专题十二 遗传的基本规律
高二生物遗传的基本规律
高二生物遗传的基本规律遗传是生物学中重要的概念,涉及到个体和物种的特征传递与演变。
在高二生物课程中,遗传的基本规律是一个重要的内容。
本文将介绍高二生物遗传的基本规律,包括孟德尔遗传规律、染色体遗传规律以及基因突变等内容。
一、孟德尔遗传规律孟德尔是遗传学的奠基人,他通过对豌豆的实验观察,总结出了遗传的基本规律。
他的观察实验主要涉及到对豌豆形态特征的遗传。
1. 隔代遗传规律孟德尔观察到,豌豆的某一性状如果在第一代杂交(父本为纯合种)中不表现,但在第二代杂交(父本为纯合种与F1代杂交)中重新出现。
这就是隔代遗传规律,也被称为势两性状遗传规律。
2. 分离规律孟德尔的实验中,他还观察到了不同性状的分离现象。
例如,豌豆的籽粒颜色遗传现象中,黄色籽粒和绿色籽粒的比例为3:1。
这说明了不同基因对于性状表现的分离和重新组合。
二、染色体遗传规律染色体遗传规律主要涉及到基因在染色体上的分布和遗传关系。
染色体具有双螺旋结构,上面携带着基因。
1. 遗传链的规律在染色体上,基因按照一定次序线性排列,形成了遗传链。
这意味着染色体上的基因遵循特定的排列顺序。
2. 遗传分离规律染色体具有自由组合和重新组合的能力,这使得基因在染色体上进行遗传分离。
这一规律保证了不同基因之间的独立性。
三、基因突变基因突变是遗传学中一个重要的概念,它指的是基因发生的变异和突变。
基因突变可以分为基因型突变和表型突变。
1. 基因型突变基因型突变是指基因的序列发生变化,导致基因功能的改变。
常见的基因型突变包括点突变、插入突变和缺失突变等。
2. 表型突变表型突变则是指基因型突变导致的特征表现的改变。
例如,某一基因的突变可能导致某一性状的增加或减少,甚至完全消失。
综上所述,高二生物遗传的基本规律主要包括孟德尔遗传规律、染色体遗传规律以及基因突变。
这些规律帮助我们理解遗传现象的发生和演化,对于生物学的学习和研究具有重要意义。
通过深入学习这些基本规律,我们能够更好地理解和解释生物多样性的产生和发展过程。
遗传的基本规律
遗传的基本规律在我们生活的这个丰富多彩的世界里,生命的延续和多样性都离不开遗传。
遗传就像是一个神秘的密码,决定着生物的特征从一代传递到下一代。
那么,遗传究竟遵循着哪些基本规律呢?让我们一起来探索。
首先,我们要了解的是孟德尔的分离定律。
孟德尔通过对豌豆的杂交实验,发现了这一重要的规律。
简单来说,就是在生物的体细胞中,控制同一性状的遗传因子成对存在。
在形成配子时,成对的遗传因子会发生分离,分别进入不同的配子中。
举个例子,假如我们研究豌豆的高矮茎这一性状。
高茎是由显性基因D 控制,矮茎是由隐性基因d 控制。
当一个个体的基因型是Dd 时,它表现为高茎。
在产生配子时,D 和d 会分离,分别进入不同的配子,这样就会产生两种配子,一种含有 D,一种含有 d。
然后是孟德尔的自由组合定律。
同样是通过豌豆实验,孟德尔发现,当生物在形成配子时,不同对的遗传因子会自由组合。
比如说,我们同时考虑豌豆的颜色(黄色 Y 和绿色 y)和形状(圆粒 R 和皱粒 r)这两对性状。
当一个个体的基因型是 YyRr 时,在形成配子时,Y 和 y 分离,R 和 r 分离,然后它们自由组合,就会产生 YR、Yr、yR、yr 这四种配子。
基因的连锁和交换定律也是遗传的重要规律之一。
在一些情况下,位于同一染色体上的基因倾向于一起遗传,这就是基因的连锁。
但在减数分裂过程中,同源染色体之间可能会发生交换,从而产生新的组合。
在实际的遗传现象中,这些规律相互作用,使得生物的遗传变得更加复杂和多样。
遗传规律不仅在植物中起作用,在动物包括人类身上同样适用。
比如,人类的某些遗传疾病就是由特定基因的遗传规律所决定的。
对于人类来说,了解遗传规律具有重要的意义。
在医学领域,通过研究遗传规律,可以对一些遗传疾病进行诊断和预测,为疾病的预防和治疗提供依据。
在农业生产中,利用遗传规律,可以培育出具有优良性状的农作物和家畜品种,提高产量和质量。
遗传规律也在生物进化中扮演着重要的角色。
遗传的基本规律知识点
遗传的基本规律知识点
以下是遗传学中的基本规律:
孟德尔遗传定律:孟德尔通过豌豆杂交实验发现,遗传性状是由两个基因决定的,且一个基因会表现出优势或隐性的特征。
他总结了两个基因互相独立地遗传给下一代的规律,即分离定律和自由组合定律。
染色体遗传规律:染色体是遗传信息的主要携带者。
在有性生殖过程中,染色体会按照一定的规律进行配对、分离和重组,从而保证遗传物质的稳定性和多样性。
其中最重要的是孟德尔第一定律和孟德尔第二定律,它们指出了染色体在有性生殖中的分离和随机组合规律。
突变和遗传变异规律:突变是指基因发生突然而非逐渐的改变,是遗传变异的一种常见形式。
突变可以是有害的、有利的或中性的,但是它们都对个体和种群的遗传多样性和进化起着重要作用。
DNA复制和基因表达规律:DNA复制是指DNA分子在细胞分裂或有性生殖中的复制过程。
基因表达是指基因转录和翻译成蛋白质的过程。
这些过程都是生物遗传学研究的重要内容,它们决定了遗传信息的传递和实现,是遗传学的基础。
遗传学是生物学的重要分支,研究遗传信息的传递、变异和表达规律。
以上是遗传学中的基本规律,了解这些规律对于理解生命进化和人类健康等方面都非常重要。
