空间解析几何(练习题(答案))
第8章 空间解析几何(题库)答案
第八章 空间解析几何(题库)A 组 基础题1.(8-1)点关于原点的对称点是( D ).()2,3,1M -A.B.C.D.()2,3,1--()2,3,1---()2,3,1-()2,3,1--2.(8-2)设与均为非零向量,且,则必有( C ).a b a b ⊥A. B.a b a b +=+a b a b -=-C.D.a b a b +=-a b a b +=- 3.(8-2)设均为非零向量,则与不垂直的向量是( D ).,,a b ca A.B.C.D.()()a cb a bc ⋅-⋅ a b b a a a⋅-⋅ a b ⨯ ()a ab a +⨯⨯ 4.(8-2)已知均为单位向量且满足关系式,则(,,a b c0a b c ++= a b b c c a ⋅+⋅+⋅= A ).A. B. C. D.32-11-325.(8-2).()()a b a b +⨯-=2b a ⨯ 6.(8-2)设两两垂直,,,,则.,,a b c 1a = b = 1c = a b c +-=27.(8-1)已知两点和,则与向量同方向的单位向量为()10,1,2M ()21,1,0M -12M M. 122,,333⎛⎫- ⎪⎝⎭8.(8-2)已知向量的终点,它在轴上的投影依次为,则AB()2,1,7B -,,x y z 4,4,7-的始点坐标是.AB()2,3,0-9.(8-2)设,向量与同时垂直,且在上的()()()2,3,1,1,2,3,2,1,2a b c =-=-=v ,a b c 投影为,则.1v = 511,,77⎛⎫⎪⎝⎭10.(8-2)设,则以为邻边的平行四边形的面积.()4,3,,6a b a b π=== ,a b S =611.(8-2)已知,且,则.2,a b == 2a b ⋅= a b ⨯=212.(8-4)直线与的关系是( C ).127:27x y z L x y z +-=⎧⎨-++=⎩23638:20x y z L x y z +-=⎧⎨--=⎩A. B. 与相交但不一定垂直 C. D. 与是异面直线12L L ⊥1L 2L 12//L L 1L 2L 13.(8-6)曲线在平面上的投影柱面的方程是( C ). 2221:1645230x y z l x z ⎧+-=⎪⎨⎪-+=⎩xOy A.B.2220241160x y x +--=22441270y z z +--=C. D. 22202411600x y x z ⎧+--=⎨=⎩224412700y z z z ⎧+--=⎨=⎩14.(8-6)曲线在平面上的投影的方程是( C ).222222416:44x y z l x y z ⎧+-=⎪⎨++=⎪⎩xOy A.B. C. D. 224x y +=22440x y z ⎧+=⎨=⎩2240x y z ⎧+=⎨=⎩2244x y z ⎧+=⎨=⎩15.(8-6)方程在空间解析几何中表示( B ). 221492x y y ⎧+=⎪⎨⎪=⎩A. 椭圆柱面B. 椭圆曲线C. 两个平行面D. 两条平行线16.(8-4)设直线及平面,则(3210:21030x y z L x y z +++=⎧⎨--+=⎩:4220x y z π-+-=L C ).A. 平行于B. 在上C. 垂直于D. 与斜交ππππ17.(8-4)已知两条直线和互相垂直,则( 21221x y z +-==-13142x y z m --+==-m =C ).A.B.C.D.4-2-3518.(8-5)将坐标面上的双曲线绕轴旋转一周,所生成的旋转曲面xOy 224936x y -=x 方程为,绕轴旋转一周,所生成的旋转曲面方程为22249936x y z --=y .22249436x y z -+=19.(8-4)过点且与直线垂直的平面方程是.()1,2,1M -1331x t y t z t =-+⎧⎪=-⎨⎪=-⎩340x y z --+=20.(8-3)平行于平面且过点的平面方程为. zOx ()2,5,3-50y +=21.(8-3)通过轴和点的平面方程为.z ()3,1,2--30x y +=22.(8-3)平行于轴且经过两点和的平面方程为. x ()4,0,2-()5,1,7920y z --=23.(8-3)过点,且在三个轴上截距相等的平面方程为.()5,7,4-,,x y z 20x y z ++-=24.(8-3)过点且平行于向量与的平面方程为()1,0,1-()2,1,1a = ()1,1,0b =-.340x y z +--=25.(8-3)过点且垂直于两平面和的平面方程为()1,2,10x y +=50y z +=.540x y z -+-=26.(8-3)过原点及过点,且与平面垂直的的平面方程为()6,3,2-428x y z -+=.2230x y z +-=27.(8-3)点到平面的距离. ()1,2,122100x y z ++-=d =128.(8-4)设直线上与点的距离最近的点为. 73:121x y z L +-==-()3,2,6()3,1,0-29.(8-4)直线的对称式方程为.124x y z x y z -+=⎧⎨++=⎩12113x ty t z t=-⎧⎪=+⎨⎪=+⎩30.(8-4)点在平面上的投影为.()1,2,0-210x y z +-+=522,,333⎛⎫- ⎪⎝⎭31.(8-1)若为共线的单位向量,则它们的数量积( D ).,a ba b ⋅= A.B.C.D.11-0()cos ,a b 32.(8-2)已知向量,则垂直于且垂直于轴的单位向量是( C ).a i j k =++a y A. B.)i j k ++)i j k ±-+C. D.)i k -)i k + 33.(8-3)平面与平面的位置关系是( A ). 1234x y z++=2341x y z +-=A. 相交但不垂直 B. 互相垂直 C. 平行但不重合D. 互相重合B 组 提高题1.(8-2)设均为非零向量,且满足,,则,a b ()()375a b a b +⊥- ()()472a b a b -⊥-与的夹角等于( C ).a bA.B.C.D.02π3π23π2.(8-4)直线与直线的夹角为( B ).1158:121x y z L --+==-26:23x y L y z -=⎧⎨+=⎩A.B.C.D.2π3π4π6π3.(8-4)过原点且与直线垂直的直线方程为. 213231x y z ---==3816x y z==-4.(8-2)设,求以和为边的平行四边形的面积.()4,3,,6a b a b π=== 2a b + 3a b - 解:,则面积()()235a b a b b a +⨯-=⨯()55sin ,30S b a a b a b =⨯=⋅⋅= 5.(8-2)已知,问为何值时,才能使与()22,5,,3a b a b π=== λ17A a b λ=+ 垂直.3B a b =-解:由于与垂直,则有,即A B0A B ⋅=()22351170a a b b λλ+-⋅-= 因此,,()()22351cos ,170a a b a b b λλ+-⋅⋅-= 代入,整理得.()22,5,,3a b a b π=== 40λ=6.(8-4)求经过直线且平行于直线的平面1123:101x y z L ---==-221:211x y zL +-==的方程.解:直线上有点,其方向向量,直线的方向向量1L ()1,2,3P ()11,0,1l =- 2L ()22,1,1l =,由已知得所求平面同时垂直于直线及直线,其法向量1L 2L ,()121,3,1n l l =⨯=-由所求平面过点,得平面点法式方程为()1,2,3P ,()13230x y z ---+-=化为一般式方程为.320x y z -++=7.(8-4)求直线与直线的公垂线方程.1250:240x y L y z ++=⎧⎨--=⎩20:240y L x z =⎧⎨++=⎩解:直线的方向向量1L ,()11202,1,2021i j k l ==--直线的方向向量2L , ()20102,0,1102i j kl ==-则共垂线的方向向量,()121,2,2l l l =⨯=--设公垂线上任意一点为,与直线上有点由公垂线与直线相(),,P x y z 1L ()1,3,10Q --1L 交,即两直线共面得, 121,,2120122x yz PQ l l ++⎡⎤=-=⎣⎦--化简得, 22140x y z +++=同理直线与公垂线相交,得2L ,25480x y z +++=因此,所求公垂线方程为.2214025480x y z x y z +++=⎧⎨+++=⎩8.(8-3)求平面和平面的交角的平分面方程. 2260x y z +-+=4880x y z -+-=解:设所求平面上任意一点为,由已知可得点到两平面的距离相等,则有(),,P x y z P22648839x y z x y z +-+-+-=化简得所求平面方程为或.714260x y z -+-=752100x y z +++=9.(8-6)求曲面与平面的交线在面上的投影方程.2229x y z ++=1x z +=xOy 解:化简得.()22219x y x z ⎧++-=⎪⎨=⎪⎩2222800x y x z ⎧+--=⎨=⎩10.(8-3)一平面通过点,它在轴、轴上的截距相等,且该平面在三个坐标轴()1,2,3x y 上的截距均为正数,则截距分别为何值时,它与三个坐标面所围成的空间几何体的体积最小?并求此时的平面方程. 解:设所求平面方程为,由点在此平面上,得出. 1x y z a a c ++=()1,2,3()333ac a a =>-此平面与三个坐标面所围成的空间几何体的体积,()()313623a V a a c a a =⋅⋅=>-计算得,因此时,时,可得出当,()()222923a a V a -'=-932a <<0V '<92a >0V '>92a =时几何体的体积最小,此时平面与三个坐标轴截距分别为,平面方程为9c =99,,922.2290x y z ++-=。
