的学习动机,拓宽学生的信息量、思维角度,激发学生的探索欲望;通过对几个变式问题的探究分析,培养学生多角度探究问题的习惯。

【教学重点】:常握全等三角形的性质与判定方法【教学难点】:对全等三角形性质及判定方法的运用【教学突破点】:学生通过在探究问题时的合作交流与对结论的探求猜想、教师对例题及学生回答的评析,培养学生的观察能力、发现问题能力、探究问题的兴趣、发散思维能力、归纳概括能力。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件、三角板【教学弓程设计】:教学环节教学活动~设计意图已知一边一角(边与角相邻):找夹这个角的另一边 —AD=CB(SAS)找夹这条边的另一角—a zACD=zCA«ASA),找边的对角 —► zD=zB(AAS)思路引导9 促 进 发展 1、如图,已知△ ABC 和ADCB 屮,AB 二DC,请补充一个条 件 ______________________ ,使AABC 竺 ADCBo 找夹角一► ZABC=ZDCB (SAS)培养学生结合 题目中的已知 条件、图形中 的隐含条件, 分析和寻找全 等三角形证明 的所须条件, 训练学生的解 题思路和解题 技巧。

八年级全等三角形 知识点归纳及典型习题讲课教案

八年级全等三角形 知识点归纳及典型习题讲课教案

全等三角形一、基本概念1、全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(SSS)(2)两角和它们的夹边对应相等的两个三角形全等。

(ASA) (3)两角和其中一角的对边对应相等的两个三角形全等。

(AAS) (4)两边和它们的夹角对应相等的两个三角形全等。

(SAS) (5)斜边和一条直角边对应相等的两个直角三角形全等。

(HL)4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上二、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理三、证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS7.全等三角形基本图形翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素全等三角形经典题型1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC ≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形只是总结及经典例题
[知识要点]
一、全等三角形
一般三角形 直角三角形 判定
边角边(SAS )、角边角(ASA ) 角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质 对应边相等,对应角相等
对应中线相等,对应高相等,对应角平分线相等
注:① 判定两个三角形全等必须有一组边对应相等;
② 全等三角形面积相等.
2.证题的思路:
⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()
找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 例1如图,∠E=∠F=90。

,∠B=∠C ,AE=AF ,给出下
列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;
④CD=DN ,其中正确的结论是 (把你认为所
有正确结论的序号填上)
例2在△ABC 中,AC=5,中线AD=4,则边AB 的取值范围是( )
A .1<AB<9
B .3<AB<13
C .5<AB<13
D .9<AB<13
例3一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B 、F 、C 、D 在同一条直线上
(1)求证:AB ⊥ED
(2)若PB=BC ,请找出图中与此条件有关的一对全等三角形,并给予证明
例4若两个三角形的两边和其中一边上的高分别对应相等,试判断这两个三角形的第三边所对的角之间的关系,并说明理由
例5如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE的度数
1.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC,B′C′边上的高,且AB=A′B′,AD=A′D ′,若使△ABC≌△A′B′C′,请你补充条件(只需要填写一个你认为适当的条件)
2.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则∠BED等于
3.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.
4.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠a的度数为
5.如图,已知0A=OB,OC=0D,下列结论中:①∠A=∠B;②DE=CE;③连OE,则0E平分∠0,正确的是( ) A.①②B。

②③C.①③D.①②③
6.如图,A在DE上,F在AB上,且AC=CE,∠l=∠2=∠3,则DE的长等于( ).
A:DC B.BC C.AB D.AE+AC
7.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那
么图中全等的三角形有( )对
A.5 B.6 C.7 D.8
8.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数
9..如图,在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE③AM=AN④AD⊥DC,AE⊥BE.以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程
已知:
求证:
10.在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E(1)当直线MN 绕点C旋转到图①的位置时,求证:DE=AD+BE
(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE
(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明
11.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=
12.如图,已知AE平分∠BAC,BE上AE于E,ED∥AC,∠BAE=36°,那么∠BED=
13.如图,D是△ABC的边AB上一点,DF交AC于点E,给出三个论断:①DE=FE;②AE=CE;③FC∥AB,以其中一个论断为结论,其余两个论断为条件,可作出三个命题,其中正确命题的个数是
14.如图,在△ABC中,AD为BC边上的中线,若AB=5,AC=3,则AD的取值范围是
15.如图,在△ABC中,AC=BC,∠ACB=90°.AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
16.如图,在四边形ABCD中,对角线AC平分∠BAD,AB >AD,下列结论中正确的是( )
A.AB-AD>CB-CD B.AB-AD=CB-CD
C.AB-AD<CB—CD D.AB-AD与CB-CD的大小关系不确定
17.考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有( ).
A.4个B.3个C.2个D.1个
18.如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且
1
()
2
AE AB AD
=+,求∠ABC+
∠ADC的度数。

19.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.
20.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积
21.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.
22.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,AD⊥CE
(2)若△DBE绕点B旋转到△ABC外部,其他条件不变,则(1)中结论是否仍成立?请证明。

相关文档
最新文档