2016年上海市中考数学试题解析版

合集下载

2016年上海市中考数学试卷

2016年上海市中考数学试卷

2016年上海市中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1. 如果a与3互为倒数,那么a是()A.−3B.3C.−13D.13【答案】D【考点】倒数【解析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是13,故选D.2. 下列单项式中,与a2b是同类项的是()A.2a2bB.a2b2C.ab2D.3ab【答案】A【考点】同类项的概念【解析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a,b的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.3. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x−1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3【答案】C【考点】二次函数图象与几何变换【解析】根据向下平移,纵坐标相减,即可得到答案. 【解答】解:∵ 抛物线y =x 2+2向下平移1个单位,∴ 抛物线的解析式为y =x 2+2−1,即y =x 2+1. 故选C .4. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是( )次C.4次D.4.5次【答案】这20名男生该周参加篮球运动次数的平均数是4次 【考点】 加权平均数 【解析】加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则(x 1w 1+x 2w 2+...+x n w n )÷(w 1+w 2+...+w n )叫做这n 个数的加权平均数,依此列式计算即可求解. 【解答】(2×2+3×2+4×10+5×6)÷20 =(4+6+40+30)÷20 =80÷20 =4(次).5. 已知在△ABC 中,AB =AC ,AD 是角平分线,点D 在边BC 上,设BC →=a →,AD →=b →,那么向量AC →用向量a →、b →表示为( ) A.12a →+b →B.12a →−b →C.−12a →+b →D.−12a →−b →【答案】 A【考点】 *平面向量 【解析】由△ABC 中,AD 是角平分线,结合等腰三角形的性质得出BD =DC ,可求得DC →的值,然后利用三角形法则,求得答案. 【解答】解:如图所示:∵ 在△ABC 中,AB =AC ,AD 是角平分线, ∴ BD =DC ,∵BC→=a→,∴DC→=12a→,∵AD→=b→,∴AC→=AD→+DC→=12a→+b→.故选:A.6. 如图,在Rt△ABC中,∠C=90∘,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8【答案】B【考点】圆与圆的位置关系点与圆的位置关系【解析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5−3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90∘,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5−3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.二、填空题:本大题共12小题,每小题4分,共48分计算:a3÷a=________.【答案】a2【考点】同底数幂的除法【解析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】a3÷a=a3−1=a2.函数y=3的定义域是________.x−2【答案】x≠2【考点】函数自变量的取值范围【解析】直接利用分式有意义的条件得出答案.【解答】的定义域是:x≠2.解:函数y=3x−2故答案为:x≠2.方程√x−1=2的解是________.【答案】x=5【考点】无理方程【解析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x−1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.如果a=12,b=−3,那么代数式2a+b的值为________.【答案】−2【考点】整式的加减--化简求值【解析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=12,b=−3时,2a+b=1−3=−2.故答案为:−2不等式组{2x<5x−1<0的解集是________.【答案】x<1【考点】解一元一次不等式组【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】{2x<5⋯x−1<0⋯,解①得x<52,解②得x<1,则不等式组的解集是x<1.如果关于x的方程x2−3x+k=0有两个相等的实数根,那么实数k的值是________94.【答案】94【考点】根的判别式【解析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】∵关于x的方程x2−3x+k=0有两个相等的实数根,∴△=(−3)2−4×1×k=9−4k=0,解得:k=94.已知反比例函数y=kx(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是________.【答案】k>0【考点】反比例函数的性质【解析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】∵反比例函数y=kx(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x 的值增大而减小,∴k的取值范围是:k>0.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是________.【答案】13【考点】概率公式【解析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】掷一次骰子,向上的一面出现的点数是3的倍数的概率=26=13.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是________.【答案】1【考点】三角形中位线定理【解析】构建三角形中位线定理得DE // BC,推出△ADE∽△ABC,所以S△ADES△ABC =(DEBC)2,由此即可证明.【解答】如图,∵AD=DB,AE=EC,∴DE // BC.DE=12BC,∴△ADE∽△ABC,∴S△ADES△ABC =(DEBC)2=14,今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.【答案】6000【考点】扇形统计图条形统计图【解析】根据自驾车人数除以百分比,可得答案.【解答】由题意,得4800÷40%=12000,公交12000×50%=6000,如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30∘,测得底部C的俯角为60∘,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:√3≈1.73)【答案】208【考点】解直角三角形的应用-仰角俯角问题【解析】本题主要考查了解直角三角形的应用.【解答】解:由题意可知∠BAD=30∘,∠DAC=60∘.则在Rt△ABD中,tan30∘=BDAD =BD90=√33,∴ BD=30√3米.在Rt△ACD中,tan60∘=DCAD =DC90=√3,∴ DC=90√3米,故该建筑物的高度BC=BD+DC=120√3≈208(米).故答案为:208.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90∘,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为________.【答案】√5−12【考点】旋转的性质锐角三角函数的定义矩形的性质【解析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】设AB=x,则CD=x,A′C=x+2,∵AD // BC,∴C′DBC =A′DA′C,即x2=2x+2,解得,x1=√5−1,x2=−√5−1(舍去),∵AB // CD,∴∠ABA′=∠BA′C,tan∠BA′C=BCA′C =5−1+2=√5−12,∴tan∠ABA′=√5−12,三、解答题:本大题共7小题,共78分计算:|√3−1|−412−√12+(13)−2.【答案】解:原式=√3−1−2−2√3+9=6−√3【考点】实数的运算负整数指数幂【解析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=√3−1−2−2√3+9=6−√3解方程:1x−2−4x2−4=1.【答案】去分母得,x+2−4=x2−4,移项、合并同类项得,x2−x−2=0,解得x1=2,x2=−1,经检验x=2是增根,舍去;x=−1是原方程的根,所以原方程的根是x=−1.【考点】解分式方程【解析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】去分母得,x+2−4=x2−4,移项、合并同类项得,x2−x−2=0,解得x1=2,x2=−1,经检验x=2是增根,舍去;x=−1是原方程的根,所以原方程的根是x=−1.如图,在Rt△ABC中,∠ACB=90∘,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【答案】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90∘,AC=BC=3,∴∠A=∠B=45∘,AB=√AC2+BC2=√32+32=3√2,∵DE⊥AB,∴∠AED=90∘,∠ADE=∠A=45∘,∴AE=AD⋅cos45∘=2×√22=√2,∴BE=AB−AE=3√2−√2=2√2,即线段BE的长为2√2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90∘,∠B=45∘,∴EH=BH=BE⋅cos45∘=2√2×√22=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB=CHEH =12,即∠ECB的余切值为12.