8第八章空间解析几何答案
8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。
4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。
空间解析几何练习与答案
空间解析几何与向量代数测试题一、 选择题(每小题6分,共24分 )1.点)1,3,2(-M 关于xoy 平面的对称点是( )(A ))1,3,2(-- (B ))1,3,2(--- (C ))1,3,2(-- (D ))1,3,2(-2.设向量,+=,则必有( )(A )=- (B )=+ (C )0=⋅ (D )=⨯3.向量{}z y x a a a ,,=,{}z y x b b b ,,=,{}z y x c c c ,,=, 则p n m a -+=34在x 轴上投影是( )(A )x x x c b a -+34 (B )()x x x c b a -+±34(C )x x x c b a -+34 (D )y y y c b a -+344.平面0=+++D Cz By Ax 过x 轴,则( )(A )0==D A (B )0,0≠=D A (C )0,0=≠D A (D )0==C B二、填空题 (每小题6分,共30分 )1.向量{}z y x a a a ,,=与三坐标轴正向夹角分别为γβα,,,则的方向余弦中的=αcos _____________2.平面0218419=++-z y x 和0428419=++-z y x 之间的距离等于__________3.球面2222R z y x =++与a z x =+交线在xoy 平面上投影曲线的方程是______________(其中R a <<0)4.设向量a 的方向角3πα=,β为锐角,βπγ-=,且4=,则=___________.5.方程14222=+-z y x 表示的曲面是______________ 三、解答下列各题(46分 )1.(12分) 求经过原点且垂直于两平面 0352:1=++-z y x π,073:2=--+z y x π的平面方程。
2.(12分)已知ABC ∆的顶点分别为)3,2,1(A ,)5,4,3(B 、)7,4,2(C ,求ABC ∆的面积.3.(10分)设{}1,4,1-=,{}5,4,3-=,求∧),sin(b a4.(12分)一直线在xoz 坐标面上,且过原点又垂直于直线 152132-=-+=-z y x ,求它的对称式方程.空间解析几何与向量代数测试题答案一、1.C 解:y x ,坐标不变,z 坐标变为相反数2.C 解:由已知条件得22)()(b a b a +=- ⋅-=⋅∴22 即0=⋅3. A解:由向量的线性运算易得)34,34,34(z z z y y y x x x c b a c b a c b a a -+-+-+=又向量a 在x 轴的投影就是直角坐标系中的坐标x a即 x x a a j =Pr =x x x c b a -+344. A 解:平面必过原点故0=D ;0,}0,0,1{,},,{=⇒⊥==A i i C B A .二、1.222z y x xa a a a ++ 2.1 解:184194221222=++-=d3.⎩⎨⎧==-++0)(2222z R x a y x 解:⎩⎨⎧=+=++a z x R z y x 2222消去z 得:2222)(R x a y x =-++ 与0=z 联立得 ⎩⎨⎧==-++0)(2222z R x a y x 4.{}6,6,2- 解:43411)(cos cos ,21cos 22=-=-+=βπβα }6,6,2{}223,223,21{4223cos cos 83cos 2-=-⋅=⇒=-=⇒=⇒a γββ5.单叶双曲面三、解:1. 21,ππ法向量分别为{}5,1,21-=n ,{}1,3,12-=n …………….….4分 所求平面法向量为{}7,7,1421-=⨯=n n n ………………8分 又平面经过原点,故所求平面方程为 02=--z y x ……..………12分2.解:根据向量积的定义,可知三角形的面积A S ABC =∠=∆……………3分 由于{}{}421,2,2,2,,==,因此2642122+-==⨯ ………… 7分于是142)6(4216421222=+-+=+-=∆S ABC …………10分 3.()533018,cos -=-==∧ ………….5分 ()54,sin =∧ ……..…....10分 4.由直线在xoz 面上,可知此直线垂直于y 轴。
大学知识第八节 空间解析几何
空间解析几何1. 在空间直角坐标系中,由参数方程sin 1cos 042sin 2x y z θπθθθ⎧⎪=⎪⎛⎫=-+≤<⎨ ⎪⎝⎭⎪⎪=⎩确定的曲线的一般方程是( )。
22220.20x y A y y z ⎧+=⎨++=⎩ 22220.20x y B y z z ⎧+=⎨++=⎩22220.20x y y C z y ⎧++=⎨+=⎩ 22220.20x y x C y z ⎧++=⎨+=⎩1.【答案】C【解析】联立x=sin θ,y=-1+cos θ消去θ得2220x y y ++=,可知选择C. 2. 设112233(,),(,),(,),A x y B x y C x y 为平面上不共线的三点,则三角形ABC 的面积为() AB AC ⋅ B.12AB AC ⋅ D. AB AC ⋅ 2.【答案】B【解析】由行列式的定义展开计算可得。
3.直线L:12x -:2x y z τ++=A.平行 B.相交但不垂直 C 垂直 D.直线L 在平面上 3.【答案】B 。
【解析】由题意得:直线l 的方向向量为m =(2,-1,一3), 平面τ法向量n =(1,1,1),易知m 与n 不共线,且mn ≠0,而直线l 上的点(1,-1,2)在平面τ上,故两者相交但不垂直。
故选择B 。
4.方程2221x y z -+=-所确定的二次曲面是( )A. 椭球面B.旋转双曲面C. 旋转抛物面D. 圆柱面4.【答案】B5.方程22211694x y z -+=所确定的二次曲面是( )A. 椭球面 B 。
旋转双曲面 C. 旋转抛物面 D. 圆柱面5.【答案】B6.已知抛物面方程222=x y z +(1)求抛物面上在点(1,1,3)M 处的切平面方程;(2)当k 为何值时,所求的切平面与平面340x ky z +-=相互垂直。
6.【解析】(1)令22(,,)2F x y z x y z =+- 则4,2,1F F F x y x y z∂∂∂===-∂∂∂。
空间解析几何与向量代数三
高等数学( B )—向量代数与空间解析几何练习题及解答1、 已知 M 11,2,3 , M 2 0,1, 2 ,M 1M 2 的坐标式? M 1M 2 ?与 M 1M 2 平行的单位向量?方向余弦?[解]:1) M 1M 20 1,1 2, 2 31,1,5M 1M 2 21 222)1 5 273) cosx 2 x 1 1,cosy 2 y 1 1,cosz 2 z 1 5M 1M 227 M 1M 227M 1M 2274)与 M 1M 2 平行的单位向量为:cos ,cos ,cos1 , 1 , 5 。
272727x 1y z 1 x y 1z 2 2、 设直线n4与直线1平行,求 n,m 。
2m3[解 ] : s 12,n,4 , s 2 m,1,3 ,因为两直线平行,r m 1 n 1 p 1 2 n 4 4 3 所以 l 1 / /l 2s 1 / / s 2s 1s 2。
m 2n 2 p 2n, m2m 1 333Ax y 2z 1 与平面: 3x y z3垂直,求 A 。
、 已知平面:[解 ] : n 1A,1, 2 , n 2 3, 1,1 ,因为两平面垂直,所以12n 1 n 2 n 1 n 2 0 A 1 A 2 B 1B 2 C 1C 2 0 A 3 1 1 210 A14、 已知平面x 1 y z 1 : x By 3z 1 0 与直线4垂直,求 B , m 。
m6[ 解 ]: n 1,B, 3 , s m,4,6 ,因为垂直,所以有n/ / s n s 0m4 6 。
1BB2, m 235、 求由 a 1,2,3 , b 1,2,4 为邻边组成的平行四边形的面积。
[ 解] :由两向量叉积的几何意义知:以a ,b 为邻边组成的平行四边行的面积S a bi j k86, 43,222,7,4a b 123,因为124故 S a b22269 。
7426、求以A x1, y1, z1, B x2, y2, z2, C x3 , y3, z3为顶点的三角形面积。
(完整版)空间解析几何与向量代数习题与答案
第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
高中数学解析几何深度练习题及答案
高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
空间解析几何(练习题参考答案)