遗传的规律与应用知识点总结
遗传的规律与应用知识点总结遗传是生物学中的重要内容之一,研究的是物种在传递基因信息的过程中所遵循的规律与模式。
遗传理论为我们揭示了生物个体特征的形成和多样性的产生机制,并广泛应用于农业、医学等领域。
本文将对遗传的规律与应用进行总结,以期对读者有所启发和帮助。
1. 基本遗传规律遗传的基本规律包括孟德尔遗传规律、染色体遗传规律和基因互作规律等。
1.1 孟德尔遗传规律孟德尔遗传规律又称为分离与自由组合规律,主要包括单一性规律、二倍体规律和自由组合规律。
单一性规律指出在同一性状的配子组合中,个体表现出双亲中某一特征的比例是3:1。
二倍体规律说明杂合子与纯合子交配,其子代个体的比例为1:2:1。
自由组合规律则表明不同基因间相互独立自由组合传递。
1.2 染色体遗传规律染色体遗传规律主要包括连锁不平衡规律、染色体显性和隐性遗传规律,以及性染色体遗传规律。
连锁不平衡规律指出若两个基因位于同一染色体上,则它们在同一体细胞中会被连锁传递。
染色体显性和隐性遗传规律说明染色体显性基因会直接表现在子代个体中,而隐性基因只有在纯合子状态下才会表现。
性染色体遗传规律主要涉及到X连锁和Y连锁基因的传递。
1.3 基因互作规律基因互作规律描述了不同基因在表现型上相互影响与相互制约的现象。
基因互作形式包括基因抑制、基因增强和基因互补。
2. 遗传的应用遗传的应用广泛涉及到农业、医学、畜牧养殖等领域,以下是一些常见的遗传应用领域和方法:2.1 农业遗传应用农业遗传应用主要通过选育和改良农作物品种,以提高产量和抗病性。
常用的方法包括杂交育种、突变育种、基因工程等。
这些方法通过选择或引入具有有益特征的基因,改良农作物的性状和品质。
2.2 医学遗传应用医学遗传应用主要涉及到遗传疾病的诊断、预测和治疗。
常用的方法包括遗传咨询、遗传检测、基因治疗等。
通过了解个体的遗传信息,可以提前预测某些遗传疾病的风险,并采取相应的预防或治疗措施。
2.3 畜牧养殖遗传应用畜牧养殖遗传应用主要通过选择繁殖育种,提高畜禽的品质和产量。
高中生物“遗传的基本规律”知识点总结
遗传的基本规律在自然界中,生物体的性状是如何从父母传递给后代的?这一问题自古以来就困扰着人类。
直到19世纪,奥地利科学家孟德尔通过豌豆杂交实验,提出了遗传的三大基本定律,即分离定律、自由组合定律和连锁与交换定律,为遗传学的发展奠定了基础。
孟德尔的三大定律孟德尔的分离定律表明,在有性生殖过程中,成对的遗传因子在形成配子时会分离,每个配子只携带一个遗传因子。
例如,豌豆的花色和豆荚形状这两个性状,分别由不同的遗传因子控制,它们在生殖细胞形成时会分离,使得不同的配子携带不同的花色和豆荚形状基因。
自由组合定律进一步阐释了不同性状的遗传因子在形成配子时是独立分离的,除非它们位于同一染色体上。
这意味着一个生物体的多个性状可以独立地遗传给后代。
例如,豌豆的花色和豆荚形状可以自由组合,产生多种不同的后代。
连锁与交换定律则描述了位于同一染色体上的基因在遗传过程中的连锁和交换现象。
这一定律的发现,为理解染色体上的基因如何相互作用提供了理论基础。
例如,某些遗传疾病,如血友病和色盲,常常发现在同一家族中,这是因为这些疾病的基因与性别决定基因连锁在一起。
基因突变基因突变是遗传信息改变的一种方式,它可以是单个碱基的改变,也可以是基因片段的插入、缺失或重排。
突变是生物多样性的来源之一,也是许多遗传性疾病的基础。
例如,镰状细胞贫血症就是由于血红蛋白基因的单个碱基突变导致的。
这种突变虽然导致了疾病,但在某些环境中,如疟疾高发区,它却能提供一定的保护作用,减少疟疾的感染率。
基因重组基因重组是指在有性生殖过程中,亲本的基因重新组合形成新的基因型。
这个过程在杂交育种中尤为重要,可以产生新的遗传变异,增加种群的遗传多样性。
例如,通过将不同品种的水稻进行杂交,可以培育出既高产又抗稻瘟病的新品种。
基因工程技术中的基因重组则可以按照人们的意愿,将不同来源的基因组合在一起,创造出具有特定性状的生物体。
例如,通过将乙肝病毒的表面抗原基因插入酵母的基因组中,可以制造出乙肝疫苗;将人类胰岛素基因插入大肠杆菌的基因组中,可以生产出治疗糖尿病的人胰岛素。
高中生物重点知识点解析:遗传的基本规律知识
高中生物重点知识点解析:遗传的基本规律知识【】有关于2021年高中生物重点知识点解析:遗传的基本规律知识是查字典生物网特别为您集合的,查字典生物网编辑将第一时间为您整理全国学习信息,供大家参考! 一、基因的分别规律名词:1、相对性状:同种生物同一性状的不同表现类型,叫做~。
(此概念有三个要点:同种生物豌豆,同一性状茎的高度,不同表现类型高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做~。
3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做~。
4、性状分别:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做~。
5、显性基因:控制显性性状的基因,叫做~。
普通用大写字母表示,豌豆高茎基因用D表示。
6、隐性基因:控制隐性性状的基因,叫做~。
普通用小写字母表示,豌豆矮茎基因用d表示。