【考点】解直角三角形勾股定理【解析】(1)由等腰直角三角形的性质得出∠A=∠B=45∘,由勾股定理求出AB=3√2,求出∠ADE=∠A=45∘,由三角函数得出AE=√2,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE⋅cos45∘=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB=CHEH =12即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90∘,AC=BC=3,∴∠A=∠B=45∘,AB=√AC2+BC2=√32+32=3√2,∵DE⊥AB,∴∠AED=90∘,∠ADE=∠A=45∘,∴AE=AD⋅cos45∘=2×√22=√2,∴BE=AB−AE=3√2−√2=2√2,即线段BE的长为2√2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90∘,∠B=45∘,∴EH=BH=BE⋅cos45∘=2√2×√22=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB=CHEH =12,即∠ECB的余切值为12.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【答案】若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【考点】一次函数的应用【解析】(1)设设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1, 0)、(3, 180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3, 180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1, 0)、(3, 180)代入得:{k+b=03k+b=180,解得:k=90,b=−90.所以y B关于x的函数解析式为y B=90x−90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6−90=450(千克).450−300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.已知:如图,⊙O是△ABC的外接圆,AB̂=AĈ,点D在边BC上,AE // BC,AE= BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【答案】证明:(1)在⊙O中,∵AB̂=AĈ,∴AB=AC,∴∠B=∠ACB,∵AE // BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,{AB=CA,∠B=∠EAC,BD=AE,∴△ABD≅△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵AB̂=AĈ,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH−DH=CH−GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG // AE,∴四边形AGCE是平行四边形.【考点】三角形的外接圆与外心圆心角、弧、弦的关系平行四边形的判定全等三角形的性质【解析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≅△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵AB̂=AĈ,∴AB=AC,∴∠B=∠ACB,∵AE // BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,{AB=CA,∠B=∠EAC,BD=AE,∴△ABD≅△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵AB̂=AĈ,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH−DH=CH−GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG // AE,∴四边形AGCE是平行四边形.如图,抛物线y=ax2+bx−5(a≠0)经过点A(4, −5),与x轴的负半轴交于点B,与y 轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【答案】∵抛物线y=ax2+bx−5与y轴交于点C,∴C(0, −5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(−1, 0).∵抛物线经过点A(4, −5)和点B(−1, 0),∴{16a+4b−5=−5a−b−5=0,解得{a=1b=−4,∴这条抛物线的表达式为y=x2−4x−5.由y=x2−4x−5,得顶点D的坐标为(2, −9).连接AC,∵点A的坐标是(4, −5),点C的坐标是(0, −5),又S△ABC=12×4×5=10,S△ACD=12×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.过点C作CH⊥AB,垂足为点H.∵S△ABC=12×AB×CH=10,AB=√(−1−4)2+(0+5)2=5√2,∴CH=2√2,在RT△BCH中,∠BHC=90∘,BC=√26,BH=√BC2−CH2=3√2,∴tan∠CBH=CHBH =23.∵在RT△BOE中,∠BOE=90∘,tan∠BEO=BOEO,∵∠BEO=∠ABC,∴BOEO =23,得EO=32,∴点E的坐标为(0, 32).【考点】二次函数综合题【解析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】∵抛物线y=ax2+bx−5与y轴交于点C,∴C(0, −5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(−1, 0).∵抛物线经过点A(4, −5)和点B(−1, 0),∴{16a+4b−5=−5a−b−5=0,解得{a=1b=−4,∴这条抛物线的表达式为y=x2−4x−5.由y=x2−4x−5,得顶点D的坐标为(2, −9).连接AC,∵点A的坐标是(4, −5),点C的坐标是(0, −5),又S△ABC=12×4×5=10,S△ACD=12×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.过点C作CH⊥AB,垂足为点H.∵S△ABC=12×AB×CH=10,AB=√(−1−4)2+(0+5)2=5√2,∴CH=2√2,在RT△BCH中,∠BHC=90∘,BC=√26,BH=√BC2−CH2=3√2,∴tan∠CBH=CHBH =23.∵在RT△BOE中,∠BOE=90∘,tan∠BEO=BOEO,∵∠BEO=∠ABC,∴BOEO =23,得EO=32,∴点E的坐标为(0, 32).如图所示,梯形ABCD中,AB // DC,∠B=90∘,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【答案】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH=√AD2−DH2=√152−122=9,∴BH=AB−AH=16−9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=12AD=152,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=152:9,解得AE=252;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为252或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE−AH=x−9,在Rt△ADE中,DE=√DH2+HE2=√122+(x−9)2,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:√122+(x−9)2,∴EG=x2√122+(x−9)2,∴DG=DE−EG=√122+(x−9)2−x2√122+(x−9)2,∵DF // AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(√122+(x−9)2−2√122+(x−9)2):2√122+(x−9)2,∴y=225−18xx (9<x<252).【考点】四边形综合题【解析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD= BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=12AD=152,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE= AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE−AH=x−9,先利用勾股定理表示出DE=√122+(x−9)2,再证明△EAG∽△EDA,则利用相似比可表示出EG= 222,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH=√AD2−DH2=√152−122=9,∴BH=AB−AH=16−9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=12AD=152,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=152:9,解得AE=252;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为252或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE−AH=x−9,在Rt△ADE中,DE=√DH2+HE2=√122+(x−9)2,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:√122+(x−9)2,∴EG=2√122+(x−9)2,∴DG=DE−EG=√122+(x−9)2−2√122+(x−9)2,∵DF // AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(√122+(x−9)2222):222,∴y=225−18xx (9<x<252).。