1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.39.02=+-z y3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.7.)51,1,57(.5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A .4B .1C .21D .2 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A .5B .61 C .51 D .81 5.D 7.D 8.B 9.A 10.A .3.当m=_____________时,532+-与m 23-+互相垂直.4.设++=2,22+-=,243+-=,则)(b a p r j c += .4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.3.34-=m ; 4.2919 9.332212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴旋转而成.1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=,则=⨯⨯)(( ) A .8 B .10 C .{}1,1,0-- D .{}21,1,23.若==-+=,则14//236( ) A .)4612(-+± B .)612(+± C .)412(-± D .)46(-± 4.若ϕ与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C .3π D .4π6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A .2π B .6π C .3π D .4π 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90oD .65arcsin1.D 3.A 4.C 6.C 8.A 9.D7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点. 3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________.1.设32+-=,+=2,++-=,则与+是否平行__________.1.不平行7.33222±=++z y x ; 8.25102-=-z x ;9.双叶双曲面; 10.⎩⎨⎧==+--++02342222x z y z yz y练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=b a λ或两向量对应坐标成比例。
(完整版)高等数学空间解析几何与向量代数练习题与答案.doc
空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
2024年数学九年级上册解析几何基础练习题(含答案)
2024年数学九年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 已知点P在第二象限,且到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (3, 4)B. (3, 4)C. (4, 3)D. (4, 3)3. 直线y=2x+1的斜率是()A. 1B. 2C. 1D. 24. 下列函数中,哪一个是一次函数?()A. y=x^2B. y=2xC. y=x^3D. y=1/x5. 在平面直角坐标系中,点A(1, 2)和点B(2, 4)所在的直线方程是()A. y=2x+4B. y=2x+4C. y=x+3D. y=x+36. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是()A. k>0, b>0B. k<0, b>0C. k>0, b<0D. k<0, b<07. 下列各点中,哪一个点不在直线y=x+3上?()A. (1, 2)B. (2, 1)C. (1, 4)D. (2, 5)8. 已知直线y=2x+1与y轴的交点坐标是(0, a),则a的值为()A. 0B. 1C. 2D. 19. 在平面直角坐标系中,两条平行线的斜率分别是2和2,则这两条直线()A. 相交B. 平行C. 重合D. 垂直10. 已知一次函数y=kx+b的图象与y轴交于点(0, 3),且过点(1,5),则该函数的解析式为()A. y=2x+3B. y=3x+3C. y=2x+3D. y=3x+3二、判断题:1. 一次函数的图象是一条直线。
()2. 两条平行线的斜率一定相等。
()3. 一次函数y=kx+b中,当k>0时,直线必经过第一象限。
()4. 点(0, 0)是所有直线上的点。
()5. 直线y=2x+1的斜率为2,说明直线与x轴的夹角为60度。
空间解析几何习题答案解析(最新整理)
一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。
7空间解析几何与向量代数习题与答案
空间解析几何与向量代数第七章 A 一、)?6(a?6,7,1、平行于向量的单位向量为______________.)0,,)和2M(3M(4,2,1MM.设已知两点的模,方向余弦和方向角,计算向量2、2121pn?4m?3j?5i??4ka?7nim?3?5j?8k,?2i?4j?k,p轴设3、在,求向量x .上的投影,及在y轴上的分向量二、;?b?b?2b及aab2()(?2a)?3及a k?2k,b??2j?iia?3?j(1)的、(3)ab1、设,求 .夹角的余弦1,2),M(3,3,?1),M(3,1,3),(M1MM,MM同时垂直的单位向量.,求与2、知31232211??b?z轴?与a??),4?(2,1?a?(3,5,2),b满足设.3、_________时,,问三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.222?2x?4y??y2?zz?x0表示______________曲面2、方程.2x?y2 __将xOy坐标面上的轴旋转一周,生成的曲面方程为绕x、31)___________________._____________,曲面名称为22xy2x??生成的曲面方程坐标面上的2)将xOyx轴旋转一周,绕___________________._____________,曲面名称为2236??9y4x轴旋转一周,生成的曲面方轴及yxOy坐标面上的绕x3)将_____________________._____________程为,曲面名称为2xy?在空间解析几何中)在平面解析几何中图形。
表示____________ 42x?y图形.表示______________ )画出下列方程所表示的曲面 5222)(x?y4z? (1)222)??4(xyz (2)四、22?yx1???图形,在空间解1在平面解析几何中表示____________、指出方程组94??3y??图形.析几何中表示______________2229?zx??y1?x?z.面上的投影方程的交线在2、求球面与平面xOy22222?ax(a?0xy?)yxa0?z???的公共部分在、求上半球与圆柱体3xOy面及xOz面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a=(2,1,1)和b=(1,-1,0)的平面方程.33、求平行于xOz面且过点(2,-5,3)的平面方程.4、求平行于x轴且过两点(4,0,-2)和(5,1,7)的平面方程.六、1?3zyx???、求过点1(1,2,3)且平行于直线.的直线方程521 2??3zy1?zx?2且与两平面2、求过点(0,2,4)平行的直线方程,.0?7??x?2y4z? .垂直的平面方程(2,0,-3)3、求过点且与直线?0z?5x3?y2?1??x?4y?3z??的平面方程且通过直线. 4、求过点(3,1,-2)152 x?y?3z?0?x?y?z?1?0的夹角5、求直线.与平面?0??zyx??6、求下列直线与直线、直线与平面的位置关系x?2y?z?7?x?1y?3z??;与直线1)直线?7??2xy?z?112??? x?2y?2z?3??和平面2)x+y+z=3.直线43?1x?y?z?1?0?到直线、求点7(3,-1,2)的距离.?04????2xyz?5B c,a,b a?c?c?a?b?c?0b?b?a.1、已知(:为非零矢量),试证)ba,},求?(,a?b?{11,13a?b?, .2、a)tb(a?tb|a?|b?t b.取何值时,向量模和为两非零向量,问已知3、最小?并证明此时n)86,(a?3,xan?n? 4、求单位向量,使轴,其中.且?0?y?5z2x?z的平面方程轴,且与平面.的夹角为5、求过3)5()1,2M?3,,?1,(M40?3y?6x2?z7?.的平面,、求过点6,且垂直于2160?1??2y?zx?zxyl??.:、求过直线,且与直线平行的平面7?202?y?z?2x?21?1? 1?y??1?x?y?z:L.垂直相交的直线方程求在平面、上,:且与直线8?1?z??),2M(1,43M(,1,8)kg100,计算重力所做的功的物体从空间点9、设质量为,移动到点21m(长度单位为.)22?02xy?z??xoy坐标面上的投影曲线的方程,并指出原曲线是什么曲在10、求曲线?3z??线?OA?i?3k,OB?j?3k?OAB的面积,求、已知1170??z2x?4y?1??z4x?y.12、.求直线在平面上的投影直线方程?0??9y?2z3x??C?????????,c?0,??a,b,c?a?b?0,不全为零有相同起点,且,1、设向量,其中cb,a,终点共线证明:.?212y?x?)2,?1M(1,??L.且与直线,求过点角的直线方程:相交成2、0112?3z3y?x?1??0)3x?4y?z??10,(?10,4相交的直线方且平行于平面、过又与直线3211程.2z?yzxy1x?LL????.4、求两直线::与直线的最短距离210?3?160?1xoy}1,1,g?{1,,母线平行于向量5、柱面的准线是面上的圆周(中心在原点,半径为1) .求此柱面方程a?xb?a?lim?)b(?2,a,b.非零,a,b,求6、设向量x30?x x?2y??L:绕y轴旋转一周所围成曲面方程7、求直线. ?1)1y?(?z??2?第七章空间解析几何与向量代数答案习题 A 8?667??,?, 1一、、??111111?????12132?????????,cos,coscos????,,MM ,2、=2,21222334a在x轴上的投影为7j3、,在y轴上的分量为1331)???2)?(?a?b?31?(?1)?2?(二、11)、kijk?7?5i?j3a?b??1?212?1k2j?14(??18a?2b?2a?b)?10i?62(?a)?3b??(a?b),(2)3ba?^??cos(a,b)(3)ba?212}2?,2,{?2,4,?1},MM?{0MM 2、3122kijk44j???MM?24?1?6iMa?M3221220?4??4a6},,???{a172172217即为所求单位向量。