7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做~。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D 和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分别:D与d一对等位基因随着同源染色体的分别而分别,最终发生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
)8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不异性状的不同基因。
9、表现型:是指生物集体所表现出来的性状。
10、基因型:是指与表现型有关系的基因组成。
11、纯合体:由含有相反基因的配子结分解的合子发育而成的集体。
可动摇遗传。
12、杂合体:由含有不同基因的配子结分解的合子发育而成的集体。
不能动摇遗传,后代会发作性状分别。
13、测交:让杂种子一代与隐性类型杂交,用来测定F1的基因型。
测交是检验生物体是纯合体还是杂合体的有效方法。
14、基因的分别规律:在停止减数分裂的时分,等位基因随着同源染色体的分开而分别,区分进入两个配子中,独立地随着配子遗传给后代,这就是~。
高考生物必备知识点:遗传的基本规律
2021年高考生物必备知识点:遗传的根本规律查字典生物网的小编给各位考生整理了2021年高考生物必备知识点:遗传的根本规律,希望对大家有所帮助。
更多的资讯请持续关注查字典生物网。
目前,高三的同学已经开场了高考第一轮复习,在这一阶段的复习当中,我们要注重对根底知识的掌握,结实的根底知识会为我们今后的深化复习打下根底。
那么如今,小编就为大家搜集整理?2021年高考生物必备知识点:遗传的根本规律?,帮助大家进展第一轮复习。
别离规律是遗传学中最根本的一个规律。
它从本质上说明了控制生物性状的遗传物质是以自成单位的基因存在的。
别离定律基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此,在减数分裂的配子形成过程中,成对的基因在杂种细胞中可以彼此互不干扰,独立别离,通过基因重组在子代继续表现各自的作用。
这一规律从理论上说明了生物界由于杂交和别离所出现的变异的普遍性。
基因别离定律的F1和F2要表现特定的别离比应具备以下条件:1.所研究的每一对相对性状只受一对等基因控制,而且等位基因要完全显性。
2.不同类型的雌、雄配子都能发育良好,且受精的时机均等。
3.所有后代都应处于比拟一致的环境中,而且存活率一样。
4.供实验的群体要大、个体数量要足够多。
注:杂合体内,等位基因在减数分裂生成配子时伴随源染色体的分开而别离,进入两个不同的配子,独立的随配子遗传给后代。
自由组合定律自由组合定律(又称独立分配规律)是在别离规律根底上,进一步提醒了多对基因间自由组合的关系,解释了不同基因的独立分配是自然界生物发生变异的重要来源之一。
注:不连锁基因。
对于除此以外的完全连锁、局部连锁以及所谓假连锁基因,遵循连锁互换规律。
连锁与互换定律(伴性遗传)连锁与互换定律是在1900年孟德尔遗传规律被重新发现后,人们以更多的动植物为材料进展杂交试验,其中属于两对性状遗传的结果,有的符合独立分配定律,有的不符。
摩尔根以果蝇为试验材料进展研究,最后确认所谓不符合独立遗传规律的一些例证,实际上不属独立遗传,而属另一类遗传,即连锁遗传。
《遗传的基本规律》知识点整理
《遗传的基本规律》知识点整理遗传是生命延续和物种进化的基础,而遗传的基本规律则是解释遗传现象的关键。
以下是对遗传基本规律的详细整理。
一、孟德尔的分离定律孟德尔通过豌豆杂交实验,发现了遗传的分离定律。
1、实验过程孟德尔选用纯种的高茎豌豆和矮茎豌豆进行杂交,得到的子一代(F1)全部是高茎。
然后让 F1 自交,得到的子二代(F2)中既有高茎又有矮茎,且高茎与矮茎的比例约为 3:1。
2、对实验的解释孟德尔提出,生物体的遗传因子(基因)成对存在。
在形成配子时,成对的遗传因子彼此分离,分别进入不同的配子中。
3、分离定律的实质在减数分裂形成配子的过程中,等位基因会随着同源染色体的分离而分开,分别进入不同的配子中。
4、分离定律的应用(1)用于解释生物的性状分离现象,如杂种后代出现显性性状和隐性性状的比例。
(2)在农业生产中,用于选育优良品种,通过连续自交筛选纯合子。
二、孟德尔的自由组合定律孟德尔在研究两对相对性状的遗传时,发现了自由组合定律。
1、实验过程孟德尔用纯种的黄色圆粒豌豆和绿色皱粒豌豆杂交,F1 全为黄色圆粒。
F1 自交得到 F2,表现型出现了四种:黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,比例约为 9:3:3:1。
2、对实验的解释孟德尔认为,不同对的遗传因子在形成配子时是自由组合的。
3、自由组合定律的实质在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。
4、自由组合定律的应用(1)解释生物多样性的形成,不同基因的组合产生了丰富的表现型。
(2)在杂交育种中,可以通过有目的地组合优良性状的基因,培育出具有多种优良性状的新品种。