2016年上海市中考数学试卷及答案

2016年上海市中考数学试卷及答案

2016年上海中考数学试卷.选择题生该周参加篮球运动次数的平均数是(D. 4.5 次 T 4 5.已知在- ABC 中,AB=AC , AD 是角平分线,点D 在边BC 上,设BC =a 那么向量AC 用向量a 、b 表示为(7.计算:a 3'a =38.函数y的定义域是x —29.方程• x -1 = 2的解是10.如果a =1, b = -3,那么代数式2a b 的值为2A . 1a b2B.2丄 K|"D------ ------------------------------ lb [来源学科网 Z.X.X.K]26.如图,在 Rr ABC 中,/C =90 , AC =4,BC =7,点D 在边BC 上,CD =3, O A 的半径长为 3, O D 与O A 相交,且点 B 在O D 外,那么O D 的半径长r 的取值范围是 A. B. 2 r :: 4 /?C. 来源 学。

科。

网 Z 。

X 。

X 。

K]二.填空题1 ::r :: 8 D. 2 r :: 81. 如果a 与3互为倒数,那么 a 是(A. -3B. 3C. D.2. F 列单项式中,2a b 是同类项的是3. 4. A. 2a 2b2 2B. a bC. ab 2D. 3ab如果将抛物线 y =x 2• 2向下平移1个单位,那么所得新抛物线的表达式是(2A. y=(x-1)2 2B. y =(x • 1)2C. y = x 2 1D.某校调查了 20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男次数 2 3 4 5 人数22106A. 3次 )B. 3.5 次C. 4次「2x< 5 亠口11. 不等式组x-^012. 如果关于x的方程X2 -3x • k =0有两个相等的实数根,那么实数k的值是_________k13. 已知反比例函数y (k=0),如果在这个函数图像所在的每一个象限内,y的值x随着x的值增大而减小,那么k的取值范围是__________14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是________15. 在.SBC中,点D、E分别是AB、AC的中点,那么.ADE的面积与ABC的面积的比是________16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是_________17. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________ 米(精确到1米,参考数据:巧拓1.73)18.如图,矩形ABCD中,BC =2,将矩形ABCD绕点D顺时针旋转90。

2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。

2016年上海市闵行区中考一模数学试卷(解析版)

2016年上海市闵行区中考一模数学试卷(解析版)