大学解析几何考试题及答案
大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。
「空间解析几何复习资料含答案」
空间解析几何练习题1. 求点),,(c b a M 分别关于(1)xz 坐标面(2)x 轴(3)原点 对称点的坐标.2. 设 )2,,3(x A -与)4,2,1(-B 两点间的距离为29,试求x .3. 证明 )3,2,1(A )5,1,3(B )3,4,2(C 是一个直角三角形的三个顶点.4. 设ABC ∆的三边a BC =,b CA =,c AB =,三边的中点依次为D ,E,F ,试用向量c b a表示 AD ,BE ,CF ,并证明:0=++CF BE AD .5. 已知:k j i a 2+-=,k j i b -+=3求b a 32+,b a 32-.6. 已知:向量a 与x 轴,y 轴间的夹角分别为060=α,0120=β求该向量a 与z 轴间的夹角γ.7. 设向量a 的模是5,它与x 轴的夹角为4π,求向量a 在x 轴上的投影. 8. 已知:空间中的三点)2,1,0(-A ,)5,3,1(-B ,)2,1,3(--C 计算:AC AB 32-,AC AB 4+.9. 设{}1,0,2-=a ,{}2,2,1--=b 试求b a -,b a 52+,b a +3. 10. 设:{}1,2,2-=a ,试求与a 同方向的单位向量.11. 设:k j i a 253++=,k j i b 742--=,k j i c 45-+=,c b a u -+=34试求(1)u 在y 轴上的投影;(2)u 在x 轴和z 轴上的分向量;. 12. 证明:22)()(b a b a b a -=-⋅+. 13. 设:{}1,0,3-=a ,{}3,1,2--=b 求b a ⋅,∧⋅)(b a .14. 设→→→→-+=k j x i a 2,→→→→+-=k j i b 23且→→⊥b a 求x 15. 设{}2,1,0-=a ,{}1,1,2-=b 求与a 和b 都垂直的单位向量.16. 已知:空间中的三点)0,1,1(A ,)3,1,2(-B ,)2,1,2(-C 求ABC ∆的面积.17. (1)设a ∥b 求b a ⋅ (2)1==求b a ⋅18. 3=5=,试确定常数k 使b k a +,b k a -相互垂直.19. 设向量a 与b 互相垂直,∧⋅)(c a 3π=,∧⋅)(c b 6π=1=2=3=b ++.20. 设:k j i a 53+-=,k j i b 32+--=求b a ⋅21. 设:k j i a --=63,k j i b 54-+=求(1)a a ⋅;(2))3()23(b a b a -⋅+;(3)a 与b 的夹角.22. 设:∧⋅)(b a 6π=1=3=,.23. 设:{}2,1,1-=a ,{}1,2,1--=b ,试求:(1)b a ⋅;(2)b a ⨯;(3)∧⋅)cos(b a .24. 3=26=72=,求b a ⋅.25. 设a 与b 相互垂直,3=4=,试求(1))()(b a b a -⨯+;(2))2()3(b a b a -⨯-. 26. 设:0=++c b a 证明:a c c b b a ⨯=⨯=⨯27. 已知:k j i a -+=23,k j i b 2+-=,求(1)b a ⨯;(2))32()2(b a b a -⨯+;(3)i b a ⨯+)((4)b i a +⨯. 28. 求与{}1,2,2=a {}6,10,8---=b 都垂直的单位向量.29. 已知:{}1,6,3--=a ,{}5,4,1-=b ,{}12,4,3-=c 求c b a b c a )()(⋅+⋅在向量c 上的投影. 30. 设:d c b a ⨯=⨯,d b c a ⨯=⨯且c b ≠,d a ≠证明d a -与c b -必共线. 31. 设:b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求非零向量a 与b 的夹角.32. 设:{}6,3,2-=a {}2,2,1--=b 向量c 在向量a 与b 423=,求向量c 的坐标.33. 4=3=,∧⋅)(b a 6π=求以b a 2+和b a 3-为边的平行四边形面积.34. 求过点)1,2,7(0-P ,且以{}3,4,2-=n 为法向量的平面方程.ﻩ35. 过点)1,0,1(0-P 且平行于平面53=--z y x 的平面方程. ﻩ36. 过点)2,3,1(-M 且垂直于过点)1,2,2(-A 与)1,2,3(B 的平面方程. 37. 过点)2,1,3(-A ,)1,1,4(--B ,)2,0,2(C 的平面方程.38. 过点)1,1,2(0P 且平行于向量{}1,1,2=a 和{}3,2,3-=b 的平面方程.39. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 40. 将平面方程 01832=+-+z y x 化为截距式方程,并指出在各坐标轴上的截距.41. 建立下列平面方程(1)过点(3-,1,2-)及z 轴;(2)过点A(3-,1,2-)和B(3,0,5)且平行于x 轴; (3)平行于x y 面,且过点A(3,1,5-);(4)过点P 1(1,5-,1)和P 2(3,2,2-)且垂直于x z 面. 42. 求下列各对平面间的夹角(1),62=+-z y x 32=++z y x ;(2)09543=--+z y x ,07662=-++z y x . 43. 求下列直线方程(1)过点(2,1-,3-)且平行于向量{}123,,--=s ; (2)过点M o (3,4,2-)且平行z 轴; (3)过点M 1(1,2,3)和M 2(1,0,4); (4)过原点,且与平面0623=-+-z y x 垂直. 44. 将下列直线方程化为标准方程(1)⎩⎨⎧=--+=-+-084230432z y x z y x ; (2)⎩⎨⎧-=+=422z y y x ; (3)⎩⎨⎧=+=-+00123z y z x45. 将下列直线方程化成参数式方程(1)⎩⎨⎧-==-+-250125z y z y x ; (2)⎪⎩⎪⎨⎧=-+=-025126y z x .46. 求过点(1,1,1)且同时平行于平面012=+-+z y x 及012=+-+z y x 的直线方程.47. 求过点(3,1,2-)且通过直线12354zy x =+=-的平面方程. 48. 求通过两直线211111-=-+=-z y x 与 112111-=+=--z y x 的平面方程. 64.求下列各对直线的夹角 (1)74211+=-=-z y x ,131256--=-=+z y x ; (2)⎩⎨⎧=-+-=-+-012309335z y x z y x ,⎩⎨⎧=-++=+-+0188302322z y x z y x .49. 证明直线31141+=-=-z y x 与 ⎩⎨⎧=--+=++0207z y x z y x 相互平行. 50. 设直线 l的方程为:nz y x 42311+=--=- 求n为何值时,直线l 与平面052=+--z y x 平行?51. 作一平面,使它通过z 轴,且与平面0752=--+z y x 的夹角为3π.52. 设直线l在平面01:=+++z y x π 内,通过直线⎩⎨⎧=+=++0201:1z x z y l与平面π的交点,且与直线l1垂直、求直线l 的方程. 53. 求过点(1,2,1)而且与直线⎩⎨⎧=-+-=+-+01012z y x z y x 与 ⎩⎨⎧=+-=+-02z y x z y x 平行的平面方程. 54. 一动点到坐标原点的距离等于它到平面04=-z 的距离,求它的轨迹方程.55. 直线⎩⎨⎧=-+=-+023012:z x y x l 与平面012:=--+z y x π 是否平行?若不平行,求直线l与平面π的交点,若平行,求直线l 与平面π的距离.56. 设直线l经过两直线35811:1--==--z y x l ,⎪⎩⎪⎨⎧--=+=+=tz t y tx l 101152143:2 的交点,而且与直线l 1与l 2都垂直,求直线l 的方程. 57. 已知直线:⎩⎨⎧=-+-=+-+04201:1z y x z y x l 及点 )213(,,-p 过点p作直线l与直线l 1垂直相交,求直线l的方程.58. 方程:019224222=-+--++z y x z y x 是否为球面方程,若是球面方程,求其球心坐标及半径. 59. 判断方程:11462222=-+-++z y x z y x 是否为球面方程,若是球面方程,求其球心坐标及半径.60. 将曲线:⎩⎨⎧==052y xz 绕x 轴旋转一周,求所成的旋转曲面方程.61. 将曲线:⎩⎨⎧==+0369422z y x 绕y 轴旋转一周,求所成的旋转曲面方程.62. 说明下列旋转曲面是怎样形成的(1)10343222=++z y x ; (2)24222=+-z y x ; (3)1222=--z y x ; (4)222)(y x a z +=-. 