三、基因的连锁和交换定律1、连锁遗传现象有些基因在染色体上的位置较近,它们在遗传过程中常常连锁在一起传递,这称为连锁遗传。
2、交换在减数分裂的前期,同源染色体的非姐妹染色单体之间可能会发生片段的交换,从而导致连锁基因之间发生重新组合。
3、基因的连锁和交换定律的应用在动植物的育种工作中,需要考虑基因的连锁和交换情况,以更准确地预测后代的基因型和表现型。
遗传的基本规律
遗传的基本规律遗传,是生命延续过程中一个神秘而又奇妙的现象。
从我们的外貌、性格,到身体的机能和对疾病的易感性,都在一定程度上受到遗传的影响。
而遗传的基本规律,就像是一本生命的密码手册,指引着遗传信息的传递和变化。
在探讨遗传的基本规律之前,我们先来了解一下遗传的物质基础——基因。
基因是具有遗传效应的 DNA 片段,它们就像一个个小小的指令集,决定了生物的各种特征。
孟德尔是遗传学领域的先驱,他通过豌豆杂交实验,揭示了遗传的两大基本规律:分离定律和自由组合定律。
分离定律指出,在生物体的细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
比如说,豌豆的高茎和矮茎是一对相对性状。
假设控制高茎的基因是 D,控制矮茎的基因是 d。
那么纯合高茎豌豆的基因组成就是 DD,纯合矮茎豌豆的基因组成就是 dd。
当纯合高茎豌豆(DD)和纯合矮茎豌豆(dd)杂交时,它们产生的子一代(F1)基因组成都是 Dd,表现为高茎。
当 F1 自交时,D 和 d 这对基因会分离,产生的配子中,一半含有 D,一半含有 d。
这些配子随机结合,就会产生 DD、Dd、dD、dd 这四种基因组合,比例为 1:2:1。
由于 DD、Dd 和 dD 都表现为高茎,dd 表现为矮茎,所以高茎与矮茎的比例为 3:1。
自由组合定律则是说,控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
还是以豌豆为例,假设豌豆的黄色子叶(Y)对绿色子叶(y)是一对相对性状,圆粒(R)对皱粒(r)是另一对相对性状。
纯合的黄色圆粒豌豆(YYRR)和纯合的绿色皱粒豌豆(yyrr)杂交,产生的 F1基因组成是 YyRr。
F1 自交时,Y 和 y 分离,R 和 r 分离,然后 Y 可以和 R 或 r 组合,y 也可以和 R 或 r 组合,最终产生的配子类型有 YR、Yr、yR、yr 四种,比例为 1:1:1:1。
遗传的基本规律PPT精选精品文档
(2)白化症(albinism): (4)氨基酸代谢的先天性缺陷 (6)进行性脊柱肌肉萎缩 (8)隐性遗传的肌肉营养不良 (10)全色盲 (12)耳聋 (14)半乳糖血症 (16)肝豆状核变性 图
9
第三节 常见单基因遗传病
三、性连锁(X-连锁)隐性疾病XR
1.系谱特征 2.复发危险率计算: 例:若某男性是XR患者,其外甥的复发危险率如何? 1/4
上海 107:100; 深圳市120.8:100 ;北京流动人口128:100; 重庆140:100;海南、广东省130:100以上 • 全国统计表明:2000年 • 生一胎的性比为107.1 • 生两胎的性比为151.9 • 生三胎的性比达159.4
16
B超
17
B超
18
幸福
19
可爱
20
XXY
• 一、性别决定(XY) • 性比表
• 1. 选择特定的精子受精:电泳法、沉淀法 • 2. 控制自然受精条件:pH值、激素 • 3. 孕期胎儿性别鉴定
• (1)X染色质体鉴定 • (2)Y荧光小体鉴定 • (3) B型超声波检测 图
5
第二节 性别决定和性别异常
• 二、性别异常
• 1. XXY(原发性小睾丸症):47,XXY图 • 2. XO(原发闭经症):45,X 图 • 3. 多Y男性:如47,XYY 48,XYYY • 4. 多X女性:如47,XXX 48,XXXX • 5. 性反转:如46,XY女性 46,XX男性 图 • 6. 睾丸女性化 图 • 7. 两性嵌合体 图
6
第三节 常见单基因遗传病
• 一、常染色体显性遗传病AD
• 1.系谱特征 图
• 2.常见的AD遗传病:
• (1)尖头并指畸形、并指 • (3)短指(趾) • (5)颅面骨发育不全 • (7)软骨发育不全 • ( 9)银屑病 • (11) Huntington舞蹈症 • (13)结肠息肉 图
遗传的基本规律
遗传的基本规律遗传是生物学中一个重要的概念,它涉及到表型和基因的传递。
通过遗传的基本规律,我们可以更好地理解生物体的形态特征以及物种的多样性。
本文将介绍遗传的基本规律,包括孟德尔的遗传定律、基因型和表型的关系、显性与隐性基因、等位基因和杂合等概念。
1.孟德尔的遗传定律19世纪的奥地利僧侣孟德尔通过对豌豆植物进行大量的实验观察,总结出了遗传的基本定律。
这些定律包括:1.1 第一定律:孟德尔的第一定律是关于基因的分离和独立遗传的。
他观察到在有性生殖中,父母的基因会分别传递给子代,在子代的配子形成过程中,基因会分离,并且每个配子只能携带一个基因。
1.2 第二定律:孟德尔的第二定律是关于基因的随机组合和分离的。
他观察到不同基因的组合和分离是随机的,不同基因之间的遗传是独立进行的。
1.3 第三定律:孟德尔的第三定律是关于基因的优势和显性的。
他发现一些基因在表型上表现出来,而另一些基因则被掩藏起来,这种现象被称为显性与隐性。