2016年上海市闵行区中考数学一模试卷一、选择题(本大题共6题,每题4分,共24分)1.(4分)在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判定DE∥BC的是()A.=B.=C.=D.=2.(4分)将二次函数y=x2﹣1的图象向右平移一个单位,向下平移2个单位得到()A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=(x﹣1)2﹣3D.y=(x+1)2+33.(4分)已知α为锐角,且sinα=,那么α的余弦值为()A.B.C.D.4.(4分)抛物线y=ax2+bx+c的图象经过原点和第一、二、三象限,那么下列结论成立的是()A.a>0,b>0,c=0B.a>0,b<0,c=0C.a<0,b>0,c=0D.a<0,b<0,c=05.(4分)在比例尺为1:10000的地图上,一块面积为2cm2的区域表示的实际面积是()A.2000000cm2B.20000m2C.4000000m2D.40000m2 6.(4分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次二、填空题(本大题共12小题,每题4分,满分48分)7.(4分)如果,那么=.8.(4分)如果两个相似三角形周长的比是2:3,那么它们的相似比是.9.(4分)已知线段AB的长为2厘米,点P是线段AB的黄金分割点(AP<BP),那么BP的长是厘米.10.(4分)如图,在△ABC中,∠ACB=90°,点F在边AC的延长线上,且FD⊥AB,垂足为点D,如果AD=6,AB=10,ED=2,那么FD=.11.(4分)在Rt△ABC中,∠C=90°,cos A=,AC=2,那么BC=.12.(4分)已知一条斜坡,向上前进5米,水平高度升高了4米,那么坡比为.13.(4分)过△ABC的重心作DE∥BC,分别交AB于点D,AC于点E,如果=,=,那么=.14.(4分)方程ax2+bx+c=0(a≠0)的两根为﹣3和1,那么抛物线y=ax2+bx+c (a≠0)的对称轴是直线.15.(4分)在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为.16.(4分)已知⊙O1与⊙O2内切,⊙O1的半径长是3厘米,圆心距O1O2=2厘米,那么⊙O2的半径长等于厘米.17.(4分)闵行体育公园的圆形喷水池的水柱(如图1)如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度)y(米)关于水平距离x(米)的函数解析式为y=﹣x2+4x+,那么圆形水池的半径至少为米时,才能使喷出的水流不落在水池外.18.(4分)将一副三角尺如图摆放,其中在Rt△ABC中,∠ACB=90°,∠B =60°,在Rt△EDF中,∠EDF=90°,∠E=45°.点D为边AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转角α(0°<α<60°)后得△E′DF′,DE′交AC于点M,DF′交BC于点N,那么的值为.三、解答题(本大题共7小题,满分78分)19.(10分)如图,已知Rt△ABC的斜边AB在x轴上,斜边上的高CO在y轴的正半轴上,且OA=1,OC=2,求经过A、B、C三点的二次函数解析式.20.(10分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.21.(10分)如图,已知四边形ABCD,点P、Q、R分别是对角线AC、BD和边AB的中点,设=,=.(1)试用,的线性组合表示向量;(需写出必要的说理过程)(2)画出向量分别在,方向上的分向量.22.(10分)如图,一只猫头鹰蹲在树AC上的B处,通过墙顶F发现一只老鼠在E处,刚想起飞捕捉时,老鼠突然跑到矮墙DF的阴影下,猫头鹰立即从B 处向上飞至树上C处时,恰巧可以通过墙顶F看到老鼠躲在M处(A、D、M、E四点在同一条直线上).已知,猫头鹰从B点观测E点的俯角为37°,从C点观察M点的俯角为53°,且DF=3米,AB=6米.求猫头鹰从B处飞高了多少米时,又发现了这只老鼠?(结果精确到0.01米)(参考数据:sin37°=cos53°=0.602,cos37°=sin53°=0.799,tan37°=cot53°=0.754,cot37°=tan53°=1.327).23.(12分)如图,已知在△ABC中AB=AC,点D为BC边的中点,点F在边AB上,点E在线段DF的延长线上,且∠BAE=∠BDF,点M在线段DF上,且∠EBM=∠C.(1)求证:EB•BD=BM•AB;(2)求证:AE⊥BE.24.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点.(1)求这个二次函数y=x2+bx+c的解析式.(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标.(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.25.(14分)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,对角线AC、BD交于点G,已知AB=BC=3,tan∠BDC=,点E是射线BC上任意一点,过点B作BF⊥DE,垂足为点F,交射线AC于点M,射线DC于点H.(1)当点F是线段BH中点时,求线段CH的长;(2)当点E在线段BC上时(点E不与B、C重合),设BE=x,CM=y,求y 关于x的函数解析式,并指出x的取值范围;(3)连接GF,如果线段GF与直角梯形ABCD中的一条边(AD除外)垂直时,求x的值.2016年上海市闵行区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(4分)在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判定DE∥BC的是()A.=B.=C.=D.=【解答】解:∵=,∴DE∥BC,选项A不符合题意;∵=,∴DE∥BC,选项B不符合题意;∵=,∴DE∥BC,选项C不符合题意;=,DE∥BC不一定成立,选项D符合题意.故选:D.2.(4分)将二次函数y=x2﹣1的图象向右平移一个单位,向下平移2个单位得到()A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=(x﹣1)2﹣3D.y=(x+1)2+3【解答】解:抛物线y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向右平移一个单位,向下平移2个单位得到对应点的坐标为(1,﹣3),所以平移后的抛物线解析式为y=(x﹣1)2﹣3.故选:C.3.(4分)已知α为锐角,且sinα=,那么α的余弦值为()A.B.C.D.【解答】解:∵sin2α+cos2α=1,∴cosα===.故选:D.4.(4分)抛物线y=ax2+bx+c的图象经过原点和第一、二、三象限,那么下列结论成立的是()A.a>0,b>0,c=0B.a>0,b<0,c=0C.a<0,b>0,c=0D.a<0,b<0,c=0【解答】解:∵抛物线经过原点,∴c=0,∵抛物线经过第一,二,三象限,可推测出抛物线开口向上,对称轴在y轴左侧∴a>0,∵对称轴在y轴左侧,∴对称轴为x=<0,又因为a>0,∴b>0.故选:A.5.(4分)在比例尺为1:10000的地图上,一块面积为2cm2的区域表示的实际面积是()A.2000000cm2B.20000m2C.4000000m2D.40000m2【解答】解:设实际面积是x,则=()2,解得x=200 000 000cm2,∵1m2=10000cm2,∴200 000 000cm2=20000m2.故选:B.6.(4分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次【解答】解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.二、填空题(本大题共12小题,每题4分,满分48分)7.(4分)如果,那么=.【解答】解:∵,∴==.故答案为:.8.(4分)如果两个相似三角形周长的比是2:3,那么它们的相似比是2:3.【解答】解:∵两个相似三角形周长的比是2:3,∴两个相似三角形相似比是2:3,故答案为:2:3.9.(4分)已知线段AB的长为2厘米,点P是线段AB的黄金分割点(AP<BP),那么BP的长是﹣1厘米.【解答】解:∵点P是线段AB的黄金分割点,AP<BP,∴BP=AB=﹣1厘米.故答案为:﹣1.10.(4分)如图,在△ABC中,∠ACB=90°,点F在边AC的延长线上,且FD⊥AB,垂足为点D,如果AD=6,AB=10,ED=2,那么FD=12.【解答】解:∵FD⊥AB,∴∠BDE=∠ADF=90°,∵∠ACB=90°,∠CEF=∠BED,∴∠F=∠B,∴△ADF∽△BDE,∴,即,解得:DF=12,故答案为:12.11.