63. 指出下列方程在空间中表示什么样的几何图形(1)14322=+y x ; (2)13222=-y x ; (3)x z 42=; (4)13422=+z y .自测题 (A )(一) 选择题1.点M)5,1,4(-到 x y 坐标面的距离为( )A.5 B.4 C.1 D.422.点A )3,1,2(-关于y z 坐标面的对称点坐标 ( ) A.)3,1,2(-- B .)3,1,2(-- C.)3,1,2(- D .)3,1,2(-- 3.已知向量{}{}{}3,1,4,2,2,2,1,5,3--==-=c b a ,则=+-c b a 432( )A .{}16,0,20B .{}20,4,5-C .{}20,0,16- D.{}16,0,20- 4.设向量k j i a 424--=,k j i b 236+-=,则)3)(23(b a b a +-=( ) A.20 B .16- C.32 D.32-5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A.4 B .1 C.21D.2 6.设=-⨯+-+=+-=)()(22b a b a k j i b k j i a ,则, ( ) A .k j i 53++- B.k j i 1062++- C.k j i 1062-- D .k j i 543++ 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A.平行 B.垂直 C.相交 D.重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B .垂直 C.斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A.5 B .61 C.51 D.81 (二) 填空题1.设=--x B x A ,则,两点间的距离为,,与29)421()2,,3(_________.2.设c b a u 23-+-=,c b a v +-=2,则=-v u 32_______________. 3.当m=_____________时,k j i 532+-与k j m i 23-+互相垂直.4.设kj i a ++=2,kj i b 22+-=,kj i c 243+-=,则)(b a prj c += .4. 设k j i a +-=2,k j i b 32-+=,则)2()2(b a b a -⨯+=_________. 5. 与)0,3,4()1,2,3(--B A 和等距离的点的轨迹方程为_______________. 6. 过点),,(715,),,(204-且平行于z 轴的平面方程_______________. 7. 设平面:03222,01=--+=+-+z y x z y x 与 平行,则它们之间的距离_________.8. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.(三) 解答题1.求平行于{}的单位向量2,3,6-=a .2.已知作用于一点的三个力{}{}{}5,4,3,3,2,1,4,3,2321-==--=F F F 求合力的大小与方向.3. 如果{}1,1,2-=a ,{}1,2,1-=b 求a 在b 上的投影.4. 用向量方法,求顶点在)4,4,3(),5,3,1(),1,1,2(-----的三角形的三个内角. 5. 设k i a 2+-=,k j i b -+=2,k j i c 22++=,试将下列各式用k j i ,,表示. (1) c b a ⨯⨯)(; (2))()(c a b a ⨯⨯⨯.6. 求经过点(1,2,0)且通过z 轴的平面方程.7. 在平面02=--z y x 上找一点p,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等. 8. 求过 )1,0,0(),0,1,0(),0,0,1( 的圆的方程,并求该圆在坐标平面xoy 上的投影曲线方程. 9.求过点(1,2,1)且同时平行0132=-++z y x 和053=+-+z y x 两平面的直线方程. 10.方程:12222=++z y x 表示什么图形?自测题(B)(一) 选择题1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=c b a ,则=⨯⨯c b a )(( ) A .8 B .10 C.{}1,1,0-- D.{}21,1,22.设{}{}2,2,2,2,1,1-=-=b a ,则同时垂直于a 和b 的单位向量( ) A.}0,21,21{± B.}0,21,21{± C.}0,2,2{± D.}0,2,2{±3.若==-+=b a b k j i a ,则,14//236( ) A.)4612(k j i -+± B.)612(j i +± C.)412(k i -± D.)46(k j -± 4.若ϕ的夹角与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C.3π D.4π5.过)320()231(),412(321,,和,,,,M M M ---,的平面方程( ) A.015914=--+z y x B.06872=--+z y x C .015914=-+-z y x D.015914=-++z y x 6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A.2π B .6π C.3π D .4π 7.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 各系数满足( )条件,使它与y 轴相交.A.021==A A B.2121D D B B =C.021==C CD.021==D D 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C.453 D.229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A.30o B .60o C .90o D .65arcsin10.过点)5,2,1(---且和三个坐标平面都相切的球面方程( )A .22225)1()1()1(=+++++z y x B.22225)5()5()5(=+++++z y x C.22225)2()2()2(=+++++z y x D.22225)5()5()5(=-+-+-z y x (二) 填空题1.设k j i a 32+-=,j i b +=2,k j i c ++-=,则c b a 与+是否平行__________. 2.设}8,5,3{=a ,}7,4,2{--=b ,}4,1,5{-=c ,则c b a -+34在x 轴上的投影_________________.3.化简:=⨯--⨯+++⨯++a c b b c b a c c b a )()()(__________________.4.直线 ⎩⎨⎧=---=-+-01205235:z y x z y x l 和平面 07734:=-+-z y x π的___________位置关系.5.过直线⎩⎨⎧=+-+=-+-025014z y x z y x 且与x 轴平行的平面方程___________________.6.原点==+-k kz y x ,则,的距离为到平面262)0,0,0(_________________. 7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________. (三) 解答题1.设}0,1,1{},1,1,0{},1,1,1{===c b a 并令c z b y a x d ++=(x ,y ,z 为数量) 求 (1)d ; (2)当z y x d ,,}3,2,1{时,=. 2.求平行于}2,3,6{-=a 的单位向量.3.确定k值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.4.已知两个不平行的向量a 与b ,2=⋅b a 1=4=,设)(3)(2Xa b b a c -⨯=,求(1))(c b a +⋅; (; (3)的夹角余与c b 弦. 5.求以向量i k k j j i +++,,为棱的平行六面体的体积. 6.垂直平分连接)3,5,2(),1,3,4(B A -的线段的平面方程.7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点.8.在平面02=--z y x 上找一点p 使它与点)3,1,2()1,3,4(),5,1,2(---及之间的距离相等. 9.方程:0448422=-+-+y x y x 表示什么曲面?9. 方程组⎩⎨⎧=-++=--++0122046222z y x y x z y x 图形是什么?若是一个圆,求出它的中心与半径.参考答案 参考答案练习题1.(1)),,(c b a -; (2)),,(c b a --; (3)),,(c b a ---.2.51-==x x 或. 3.算出距离后,证明满足勾股定理 4.略5.k j i b a ++=+1132; k j i b a 75732+--=-.6.13545或=γ. 7.225. 8.}13,4,11{4},18,8,11{32-=+-=-AC AB AC AB .9.}5,2,7{3},12,10,9{52},1,2,1{--=+--=+=-b a b a b a . 10.单位向量为}31,32,32{-.11.(1)7; (2)u 在x 轴的分向量i 13,u 在z 轴的分向量k 9-; (3)299=u.12.利用数量积运算法则. 13.9-=⋅b a ; 70359arccos)(-=∧πb a . 14.x =4. 15.单位向量:)24(211k j i ++±. 16.1723=∆ABC S .17.(1)若a 与b 同向,则b a b a ⋅=⋅,若a 与b反向,则b a b a ⋅-=⋅;(2))cos(b a ∧.18.53±=k . 19.3617+=++c b a . 20.16=⋅b a .21.(1)46; (2)2-; (3)4838arccos)(-=∧πb a . 22.23. 23.(1)3; (2)k j i 333--; (3)21.24.30±。