2.基因型和表型的关系基因型是指生物体内部基因组成的基因型型谱,表型则是指基因组成的生物体外部组织结构和功能。
这两者之间存在着紧密的联系。
2.1 纯合子与杂合子:纯合子指一个个体的两个基因表现完全相同,例如AA或aa;杂合子则是两个基因不同的个体,例如Aa。
纯合子之间的杂交后代属于杂合子。
2.2 显性与隐性:显性基因指在表型上表达出来的基因,隐性基因则被掩藏起来。
当显性基因和隐性基因共同存在时,显性基因会在表型上显示出来。
3.等位基因等位基因是指在同一个基因位点上,不同的基因可能存在多个形式。
这些不同的形式可以决定物种的遗传特征和多样性。
3.1 常染色体等位基因:在非性染色体上的基因位点上,不同的基因形式可以决定个体的遗传特征,如眼睛的颜色、血型等。
这些基因可以是多态的,即存在多个等位基因形式。
3.2 性染色体等位基因:性染色体上的基因位点上也存在不同的基因形式,例如决定人类性别的X和Y染色体上的基因。
高中生物易考知识点遗传的基本规律
高中生物易考知识点遗传的基本规律遗传是生物学中的一个重要内容,它研究的是物种内部或物种间传递基因信息和遗传特征的现象和规律。
遗传的基本规律是遗传物质在遗传过程中传递和表现的规律,它对我们理解生物的遗传方式和遗传变异具有重要意义。
一、孟德尔的遗传规律孟德尔是遗传学的奠基人,通过对豌豆杂交实验的观察得出了三个重要的遗传规律:一、单因素遗传规律;二、两性状遗传规律;三、自由组合规律。
这些规律揭示了基因在遗传过程中的传递和表现方式。
孟德尔的单因素遗传规律表明,个体的性状由一对基因决定,而基因又存在显性和隐性的关系。
如果父母亲都是显性基因型,子代的性状表现也会是显性的;而如果父母亲中有隐性基因型,子代的性状表现则可能是显性或者隐性的。
孟德尔的两性状遗传规律则是对多对基因对不同性状的遗传方式进行观察和总结,他发现不同性状的基因是独立遗传的,不会互相影响。
自由组合规律则说明了基因的自由组合遗传,即基因在子代中自由组合,没有一定的组合方式。
二、多因素遗传规律除了孟德尔的遗传规律外,还存在着多因素遗传规律,在自然界中遗传变异更为复杂。
多因素遗传规律认为,个体性状的表现受多个基因的共同作用,称为多基因性状。
在多基因性状中,每个基因的效应可能是加性、非加性,还有染色体遗传规律等。
在多因素遗传规律中,还存在着显性基因抑制、基因互补和基因交互作用等现象,进一步丰富了对遗传规律的认识。
三、基因突变基因突变是遗传的另一个重要规律,它是指基因发生突变从而导致个体遗传特征发生变化的现象。
基因突变可以是点突变、缺失、插入等形式,它能够使个体出现新的遗传特征,或者导致原有的遗传特征发生改变。
基因突变不是偶然的,而是由于自然界中存在各种诱变因素造成的,例如辐射、化学物质等。
通过对基因突变的研究,可以更加全面地了解遗传规律和生物的遗传变异。
四、顺式遗传和显性遗传遗传方式除了单因素和多因素遗传规律外,还有顺式遗传和显性遗传。
顺式遗传是指遗传物质中的基因顺序传递给子代,个体在表型上呈现出连续变化的特征。
高三生物二轮复习-遗传的基本规律和伴性遗传.总结
高三生物二轮复习-遗传的基本规律和伴性遗传一、遗传的基本规律1. 孟德尔遗传规律孟德尔遗传规律是遗传学的基础,孟德尔在豌豆实验中发现了遗传物质的存在和遗传现象有规律可循,提出了三条遗传规律,分别是:•个体遗传规律:个体从父母分得的遗传因子是一对,其中只有一个因子参与遗传,另一个因子隐性•分离规律:杂交后代第一代被覆盖的性状表现,而第二代中,隐性基因重新组合成为相应的表型•自由组合规律:非同源染色体之间自由组合,染色体上基因之间也自由组合,就算在同一个染色体上也会发生交换,而产生新的基因组合。
孟德尔遗传规律的提出,为遗传学奠定了基础,后来的遗传学家和生物学家也通过实验验证了它的正确性。
2. 基因连锁规律基因连锁规律是基因遗传中的一种规律,指的是多个在同一条染色体上的基因之间存在的串联基因效应,即这些基因在游离染色体的新组合中的联合组合性引起的现象。
基因连锁规律的发现来源于Ångström和 Tjio对眼虫的研究。
他们发现一些形态的随机出现,但分开看后却发现其实是由基因的组合引起的。
基因连锁规律的发现,帮助人们更深入地了解了基因遗传,同时也为人类疾病的研究提供了思路。
3. 随机独立规律随机独立规律指的是频率相对比较稳定的在群体中的基因或某种等位基因在自然条件下遵从大数定律而呈现的随机性分布规律。
随机独立规律是基于基因频率变动理论的基本原则,它揭示了群体基因分布的规律和周期。
对于群体基因每一代中的全面和长期发展具有重要意义。
二、伴性遗传伴性遗传是指染色体上携带并控制着伴性位点的一种遗传规律。
伴性遗传中的伴性位点通常指基因座(基因位点)。
通常出现在X染色体的上,而Y染色体上没有伴性连锁基因。
伴性遗传中,母亲为患者的孩子所患的疾病可能在XX和XY两种基因型中出现,而且患病率相对积极。
而伴性基因常常被视为隐性基因,其表现受到染色体性别和其他基因因素的影响,不同基因位点的基因表达不同。
三、遗传是生命的重要组成部分之一,它不仅影响了生命的发展过程,还决定了生命的后代。
高考生物必备知识点:遗传的基本规律
高考生物必备知识点:遗传的基本规律
遗传的基本规律是指基因是世代相传的,认为个体的遗传性状是由基因传给它父母和