(4分)在Rt△ABC中,∠C=90°,cos A=,AC=2,那么BC=4.【解答】解:∵∠C=90°,∴cos A==,∵AC=2,∴AB=6,∴BC===4.故答案为:4.12.(4分)已知一条斜坡,向上前进5米,水平高度升高了4米,那么坡比为1:0.75.【解答】解:如图所示:AC=5米,BC=4米,则AB==3米,则坡比===1:0.75.故答案为:1:0.75.13.(4分)过△ABC的重心作DE∥BC,分别交AB于点D,AC于点E,如果=,=,那么=﹣.【解答】解:∵过△ABC的重心作DE∥BC,∴=,∴==(﹣)=﹣.故答案为:﹣.14.(4分)方程ax2+bx+c=0(a≠0)的两根为﹣3和1,那么抛物线y=ax2+bx+c (a≠0)的对称轴是直线x=﹣1.【解答】解:∵函数y=ax2+bx+c的图象与x轴的交点的横坐标就是方程ax2+bx+c =0的根,∵x1+x2=﹣3+1=﹣=﹣2.则对称轴x=﹣=×(﹣)=×(﹣2)=﹣1.15.(4分)在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为12<r<13.【解答】解:如果以点A为圆心作圆,使点C在圆A内,则r>12,点B在圆A外,则r<13,因而圆A半径r的取值范围为12<r<13.故答案为12<r<13.16.(4分)已知⊙O1与⊙O2内切,⊙O1的半径长是3厘米,圆心距O1O2=2厘米,那么⊙O2的半径长等于5或1厘米.【解答】解:设⊙O2的半径为r,∵⊙O1与⊙O2内切,∴r﹣3=2或3﹣r=2,∴r=5或r=1.故答案为5或1.17.(4分)闵行体育公园的圆形喷水池的水柱(如图1)如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度)y(米)关于水平距离x(米)的函数解析式为y=﹣x2+4x+,那么圆形水池的半径至少为米时,才能使喷出的水流不落在水池外.【解答】解:当y=0时,即﹣x2+4x+=0,解得x1=,x2=﹣(舍去).答:水池的半径至少米时,才能使喷出的水流不落在水池外.故答案为:.18.(4分)将一副三角尺如图摆放,其中在Rt△ABC中,∠ACB=90°,∠B =60°,在Rt△EDF中,∠EDF=90°,∠E=45°.点D为边AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转角α(0°<α<60°)后得△E′DF′,DE′交AC于点M,DF′交BC于点N,那么的值为.【解答】解:∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故答案是:.三、解答题(本大题共7小题,满分78分)19.(10分)如图,已知Rt△ABC的斜边AB在x轴上,斜边上的高CO在y轴的正半轴上,且OA=1,OC=2,求经过A、B、C三点的二次函数解析式.【解答】解:∵∠AOC=∠ACB=90°,∴∠CAO+∠ACO=90°,∠CAO+∠ABC=90°,∴∠ACO=∠ABC,又∵∠AOC=∠COB=90°,∴△ACO∽△CBO,∴=,即OC2=OB•OA,∵OA=1,OC=2,∴OB=4,则B(4,0),∵A(﹣1,0),C(0,2)设抛物线解析式为y=a(x+1)(x﹣4),将C(0,2)代入得:2=﹣4a,即a=﹣,则过A、B、C三点的抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2,20.(10分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.21.(10分)如图,已知四边形ABCD,点P、Q、R分别是对角线AC、BD和边AB的中点,设=,=.(1)试用,的线性组合表示向量;(需写出必要的说理过程)(2)画出向量分别在,方向上的分向量.【解答】解:(1)∵点P、Q、R分别是对角线AC、BD和边AB的中点,∴==﹣,==,∴=+=﹣+;(2)如图:与即为所求.22.(10分)如图,一只猫头鹰蹲在树AC上的B处,通过墙顶F发现一只老鼠在E处,刚想起飞捕捉时,老鼠突然跑到矮墙DF的阴影下,猫头鹰立即从B 处向上飞至树上C处时,恰巧可以通过墙顶F看到老鼠躲在M处(A、D、M、E四点在同一条直线上).已知,猫头鹰从B点观测E点的俯角为37°,从C点观察M点的俯角为53°,且DF=3米,AB=6米.求猫头鹰从B处飞高了多少米时,又发现了这只老鼠?(结果精确到0.01米)(参考数据:sin37°=cos53°=0.602,cos37°=sin53°=0.799,tan37°=cot53°=0.754,cot37°=tan53°=1.327).【解答】解∵DF=3,∠E=37°,cot37°=,∴DE=3•cot37°,∵DF=3米,AB=6米,AC∥DF,∴D是AE的中点,∴AE=2DE=6•cot37°,∵cot53°=,∴DM=3•cot53°,∴AM=AD+DM=3(cot37°+cot53°),∵cot37°=,∴AC=AM•cot37°,∴BC=AC﹣6≈2.28(米).23.(12分)如图,已知在△ABC中AB=AC,点D为BC边的中点,点F在边AB上,点E在线段DF的延长线上,且∠BAE=∠BDF,点M在线段DF上,且∠EBM=∠C.(1)求证:EB•BD=BM•AB;(2)求证:AE⊥BE.【解答】证明:(1)∵AB=AC,∴∠ABC=∠C,∵∠EBM=∠C,∴∠EBM=∠ABC,∴∠ABE=∠DBM,∵∠BAE=∠BDF,∴△BEA∽△BMD,∴,∴EB•BD=BM•AB;(2)连接AD,∵AB=AC,点D为BC边的中点,∴AD⊥BC,∵,∠ABD=∠EBM,∴△ABD∽△EBM,∴∠ADB=∠EMB=90°,∴∠AEB=∠BMD=90°,∴AE⊥BE.24.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点.(1)求这个二次函数y=x2+bx+c的解析式.(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标.(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.【解答】解:(1)将B、C点代入函数解析式,得,解得,这个二次函数y=x2+bx+c的解析式为y=x2﹣2x﹣3;(2)四边形POP′C为菱形,得OC与PP′互相垂直平分,得y P=﹣,即x2﹣2x﹣3=﹣,解得x1=,x2=(舍),P(,﹣);(3)∠PBC<90°,①如图1,当∠PCB=90°时,过P作PH⊥y轴于点H,BC的解析式为y=x﹣3,CP的解析式为y=﹣x﹣3,设点P的坐标为(m,﹣3﹣m),将点P代入代入y═x2﹣2x﹣3中,解得m1=0(舍),m2=1,即P(1,﹣4);AO=1,OC=3,CB==3,CP==,此时==3,△AOC∽△PCB;②如图2,当∠BPC=90°时,作PH⊥y轴于H,作BD⊥PH于D,BC的解析式为y=x﹣3,CP的解析式为y=x﹣3,设点P的坐标为(m,m2﹣2m﹣3),由K cp•K pb=﹣1,得m=或(舍去)此时,==≠=3,以P、C、B为顶点的三角形与△AOC不相似;综上所述:P、C、B为顶点的三角形与△AOC相似,此时点P的坐标(1,﹣4).25.(14分)如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,对角线AC、BD交于点G,已知AB=BC=3,tan∠BDC=,点E是射线BC上任意一点,过点B作BF⊥DE,垂足为点F,交射线AC于点M,射线DC于点H.(1)当点F是线段BH中点时,求线段CH的长;(2)当点E在线段BC上时(点E不与B、C重合),设BE=x,CM=y,求y 关于x的函数解析式,并指出x的取值范围;(3)连接GF,如果线段GF与直角梯形ABCD中的一条边(AD除外)垂直时,求x的值.【解答】解:(1)∵在直角梯形ABCD中,AB∥CD,∠ABC=90°∴∠DCB=90°∵AB=BC=3,tan∠BDC=∴CD=6∵BF⊥DE∴当F为线段BH中点时,△BHD为等腰三角形,∴BD=HD==3CH=DH﹣DC=3﹣6(2)∵AB∥CH,∴=又∵AC==3,∴=在△BCH与△DCE中,∠BCH=∠DCE=90°,∠HBC=∠EDC=90°﹣∠DHB,∴△BCH∽△DCE,∴==,则CH=,∴=,化简整理得:y=(0<x<3);(3)①(图2)当GF⊥BC时,此时GF∥AB∥CD,==此时==∵△BCH∽△DCE∴===∴BF=BH=DE∴△BFE∽△DCE∴=∴=∴DE2=36x=(3﹣x)2+62,解得x=21﹣6(x=21+6>3,故舍去)②当E在射线BC上时(图3),GF⊥DC即GF∥BE,设GF与CD交点为K,由①可知===,则GK=×3=2,DK=4设KF=a,则==,∴KH=,HC=,∵∠BCD=∠DKF=90°∴∠KDF=∠CBH∴tan∠KDF=tan∠CBH∴=解得a=(a=<0故舍去)∵==∴CE=a=,BE=CE+3=综上可知:x的值为21﹣6或。