空间解析几何与向量代数复习题答案
第八章 空间解析几何与向量代数答案一、选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是(A ) A 5 B 3 C 6 D 92. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B )A (-1,1,5).B (-1,-1,5).C (1,-1,5).D (-1,-1,6).3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A )A -i -2j +5kB -i -j +3kC -i -j +5kD -2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C )A 2πB 4πC 3π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C )A 2πB 4πC 3π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A )A 138B 118C 158D 17. 设,23,a i k b i j k =-=++求a b ⨯是:( D )A -i -2j +5kB -i -j +3kC -i -j +5kD 3i -3j +3k8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A )A B 364 C 32D 39. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D )A 2x+3y=5=0B x-y+1=0C x+y+1=0D 01=-+y x .10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C );A -+a b =a b ;B =a b ;C 0⋅a b =;D ⨯a b =0.11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D );A 53; B 5; C 3; D . 13、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 (B ) A 6π; B 3π; C 4π; D 2π. 14、点(1,1,1)在平面02=+-+1z y x 的投影为 (A )(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 15、向量a 与b 的数量积⋅a b =( C ).A a rj P b a ;B ⋅a rj P a b ;C a rj P a b ;D b rj P a b .16、非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b .17、设a 与b 为非零向量,则0⨯=a b 是(A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件.18、设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是(B ).A 7B 7jC –1;D -9k19、方程组2222491x y z x ⎧++=⎪⎨=⎪⎩表示 ( B ). A 椭球面; B 1=x 平面上的椭圆;C 椭圆柱面; D 空间曲线在1=x 平面上的投影.20、方程 220x y +=在空间直角坐标系下表示 (C ).A 坐标原点(0,0,0);B xoy 坐标面的原点)0,0(;C z 轴;D xoy 坐标面.21、设空间直线的对称式方程为012x y z ==则该直线必( A ). A 过原点且垂直于x 轴; B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.22、设空间三直线的方程分别为123321034:;:13;:2025327x t x y z x y z L L y t L x y z z t =⎧+-+=⎧++⎪===-+⎨⎨+-=--⎩⎪=+⎩,则必有( D ). A 1L ∥2L ; B 1L ∥3L ; C 32L L ⊥; D 21L L ⊥.23、直线 34273x y z ++==--与平面4223x y z --=的关系为 ( A ). A 平行但直线不在平面上; B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知1,==a b 且(,)4∧π=a b , 则 +a b = ( D ).A 1; B1 C 2; D .25、下列等式中正确的是( C ).A +=i j k ;B ⋅=i j k ;C ⋅=⋅i i j j ;D ⨯=⋅i i i i .26、曲面22x y z -=在xoz 平面上的截线方程为 (D).A 2x z =;B 20y z x ⎧=-⎪⎨=⎪⎩;C 2200x y z ⎧-=⎪⎨=⎪⎩;D 20x z y ⎧=⎪⎨=⎪⎩. 二、计算题1.已知()2,2,21M ,()0,3,12M ,求21M M 的模、方向余弦与方向角。
空间解析几何习题答案
空间解析几何习题答案一、计算题与证明题1.已知|a|?1, |b|?4, |c|?5, 并且a?b?c?0.计算a?b?b?c?c?a.解:因为|a|?1, |b|?4, |c|?5, 并且a?b?c?0 所以a与b同向,且a?b与c反向因此a?b?0,b?c?0,c?a?0 所以a?b?b?c?c?a?0 2.已知|a?b|?3, |a?b|?4, 求|a|?|b|.解:|a?b|?a?bcos??3|a?b|?a?bsin??4 2(1)2??2?得?a?b??25 2所以a?b?5 4.已知向量x与a(,1,5,?2)共线, 且满足a?x?3, 求向量x的坐标.解:设x的坐标为?x,y,z?,又a??1,5,?2? 则a?x?x?5y?2z?3又x与a共线,则x?a?0 即??yzxyxyxyz?i?j?k5?21?215 15?2???2y?5z?i??z?2x?j??5x?y?k?0所以ijk??2y?5z?2??z?2x?2??5x?y?2222?0即29x?5y?26z?20yz?4xz?10xy?0又x与a共线,x与a夹角为0或?cos0?1?x?ax?y?z?1?5???2?222222222?3x ?y?z?30222 整理得x?y?z?3 10?2?、?3?解出向量x的坐标为?联立?1?、?111?,,?? 1025??6.已知点A(3,8,7), B(?1,2,?3)求线段AB的中垂面的方程.解:因为A?3,8,7?,B(?1,2,?3) AB中垂面上的点到A、B的距离相等,设动点坐标为M?x,y,z?,则MA?MB 得?x?3?2??y?8?2??z?7?2化简得2x?3y?5z?27?0 ??x?1?2??y?2?2??z? 3?2 这就是线段AB的中垂面的方程。
7.向量a, b, c具有相同的模, 且两两所成的角相等, 若a, b的坐标分别为(1,1,0)和(0,1,1), 求向量c的坐标.解:a?b?c?r且它们两两所成的角相等,设为? 则有a?b?1?0?1?1?0?1?1 则cos??a?b1?2 a?br设向量c的坐标为?x,y,z? 则a?c?1?x?1?y?0?z?x?y?a?bcos??r?r?1?1r2b?c?0?x?1?y?1?z?y?z?b?ccos??r?r?1?1r2c?x2?y2?z2?r?12?12?02?2 所以x?y?z?22221?x???3x?1??4??联立、、(3)求出?y?0或?y? 3?z?1??1?z???3?所以向量c 的坐标为?1,0,1?或??,,?? 8.已知点A(3,6,1), B(2,?4,1), C(0,?2,3), D(?2,0,?3),(1) 求以AB, AC, AD为邻边组成的平行六面体的体积.(2) 求三棱锥A?BCD的体积.?14?331?3?(3) 求?BCD的面积.(4) 求点A到平面BCD的距离.解:因为A?3,0,1?,B?2,?4,1?,C?0,?2,3?,D??2,0,?3? 所以AB???1,?10,0? AC???3,?8,2? AD???5,?6,?4? AB,AC,AD是以它们为邻边的平行六面体的体积???1?10V??3?5?8?602??3?100?0 ??0?120?12??176 ?4立体几何中知道,四面体ABCD的体积1188VT?V??176? 663因为BC???2,2,2?,BD???4,4,?4? i BC?BD??2jk22??16i?16j?0k ?44?4 所以BC?BD?因此S?BCD???16?2???16?2?162,这是平行四边形BCED的面积11S□BCED??162?82 22(4)设点A到平面BCD的距离为H,立体几何使得三棱锥A?BCD的体积1VT?S?BCD?H 3所以H?3VTS?BCD883?11?112 ?28223?1.求经过点A(3,2,1)和B(?1,2,?3)且与坐标平面xOz垂直的平面的方程.