后代的;等位基因的分布定律是指染色体上的等位基因可能变成两个不同的型:隐性型和
显性型;异源染色体的单一特性是指单个染色体可能带有前先融合异源染色体的特征。
首先,遗传的基本规律是指基因是世代相传的。
认为个体的遗传性状是由基因传给它
们父母和后代的。
为了表明这一点,当一个好的基因和一个坏的基因结合在一起时,它们
都可以传给下一代,并且它们在下一个世代将各占半份,而不会影响另一个生物物种的基
因结构。
第二,等位基因的分布定律,指的是染色体上的等位基因可能变成两个不同的型:隐
性型和显性型。
隐性型指的是一种不能体现在有形标志上的基因变体。
而显性型指的是一
种基因变体,可以以形式体现出来,可以被人类观察到或测定。
它们之间的平衡可以用二
位型杂合子的术语来描述。
第三,异源染色体的单一特性,是指单个染色体可能带有前先融合异源染色体的特征,即后代细胞只有其中一个父母染色体的遗传特征。
这种特性可以在细胞分裂中观察到,也
可以在后代群体表现为显性状态。
这是建立在基因的单一特性和性别传递机制之上的,这
解释了个体及其后代承担某一种状态的原因。
高一生物遗传规律知识点
高一生物遗传规律知识点遗传是生物学中的重要分支,研究生物性状的遗传规律及其传递方式。
在高一生物教学中,学生需要掌握一些基本的遗传规律知识点,下面将从遗传的基本规律、遗传物质的结构和功能以及遗传变异等方面进行阐述。
一、遗传的基本规律遗传的基本规律包括孟德尔的遗传规则和硬连锁规律。
孟德尔的遗传规则主要包括两大定律:一是同质性排除定律,即同一性状的两个亲本中的代表因子只能选其一传给子代;二是自由组合定律,即不同性状的代表因子在子代的组合是独立的。
硬连锁规律则指的是染色体上的基因排列相对固定,难以发生交换。
二、遗传物质的结构和功能遗传物质指的是操控生物性状遗传的基因。
遗传物质的结构主要由DNA和RNA组成。
DNA是一种双链结构的螺旋形分子,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)构成,通过碱基之间的氢键相互连接。
RNA则在DNA的模板作用下合成,主要分为mRNA、tRNA和rRNA三个种类。
DNA和RNA通过转录和翻译过程参与生物基因信息的传递和蛋白质合成。
三、遗传变异遗传变异是指在遗传过程中产生的基因和表型的多样性。
遗传变异主要包括基因突变、基因重组和基因多态性。
基因突变是遗传物质中基因序列的突然改变,包括染色体突变和基因突变。
基因重组是指在染色体交叉互换过程中,携带不同基因的染色体之间进行交换,从而改变了基因的组合方式。
基因多态性是指一种性状由多个基因决定,而不同基因型产生不同表型的现象。
了解了以上的遗传规律知识点,我们可以更好地理解和解释生物性状的遗传。
同时,遗传规律的掌握也对科学育种和人类健康等方面具有重要的指导意义。
在遗传规律的学习过程中,我们需要通过实验和例题来深入理解。
例如,可以通过巴斯德的豌豆杂交实验来阐述孟德尔的遗传规律,通过染色体交叉互换实验来说明基因重组等。
此外,也可以引入一些生物学上的发展和应用,如基因工程、转基因技术等,使学生对遗传规律有更深层次的理解和应用。
综上所述,高一生物遗传规律知识点的学习对于学生的科学素养和综合能力的提升具有重要的意义。
遗传的基本规律和方法
遗传的基本规律和方法遗传是生物学的一个重要分支,研究个体内代际间遗传物质的传递规律以及其在物种演化中的作用。
本文将介绍遗传的基本规律和常用的研究方法。
一、孟德尔的遗传规律1. 隔离第一法则:孟德尔通过对豌豆的实验发现,同一性状的两个个体交配后,其子代的表现可以呈现出与父母不同的特征。
这一观察结果支持了隔离第一法则,即个体的配子中仅包含来自父母各自的一个等位基因。
2. 分离第二法则:当两个个体杂合子代与同源自交时,所得的孟德尔比例为9:3:3:1。
这一规律被称为分离第二法则,意味着两对等位基因在子代中以9:3:3:1的比例组合。
二、硬连锁和软连锁1. 硬连锁:如果两个基因在染色体上位置非常靠近,很少发生重组,则称其为硬连锁。
硬连锁的基因很难分离,常常被视为一个整体遗传。
2. 软连锁:如果两个基因在染色体上离得较远,容易发生重组,则称其为软连锁。
软连锁的基因可以经过重组而重新组合。
三、基因图谱1. 三点交叉检测:通过分析多个基因在同一染色体上的相对位置,可以构建基因图谱。
三点交叉检测是构建基因图谱的一种方法,通过交叉互换得到的重组类型及其频率,确定基因的相对位置。
2. 确定遗传距离:基因图谱可以用来确定基因之间的遗传距离,遗传距离越大,两个基因之间的重组频率越高。
四、遗传分析的方法1. 筛选法:筛选法是一种根据表型特征筛选个体进行分析的方法。
通过对具有特定表型特征的个体进行繁殖或杂交,可以确定遗传底物所在的染色体位置。
2. 分离法:通过对重组个体进行分析,确定个体上各个位点的基因型。
分离法广泛应用于鉴定等位基因、分析杂合子及其后代的遗传类型等方面。
3. 杂交分析:杂交分析是通过杂交两个纯合系或两个杂合系,观察其子代表现形式,以推断控制该表型的基因型。
综上所述,遗传学的基本规律包括孟德尔的遗传规律、硬连锁和软连锁等规律。
在研究遗传时,常用的方法包括基因图谱的构建和遗传分析的筛选法、分离法以及杂交分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十二遗传的基本规律专题内容分布:遗传的基本规律考纲解读:1。