2016年上海中考数学试卷及答案

2016年上海中考数学试卷及答案

2016年上海市初中毕业统一学业考试数学试卷(满分150分,考试时间100分钟)1、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1、如果与3互为倒数,那么是()答案:D;(A)-3;(B)3;(C)-;(D).2、下列单项式中,与是同类项的是()答案:A;(A)2;(B);(C)-;(D).3、如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是()答案:C;(A);(B);(C);(D).4、某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()答案:C ;(A)3次;(B)3.5次;(C)4次;(D)4.5次.5、已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()答案:A;(A)+;(B)-;(C)+;(D)-.6、如图1,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()答案:B ;(A)1<r<4;(B)2<r<4;(C)1<r<8;(D)2<r<8.2、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7、计算:.答案:8、函数的定义域是.答案:9、方程的解是.答案:10、如果,,那么代数式的值为.答案:-211、不等式组的解集是.答案:12、如果关于的方程有两个相等的实数根,那么实数的值是.答案:13、已知反比例函数(),如果在这个函数图像所在的每一个象限内,的值随着的值增大而减小,那么的取值范围是.答案:k>0;14、有一枚材质均匀的正方体骰子,它的六个面上分别有点、2点、…6点的标记。

2016年上海市中考数学试题及答案 解析

2016年上海市中考数学试题及答案 解析

2016年上海市中考数学试题及答案+解析(Word版)2016年上海市中考数学试题及答案+解析(Word版)2016年上海市中考数学试题及答案+解析(Word版)一、选择题:1、下列实数中,是有理数的为() 2、当a>0时,下列关于幂的运算正确的是() 3、下列y关于xO的函数中,是正比例函数的为()【答案】D【解析】整数或有限小数是有理数,无限不循环小数为无理数,故选D。

2、当a>0时,下列关于幂的运算正确的是()【答案】A.【解析】除了0以外,任何数的0次都等于1,因为a>0,所以,a0=13、下列y关于xO的函数中,是正比例函数的为()【答案】C【解析】,是正比例函数,选C。

4、如果一个正多边形的中心角为72 ,那么这个正多边形的边数是()A、4;B、5;C、6;D、7.【答案】B.【解析】边数为=5。

5、下列各统计量中,表示一组数据波动程度的量是()A、平均数;B、众数;C、方差;D、频率.【答案】C【解析】方差反应数据波动程度,方差大,波动大,方差小,波动小,稳定。