解:与xoy 平面垂直的平面平行于y轴,方程为Ax?Cz?D?0(1) 把点A?3,2,1?和点B??1,2,?3?代入上式得3A?C?D?0(2) ?A?3C?D?0(3) DD,得A??,C? 22DDz?D?0代入得?x?22消去D得所求的平面方程为x?2?z?0 xyz??1距离相等的点的轨迹方程.2.求到两平面?:3x?y?2z?6?0和?:?2?51解;设动点为M?x,y,z?,点到平面的距离公式得3z?y?2z?63???1??2222??5x?2y?10z?10?? 5?2?2???10?22 所以3x?y?2z?6??14129??5x?2y?10z?10?3.已知原点到平面?的距离为120, 且?在三个坐标轴上的截距之比为?2:6:5, 求?的方程.解:设截距的比例系数为k,则该平面的截距式方程为xyz???1 ?2k6k5k 化成一般式为?15x?5y?6z?30k?0 又因点O?0,0,0?到平面?的距离为120,则有?30k??15?求出k??4286 2?5?622?120 所以,所求平面方程为?15x?5y?6z?120286?0 5.已知两平面?:mx?7y?6z?24?0与平面?:2x?3my?11z?19?0相互垂直,求m的值.解:两平面的法矢分别为n1??m,?1,?6?,n2??2,?3m,11?,n1⊥n2,得2m?21m?66?0 求出m??66 196.已知四点A(0,0,0), B(,2,?5,3), C(0,1,?2), D(2,0,7), 求三棱锥D?ABC中ABC。
空间解析几何复习题答案
2 2 2 ⎧ ⎪x + y = a (3) ⎨ 。 2 2 2 ⎪ x + z = a ⎩ 8.4.2 分别求母线平行于 x 轴及 y 轴而且通过曲线 2 2 2 ⎧ ⎪ 2 x + y + z = 16 ⎨ 2 2 2 ⎪ ⎩x + z − y = 0
的柱面方程。 答案:母线平行于 x 轴的柱面方程: 3 y 2 − z 2 = 16 ;母线平行于 y 轴的柱面方程: 3x 2 + 2x 2 = 16 。 8.4.3 求在 yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程) 。 ⎧x 2 + y 2 + z 2 = 1 ⎧ y 2 + z 2 =1 ⎧x 2 + y 2 + z 2 = 1 答案: ⎨ ;⎨ ; ⎪ 。 ⎨ 2 2 ⎪ ⎩x = 0 ⎩x = 0 ⎩y + z =1 8.4.4 指出下列方程所表示的曲线 ⎧ x 2 + y 2 + z 2 + 25 (1) ⎨ ⎩x = 3 ⎧ x 2 − 4 y 2 + z 2 = 25 (3) ⎨ ; ⎩ x = −3 ⎧ x 2 + 4 y 2 + 9 z 2 = 30 (2) ⎨ ; ⎩z = 1 ⎧ y 2 + z 2 − 4x + 8 = 0 (4) ⎨ ; ⎩y = 4
4 3⎞ ⎛ 4 3⎞ 答案: ⎛ ⎜ 0, , − ⎟ , ⎜ 0, − , ⎟ 5⎠ ⎝ 5 5⎠ ⎝ 5 8.2.7 已知 | a |= 3, | b |= 26, | a × b |= 72 ,计算 a ⋅ b 。 答案: ±30 8.2.8 已知 | a |= 3, | b |= 5 ,问 λ 为何值时 a + λb 与 a − λb 互相垂直? 3 5 8.2.9 已知向量 a = 2i − 3 j + k , b = i − j + 3k 和 c = i − 3 j ,计算 (1) (a ⋅ b)c − (a ⋅ c )b ; (2) (a + b) × (b + c ) ; 答案: ± 答案: (1) (-3,-13,-33) ; (2) (4,-1,-4) ; (3)7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.39.02=+-z y3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.7.)51,1,57(.5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A .4B .1C .21D .2 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A .5B .61 C .51 D .81 5.D 7.D 8.B 9.A 10.A .3.当m=_____________时,532+-与m 23-+互相垂直.4.设++=2,22+-=,243+-=,则)(b a p r j c += .4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.3.34-=m ; 4.2919 9.332212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴旋转而成.1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=,则=⨯⨯)(( ) A .8 B .10 C .{}1,1,0-- D .{}21,1,23.若==-+=,则14//236( ) A .)4612(-+± B .)612(+± C .)412(-± D .)46(-± 4.若ϕ与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C .3π D .4π6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A .2π B .6π C .3π D .4π 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90oD .65arcsin1.D 3.A 4.C 6.C 8.A 9.D7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点. 3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________.1.设32+-=,+=2,++-=,则与+是否平行__________.1.不平行7.33222±=++z y x ; 8.25102-=-z x ;9.双叶双曲面; 10.⎩⎨⎧==+--++02342222x z y z yz y练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=b a λ或两向量对应坐标成比例。
2.若→→→→++=k j i a 863,2=→b ,则与→a ,x 轴均垂直的向量⎭⎬⎫⎩⎨⎧±=→56580 ,,b 。
3.曲线⎪⎩⎪⎨⎧=+-=-+4)2(4)2(2222y x z x 在yoz 面上的投影曲线方程为:⎪⎩⎪⎨⎧=+-±=+±044422x y z ,投影柱面方程为:44422+-±=+±y z 。
4.xoz 面上的曲线19422=-z x 分别绕x 轴和z 轴旋转所成旋转曲面方程为:1994222=--z y x ,1944222=-+z y x 。
5.已知{}4,0,3-=→a ,{}14,2,5--=→b ,则两向量所成夹角的角平分线上的单位向量为0000a bc a b →→→→→+⎧==⎨⎩+。
6.以点A )0,0,2(,B )0,3,0(,C )6,0,0(,D )8,3,2(为顶点的四面体的体积V=14830602032)61=--=⋅⨯→→→AD AC AB (。
二 计算1.求点P )2,6,3(-关于直线L:⎩⎨⎧=+--=-+042201z y x z y 的对称点坐标。
解:直线L 的方向向量k j i kj i n n s 2212211021-+=--=⨯=→→→, 取直线上的定点),,011(-,将其化为参数式:⎪⎩⎪⎨⎧-=+=+-=t z t y t x 2211 过点P 与直线L 垂直的平面为:0)2(2)6(2)3(=+--+-z y x ,01922=--+z y x ,将直线的参数式代入垂面方程有2=t ,从而点P 在直线L 上的投影坐标(直线与垂面的交点)为),,451(-, 设点P 关于直线L 的对称点坐标为)z y x ,,(,则有: 422526123-=+-=+=+zy x ,,,解之:641-==-=z y x ,, 2.设直线L 过点M )1,3,2(-且其与y 轴相交,与直线01121:1zy x L =-=+垂直,求该直线方程。
解:设L 与y 轴的交点为N (0,t,0),其与直线1L 垂直,则101-=⇒=⋅→→t s MN ,从而由两点式有直线L 的方程为:L:114322--=--=+z y x 3.求直线11111:--==-z y x L 在平面012:=-+-z y x π上的投影直线方程。
解:直线L 与平面π的交点为),,012(,直线L 上的点),,(101在平面π上的投影为),,(02121,则L 在π上的投影直线方程为:01132zy x =-=- 4.求两平面0622:1=+-+z y x π,0884:2=-+-z y x π所成二面角的角平分面方程。
解:法一,设),,(z y x P 为所求平面上任意一点,则由题意有:2222228)1(4884)2(21622+-+-+-=-+++-+z y x z y x 消去绝对值得 )884()6222(3-+-±=+-+z y x z y 即026147010257=-+-=+++z y x z y x 和法二,所求平面过两平面1π与2π的交线,故可设其方程为:0)622(884=+-++-+-z y x z y x λ在该平面上任取一点, 如令4430--===λλz y x 可得, 然后由点)443,0,0(--λλ到两平面的距离相等可解得3±=λ,从而得到所求平面方程。