孟德尔分离定律2。
孟德尔自由组合定律专题知识结构:专题复习建议:用四课时来复习本专题,两个课时基础知识、两个课时的试题和例题解析基础知识分析:1.有关概念的区别与联系(1)自交、杂交、测交①自交:基因型相同的生物间相互交配。
植物指自花授粉和同株异花授粉。
②杂交:基因型不同的生物间相互交配,指的是不同品种间的交配。
③测交:杂种子一代与隐性个体相交,用来测定F1的基因型。
(2)等位基因、相同基因和非等位基因等位基因是指杂合体内,在一对同源染色体同一位置上,控制着相对性状的基因,如D 与d;A与a。
相同基因是指纯合体内,在一对同源染色体的同一位置上的两个相同基因,如D与D或d与d。
但是,不论是等位基因,还是相同基因,在形成配子时,均要随着同源染色体的分开而分离,进入到不同的配子中。
只不过具有一对等位基因的个体可形成两种不同类型的配子,自交后代出现性状分离,而具有一对相同基因的个体只形成一种配子,自交后代不发生性状分离。
非等位基因是指存在于异源染色体(不同对的染色体)上或者同一染色体不同位置上的基因。
2.基因的分离定律的适用条件(1)有性生殖生物的性状遗传。
基因分离定律的实质是等位基因随同源染色体的分开而分离,而同源染色体的分开是有性生殖生物产生有性生殖细胞时进行减数分裂特有的行为。
(2)真核生物的性状遗传。
原核生物或非细胞结构生物不进行减数分裂,不进行有性生殖。
(3)细胞核遗传。
只有真核生物细胞核内的基因随染色体的规律性变化而呈现规律性变化。
细胞质内遗传物质数目不稳定,遵循细胞质母系遗传规律。
(4)一对相对性状的遗传。
两对或两对以上相对性状的遗传问题,分离定律不能直接解决,说明分离定律适用范围的局限性。
3.表现型和基因型与杂交中相对性状的对数表现型是指生物个体表现出来的性状的类型;基因型是指与表现型有关的基因组成的类型,是肉眼看不到的,通常用各种符号来表示。
表现型是基因型的表现形式,基因型是表现型的内在因素。
表现型相同,基因型不一定相同,如DD和Dd两种基因型均表现为高茎。
基因型相同,环境条件不同,表现型也不一定相同。
即表现型=基因型+环境条件。
杂交中(1)亲代和子代的基因型已知亲代的表现型及后代表现型,通过显隐性状的关系一般可以推出亲代基因型。
如一对正常夫妇生出一个白化病的孩子,就可以直接用遗传图解推出亲代基因型、表现型及比例。
(2)概率计算熟练掌握分离定律的有关计算,是进行遗传学概率计算的关键。
计算的关键地方是要能准确地计算出各种类型的配子比例,当然理解了后代分离比1∶2∶1的来源,计算更简便。
①用分离比直接计算:如人类白化病遗传:Aa×Aa→AA∶2Aa∶aa,杂合双亲再生正常孩子的概率是3/4,生白化病孩子的概率为1/4。
②用配子的概率计算:先算出亲本产生几种配子,求出每种配子产生的概率,用相关的两种配子的概率相乘。
如白化病遗传,Aa×Aa→AA∶2Aa∶aa。
父方产生A、a配子的概率各是1/2,母方产生A、a配子的概率也各是1/2,因此再生一个白化病孩子的概率为1/2×1/2=1/4。
5.自由组合定律的细胞学基础自由组合定律主要说明位于不同对的同源染色体上的两对或多对等位基因,在等位基因发生分离的同时非等位基因自由组合,平均分配到配子中去。
也就是说,一对等位基因与另一对等位基因的分离和组合是互不干扰、各自独立的。
在减数分裂的过程中,同源染色体的联会和同源染色体的分开,为基因的分离和自由组合定律提供了细胞学上的依据。
例如,杂种中有两对位于不同对同源染色体上的基因,就能产生四种类型的数目均等的配子,这是因为带有这两对等位基因的两对同源染色体,在减数第一次分裂的中期,染色体的组合有两种可能性,并且这种组合是随机的(如下图),这样就会得到下列四种配子:AB、ab、Ab、aB,它们之间的比例是1∶1∶1∶1。
6.基因分离定律与自由组合定律的关系基因分离定律与自由组合定律的区别在于研究的对象不同。
基因分离定律研究存在于一对同源染色体上的等位基因在减数分裂形成配子时的分离情况,而基因的自由组合定律研究的是分别位于几对同源染色体上的等位基因分离和非等位基因自由组合的情况。
自由组合定律中的等位基因仍然遵循基因分离定律,运用基因分离定律进行有关自由组合定律的计算非常简便。
重点难点辨析:1.明确几种符号含义:P表示亲本;G表示配子;F1表示子一代;F2表示子二代(以此类推);×表示杂交; 表示自交;♂表示父本;♀表示母本。
2.杂合子遗传因子的行为独立性:杂合子(Dd)位于一对同源染色体的相同位置上,既不融合也不混杂,各自保持纯质性质和独立性分离性:减数分裂时,同源染色体分离,D、d彼此分开,分别进入配子中,从而杂合子可以产生两种遗传因子组成且数量相等的配子。
随机组合性:受精作用中雌雄配子结合的机会均等, D、d随配子遗传给子代。
3.显性纯合子与杂合子的区分方法区分杂合子和显性纯合子,关键是掌握一条原则,即纯合子能稳定遗传,自交后代不发生性状分离;杂合子不能稳定遗传,自交后代往往会发生性状分离。
对于植物来说区分的方法主要有两种:一是测交,即与隐性类型杂交,若后代不发生性状分离,则说明该个体是纯合子;若出现性状分离,则说明该个体是杂合子。