6、如图,已知在⊙O中,AB是弦,半径OC AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A、AD=BD;B、OD=CD;C、 CAD= CBD;D、 OCA= OCB.答案】B【解析】因OC AB,由垂径定理,知AD=BD,若OD=CD,则对角线互相垂直且平分,所以,OACB为菱形。

二、填空题:13、某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是__________.14、已知某校学生科技创新社团成员的年龄与人数情况如下表所示:。

2016年上海中考数学试卷及答案

2016年上海中考数学试卷及答案

2016年上海中考数学试卷及答案、选择题1.如果a 与3互为倒数,那么a 是(1【解析】3的倒数是—.故选D.32.下列单项式中,与 a 2b 是同类项的是(【解析】含有相同字母,并且相同字母的指数也相同的单项式为同类项,所以,选A. 3B. 3C. D.A. 2a 2b2 2B. a bC. ab 2D. 3abA.3.如果将抛物线y x 2 2向下平移 1个单位,那么所得新抛物线的表达式是(A. y (x 1)2B . y(x 1)222C. y x 1D.x 2 3 【解析】抛物线yx 2 2向下平移 1个单位变为 y x 2 2 1,即为 y1 .故选C.4.某校调查了 20名男生某一周参加篮球运动的次数, 调查结果如表所示,那么这 20名男生该周参加篮球运动次数的平均数是(次数 2 3 4 5 人数22 106A. 3次D. 4.5 次【解析】平均数为:丄(2 2 3 2204 105 6) = 4 (次).故选 C.5.如图,已知在 ABC 中,AB AC , AD 是角平分线,点 D 在边uuu r LULT r uuur r rBC 上,设BC a , AD b ,那么向量 AC 用向量a 、b 表示为( )1 rrA. ab1 r rB. abC .1a b 2 D .1a b 2【解析】因为AB = AC , AD 为角平分线,所以,D 为BC 中点,UULT UUITAC ADUULT UULT 1 uur 〔 r rDC AD -BC = - a b .故选 A.2 26.如图,在 Rt ABC 中, C 90 , AC 4 , BC 7,点 D 在边 BC 上,CD 3 ,)B. 3.5 次C. 4次O A 的半径长为3,0 D 与O A 相交,且点B 在O D 夕卜,那么O D 的半径长r 的取值范围7. 计算:a 3 a _________【解析】同底数幕相除,底数不变,指数相减,所以,原式=38. 函数y的定义域是x 2【解析】由分式的意义,得:x 2 0,即x 2 .故填x9.方程” 1 _______ 2的解是【解析】原方程两边平方,得: x — 1 = 4,所以,x 5.故填x 5. 10.如果 a — , b23,那么代数式2a b 的值为【解析】2a b = 21-3 = — 2.故填—2.22x 5 11.不等式组 的解集是x 1x【解析】原不等式组变为:5 2,解得:x 1.故填x1.x 112.如果关于x 的方程x 23x k 0有两个相等的实数根, 那么实数k 的值是99 【解析】因为原方程有两个相等的实数根,所以,△= 9— 4k = 0,所以,k =.故填兰.44A. 1 r 4B. 2 r 4C. 1r 8D. 2 r8【解析】 由勾股定理,得:AD = 5, O D 与O A 相交,所以, r > 5— 3= 2,故有2 r 4 .故选B.2.3 12 2a a .故填a .是( )LiBD = 7 — 3= 4,k13.已知反比例函数y — ( k 0),如果在这个函数图像所在的每一个象限内,y的值x随着x的值增大而减小,那么k的取值范围是k【解析】反比例函数y —,当k 0时,函数图像所在的每一个象限内,y的值x随着x的值增大而减小;当k 0时,函数图像所在的每一个象限内,y的值随着x的值增大而增大•故填k 0.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、、6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是_________【解析】向上的一面出现的点数是3的倍数有3、6两种,所以,所求概率为:1故填-.315.在ABC中,点D、E分别是边AB、AC的中点,那么ADE的面积与ABC的面积的比是1【解析】因为点D、E分别是AB、AC的中点,所以,DE // BC, DE BC ,2所以,△ ADE^A ABC又相似三角形的面积比等于相似比的平方,DE 1 1所以,ADE的面积与ABC的面积的比是(竺)2=丄.故填-.BC 4 416.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是_________ .选择公交前往的人数是:12000 50% = 6000•故填6000.【解析】设总人数为x,由扇形统计图可知,自驾占40%,所以,x =塑00= 12000,40%选择公交前往的人数是:12000 50% = 6000•故填6000.217.如图,航拍无人机从 A 处测得一幢建筑物顶部 B 的仰角为30。