5.设有直线L 1和L 2 的方程分别为:L 1:891202+=-=+z y x ,L 2:1242611+=+=-z y x (1)证明L 1 与L 2异面; (2)求两直线之间的距离;(3)求与两直线距离相等的平面方程; (4)求与两直线都垂直相交的直线方程。
解:直线L 1 ,L 2上分别有定点P 1(-2,2,-9),P 2(1,-6,-4),其方向向量分别为{}8,1,01=→s ,{}12,2,12=→s (1)由于0815831221810)(2121≠-=-=⋅⨯→→→P P s s ,所以两直线异面。
(2)由于k j i kj i s s -+-==⨯→→84122181021故过2L 与1L 平行的平面方程为04884=-+-z y x 则两直线的距离转化为求点P 1到该平面的距离:91)8(448)9(128)2(4222=+-+--⨯+⨯--⨯=d(3)由题意,所求平面过线段21P P 的中点)213,2,21(---P ,其法向量为k j i s s -+-=⨯→→8421,故所求平面方程为设),,(z y x P 021584=-+-z y x 。
(4)设公垂线为L ,其方向向量k j i s s s -+-=⨯=→→→8421,则:1L L 与相交所成平面1π的法向量k j i kj i s s 432651848101-+=--=⨯→→,1π的方程为03043265=+-+z y x ,1π与2L 的交点(即公垂线与2L 的交点))8,4.2(-Q2L L 与相交所成平面2π的法向量k j i kj i s s 16479818412212+--=--=⨯→→,2π的方程为0120164798=+-+z y x ,2π与1L 的交点(即公垂线与1L 的交点))7,4.2(-P ,所以,公垂线方程为178442-=--=+z y x 注:实际只需求一个交点即可,这里只是为了理解将两个交点都求出,这样亦可以得到(2)的另一解法。
5. 求点)5,1,2(P 在直线:L 13111-=-=-zy x 上的投影. 解:过)5,1,2(P 作垂直于已知直线L 的平面∏,则其法向量)1,3,1(-=n ,于是平面的方程为0)5()1(3)2(=---+-z y x ,即03=-+z y x .将已知直线的参数方程⎪⎩⎪⎨⎧-=+=+=tz t y tx 311代入03=-+z y x ,可得114-=t ,因此点)5,1,2(P 在直线L 上的投影即为平面∏与直线L 的交点)114,111,117(-. 6. 求直线:L ⎩⎨⎧=---=+-083032z y x z y x 在平面:∏12=+-z y x 上的投影直线的方程.解:设所给直线L 的平面束方程为0)83(32=---++-z y x z y x λ,即08)1()3()32(=--++-+λλλλz y x ,其中λ为待定常数,要使该平面与已知平面∏垂直,则有0)1()3()32(2=-++++λλλ,解得34-=λ,将其代入08)1()3()32(=--++-+λλλλz y x ,可得32756=-+z y x ,因此直线L 在平面∏上的投影直线方程为⎩⎨⎧=+-=-+1232756z y x z y x .7.确定λ的值,使直线:L ⎩⎨⎧=-+=-+02012z x y x 与平面1:=-+∏z y x λ平行,并求直线L 与平面∏之间的距离.解:直线L 的方向向量n k j i kj i --==2101012,要使直线L 与平面∏平行,只要=⋅s n (其中=s )1,,1(-λ为平面∏的法向量),即0121=+-λ,解得1=λ. 令10=x ,代入直线L 的方程可得10-=y ,10=z ,直线L 与平面∏之间的距离33)1(11|)1(11111|222=-++-⨯+⨯-⨯=d . 8.求通过直线⎩⎨⎧=-++=-+-02201:z y x z y x L 的两个互相垂直的平面,其中一个平面平行于直线111121-=-+=-z y x . 解:设平面束方程为)22(1=-+++-+-z y x z y x λ,即012)1()1()12(=--++-++λλλλz y x ,=n )1,1,12(+-+λλλ. 设平行于直线111121-=-+=-z y x 的平面为1∏,由0)1()1(2)12(=++--+λλλ,可知1-=λ,令10=x ,代入直线L 的方程,可得000==z y 平面1∏的方程为02)1(=---y x ,即012=-+y x . 设垂直于平面1∏的平面为2∏,由0)1(2)12(=-++λλ,可得41=λ,平面2∏的方程为04543)1(23=+--z y x ,即06536=-+-z y x . (4)曲线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos (a 、b 为常数)在xOy 平面上投影曲线是(⎩⎨⎧==+0222z a y x ). (5)xOy 平面上曲线16422=-y x 绕x 轴旋转一周所得旋转曲面方程是 (16)(4222=+-z y x ).(7)方程y z x =-22所表示的曲面名称为(双曲抛物面).(8)与两直线⎪⎩⎪⎨⎧+=+-==tz t y x 122及112212-=-=+z y x 都平行,且过原点的平面方程是(0=+-z y x ).(10)与两平面012=--+z y x 和032=+-+z y x 等距离的平面方程为(012=+-+z y x )3. 已知点)0,1,1(A 和点)2,1,0(B ,试在x 轴上求一点C ,使得ABC ∆的面积最小. 解:设)0,0,(x C ,则)2,0,1(-=,)0,1,1(--=x,x x +-+=---=⨯)1(221101,故A B ∆的面积为1)]1(2[221||2122+-+=⨯=x AC AB S ,显然,当1=x 时,ABC ∆的面积最小,为25,所求点为)0,0,1(. 6.求直线11111:--==-z y x L 在平面012:=-+-∏z y x 上的投影直线绕x 轴线转一周所成曲面的方程.解:过L 作垂直于平面∏的平面0∏,所求的直线L 在平面∏上的投影就是平面∏和0∏的交线. 平面0∏的法向量为:k j i kj in 232111210--=--=,则过点),,(101的平面0∏的方程为:0)1(23)1(=----z y x ,即0123=+--z y x . 所以投影线为⎩⎨⎧=+--=-+-0123012z y x z y x . 将投影线表示为以x 为参数的形式:⎪⎩⎪⎨⎧--==)12(212x z x y ,则绕x 轴的旋转面的方程为2222)]12(21[)2(--+=+xx z y ,即0416*******=+---z y x x .8.已知两条直线的方程是142211:1--=+=-z y x L ,10122:2zy x L =-=-,求过1L 且平行于2L 的平面方程.解:因为所求平面过1L ,所以点)4,2,1(-在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为k j i kj i 432102121--=-. 因此所求平面的方程为0)4(4)2(3)1(2=--+--z y x ,即08432=+--z y x .9. 在过直线⎩⎨⎧=++=+++0201z y x z y x 的所有平面中,求和原点距离最大的平面.解:设平面束方程为)2(1=++++++z y x z y x λ,即01)1()1()12(=++++++z y x λλλ,平面与原点的距离为 31)32(61)1()1()12(|10)1(0)1(0)12(|2222++=++++++⨯++⨯++⨯+=λλλλλλλd要使平面与原点的距离最大,只要32-=λ,即该平面方程为03=---z y x . 11. 求直线321z y x =-=绕z 轴旋转所得旋转曲面的方程. 解:由于空间曲线⎪⎩⎪⎨⎧===)()()(t z z t y y t x x )(+∞<<-∞t 绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=+=+)()()(2222t z z t y t x y x )(+∞<<-∞t ,消去参数t 即可.此直线的参数方程为 ⎪⎩⎪⎨⎧=-==t z t y t x 32,故该直线绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=-+=+tz t t y x 3)2()(2222,消去参数t ,旋转曲面的方程为22295z y x =+. 12. 画出下列各曲面所围立体的图形: (1)0,0,0,12643====++z y x z y x . (2)2,222=+=z y x z . (3)22224,y x z y x z --=+=. (4)2222,2y x z y x z +=--=.(5)222y x z +=,22x z -=.(6)2x y =,0=z ,y z =,1=y .3. 平面0:11111=+++D z C y B x A π 与平面0:22222=+++D z C y B x A π 互相垂直的充要条件是 ( ). A.212121C C B B A A == B. 0212121=++C C B B A AC. 021212121=+++D D C C B B A A D. 以上都不对.4. 1111111:n z z m y y l x x l -=-=-与2222222:n z z m y y l x x l -=-=-是异面直线,则必有 ().A.0212121=++n n m m l l B.0212121≠++n n m m l lC. 0212121222111=---z z y y x x n m l n m lD. 0212121222111≠---z z y y x x n m l n m l .。