二是自交,若后代不发生性状分离则该个体是纯合子;若发生性状分离则说明该个体是杂合子。
对动物来说则主要以测交法来区分。
4.测交的原理测交是让F1与隐性纯合子杂交,用来测定F1遗传因子组成的方法。
其原理是:隐性纯合子只产生一种带隐性遗传因子的配子,不会掩盖F1配子中遗传因子的表现,因此测交后代表现型及其分离比反映出F1产生的配子的遗传因子组成及分离比,从而可知F1的遗传因子组成。
5.遗传定律中有关几率的问题几率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围从0到1。
例如Bb×bb。
其后代出现Bb和bb的几率均为1/2。
求遗传定律中有关几率的问题,对于初学者来说确是一个难题,要解决这一难题,必须6.自由组合定律的适用条件(1)有性生殖生物的性状遗传;(2)真核生物的性状遗传;(3)细胞核遗传;(4)两对及两对以上相对性状遗传;(5)控制两对或两对以上相对性状的等位基因位于不同对同源染色体上7。
分解组合法基因的自由组合规律研究的是控制两对或多对相对性状的基因位于不同对同源染色体上的遗传规律。
由于控制生物不同性状的基因互不干挠,独立地遵循基因的分离规律,因此,这类题我们可以用分解组合法来做。
分解组合法就是把组成生物的两对或多对相对性状分离开来,用基因的分离规律一对对加以研究,最后把研究的结果用一定的方法组合起来的解题方法。
这种方法主要适用于基因的自由组合规律。
用这种方法解题,具有不需作遗传图解,可以简化解题步骤,计算简便,速度快,准确率高等优点。
8.基本题型与解题思路A.正推类型(以因求果)已知亲本的基因型,求子代的基因型、表现型及比例。
对这类题型只要熟练掌握两个基本遗传规律的特点,求解并不困难。
解题时对于一对相对性状的遗传问题,可采用教材中配子间连线的方法(估称连线法)或棋盘法直接写出。
对于两对或更多对相对性状的遗传题型,运用分枝法将更为简练(示例从略)。
B.逆推类型(以果索因)据子代的基因型、表现型或比例求亲代的基因型、表现型。
对于这类题型常用下面两种方法处理。
(1)隐性纯合突破法出现隐性就能写出基因型,如绿色皱粒豌豆为yyrr;出现显性性状就能写出一部分基因型,如黄色圆粒豌豆为Y_____R______。
(2)根据后代的分离比解题两对(或多对)相对性状的自由组合的同时,每对相同性状还要进行分离,因此对于多对性状的题目,先研究每一对性状,然后再把它们组合起来。
通过刚才分析,关于两对(或多对)相对性状的遗传题目,先研究每一对相对性状(基因),再把它们的结果综合起来,比较省劲,在以后范例解析中将会见到很多的这种解题方法。
经典例题解析:【例1】基因型为AAbbCC与aaBBcc的小麦进行杂交,这三对等位基因分别位于非同源染色体上,F1杂种形成的配子种类数和F2的基因型种类数分别是A.4和9B.4和27C.8和27D.32和81剖析:考查基因自由组合定律,能力要求B。
AabbCC与aaBBcc杂交,产生的F1基因型是AaBbCc,让其自交,则产生配子种类数为23,基因型种类数33。
答案:C【例2】桃的果实成熟时,果肉与果皮黏连的称为黏皮,不黏连的称为离皮,果肉与果核黏连的称为黏核,不黏连的称为离核。
已知离皮(A)对黏皮(a)为显性,离核(B)对黏核(b)为显性,现将黏皮、离核的桃(甲)与离皮、黏核的桃(乙)杂交,所产生的子代出现4种表现型。
由此推断,甲、乙两株桃的基因型分别是A.AABB、aabbB.aaBB、AAbbC.aaBB、AabbD.aaBb、Aabb剖析:考查自由组合定律在实践中的应用,能力要求B。
根据题目给出的表现型可以写出其基因型是甲:aaB_,乙:A_bb,再根据两者所产生的子代有4种表现型这一条件,可以判断出两个亲本各产生两种配子,由于两个亲本各有一对纯合基因,所以另一对基因一定是杂合的,即:甲aaBb,乙:Aabb。
答案:D【例3】对某生物进行测交试验,后代出现四种表现型。
数目为58∶60∶56∶61,下列4种基因型中,不可能是该生物基因型的是(不考虑连锁)A.AaBbCcB.AABbCcC.AaBbCCD.AaBBCc剖析:测交后代比例约为1∶1∶1∶1,则该生物含有2对等位基因。
答案:A【例4】让杂合高茎豌豆自交,后代中出现高茎和矮茎两种豌豆,且两者的比例大约为3∶1,这种现象在遗传学家上称为A.性状分离B.诱发突变C.染色体变异D.自然突变剖析:在一对相对性状的遗传中,杂合子中的一对等位基因分离进入不同的配子中,使后代出现3∶1的性状分离比。
答案:A【例5】已知水稻高秆(T)对矮秆(t)为显性,抗病(R)对感病(r)为显性,这两对基因在非同源染色体上。
现将一株表现型为高秆、抗病的植株的花粉授给另一株表现型相同的植株,所得后代表现型是高秆∶矮秆=3∶1,抗病∶感病=3∶1。
根据以上试验结果,判断下列叙述错误的是A.以上后代群体的表现型有4种B.以上后代群体的基因型有9种C.以上两株亲本可以分别通过不同杂交组合获得D.以上两株表现型相同的亲本,基因型不相同剖析:考查基因的自由组合定律,能力要求B。
两株表现型为高秆(T_)抗锈病(R_)的植株杂交,其后代出现了高秆∶矮秆=3∶1,抗病∶感病=3∶1比例,根据分离定律和自由组合定律可知,这两个亲本的两对基因都是杂合的,即TtRr×TtRr,说明这两株表现型相同的亲本,其基因型亦是相同的。