2016年上海市中考数学试卷及参考答案

2016年上海市中考数学试卷及参考答案

2016年上海市中考数学试卷及参考答案一、选择题(本大题共6题,每题4分,满分24分) 1、如果a 与3互为倒数,那么a 是( )A 、3-B 、3C 、31-D 、312、下列单项式中,与b a 2是同类项的是( )A 、b a 22B 、22b aC 、2abD 、ab 33、如果将抛物线22+=x y 向下平移1个单位,那么所得新抛物线的表达式是( )A 、2)1(2+-=x yB 、2)1(2++=x yC 、12+=x yD 、32+=x y4、某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是( )、次 、次 、次 、次5、已知在ABC △中,AC AB =,AD 是角平分线,点D 在边BC 上,设a BC =,b AD =,那么向量AC 用向量a 、b 表示为( )6、如图,在ABC Rt △中,︒=∠90C ,4=AC ,7=BC ,点D 在边BC 上,3=CD ,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( )第6题二、填空题(本大题共12题,每题4分,满分48分) 7、计算:=÷a a 38、函数23-=x y 的定义域是 9、方程21=-x 的解是10、如果21=a ,3-=b ,那么代数式b a +2的值为 11、不等式组⎩⎨⎧<-<0152x x 的解集是12、如果关于x 的方程032=+-k x x 有两个相等的实数根,那么实数k 的值是 13、已知反比例函数xky =(0≠k ),如果在这个函数图像所在的每一个象限内,y 的值随着x 的增大而减小,那么k 的取值范围是14、有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是15、在ABC △中,点D 、E 分别是边AB 、AC 的中点,那么ADE △的面积与ABC △的面积的比 是 16、今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,如图所示是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数第16题 第17题17、如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为︒30,测得底部C 的仰角为︒60,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为 米(精确到1米,参考数据:73.13≈)18、如图,矩形ABCD 中,2=BC ,将矩形ABCD 绕点D 顺时针旋转︒90,点A 、C 分别落在A '、C '处,如果点A '、C '、B 在同一条直线上,那么A AB '∠tan 的值为第18题三、解答题(本大题共7题,满分78分) 19、(本题满分10分) 计算:221)31(124|13|-+---20、(本题满分10分) 解方程:144212=---x x 21、(本题满分10分,每小题满分各5分)如图,在ABC Rt △中,︒=∠90ACB ,3==BC AC ,点D 在边AC 上,且CD AD 2=,AB DE ⊥,垂足为点E ,联结CE ,求: (1)线段BE 的长 (2)ECB ∠的余切值某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 中机器人于某日0时开始搬运,过了1小时,B 中机器人也开始搬运,如图,线段OG 表示A 中机器人的搬运量A y (千克)与实践x (时)的函数图像,线段EF 表示B 中机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解答下列问题: (1)求B y 关于x 的函数解析式(2)如果A 、B 两种机器人连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克23、(本题满分12分,每小题满分各6分)已知:如图,⊙O 是ABC △的外接圆,弧AB 等于弧AC ,点D 在边BC 上,BC AE ∥,BD AE = (1)求证:CE AD =(2)如果点G 在线段DC 上(不与点D 重合),且AD AG =,求证:四边形AGCE 是平行四边形如图,抛物线52-+=bx ax y (0≠a )经过点)5,4(-A ,与x 轴的负半轴交于点B ,与y 轴交于点C ,且OB OC 5=,抛物线的顶点为点D (1)求这条抛物线的表达式(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积(3)如果点E 在y 轴的正半轴上,且ABC BEO ∠=∠,求点E 的坐标25、(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图所示,梯形ABCD 中,DC AB ∥,︒=∠90B ,15=AD ,16=AB ,12=BC ,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且DAB AGE ∠=∠ (1)求线段CD 的长(2)如果AEG △是以EG 为腰的等腰三角形,求线段AE 的长(3)如果点F 在边CD 上(不与点C 、D 重合),设x AE =,y DF =,求y 关于x 的函数解析式,并写出x 的取值范围备用图2016年上海市中考参考答案三、解答题 19、原式36-=20、原方程的解是1-=x21、(1)22=BE (2)21cot =∠ECB22、(1)9090-=x y B (61≤≤x ) (2)150千克 23、(1)略 (2)略24、(1)542--=x x y (2)18=ABCD S 四边形 (3))23,0(E25、(1)7=CD (2)225=AE 或15=AE (3)x x y 18225-=(2259<<x )。

2016年上海市中考中考数学试卷

2016年上海市中考中考数学试卷

2016年上海市初中毕业统一学业考试数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择IE 确项的代号并填涂在答题纸的相应位置上】1.(2016上海,1,4分)如果a 与3互为倒数,那么a 是( )A .-3B .3C .-13D .13【答案】D ;2.(2016上海,2,4分)下列单项式中,与a 2b 是同类项的是( ) A .2a 2b B .a 2b 2 C .ab 2 D .3ab . 【答案】A ;3.(2016上海,3,4分)如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y =(x -1)2+2B .y =(x +1)2+2C .y =x 2+1D .y =x 2+3. 【答案】C ;4.(2016上海,4,4分)某校调査了20名男生某一周参加篮球运动的次数,调査结果如表1所示,那么这20名男生该周参加篮球运动次数的平均数是表( )A .3次B .3.5次C .4次D .4.5次. 【答案】C ;5.(2016上海,5,4分)已知在△ABC 中,AB =AC ,AD 是角平分线,点D 在边BC 上,设BC a = ,AD b = ,那么向量AC 用向量a 、b表示为( )A .12a +bB .12a -bC .-12a +bD .-12a -b【答案】A ;6.(2016上海,6,4分)如图1,在Rt △ABC 中,∠C =90°,AC =4,BC =7,点D 在边沉BC 上,CD =3,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( )A .1<r <4B .2<r <4C .1<r <8D .2<r <8【答案】B.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7.(2016上海,7,4分)计算:a3÷a=▲.【答案】a2;8.(2016上海,8,4分)函数y=22x-的定义域是▲.【答案】x≠2;9.(2016上海,9,4分)=2的解是▲.【答案】x=5;10.(2016上海,10,4分)如果a=12,b=-3,那么代数式2a+b的值为▲.【答案】-211.(2016上海,11,4分)不等式组2510xx⎧⎨-⎩<<的解集是▲.【答案】x<1;12.(2016上海,12,4分)如果关于x的方程x2-3x+k=0有两个相等的实数根,那么实数k的值是▲.【答案】94;13.(2016上海,13,4分)已知反比例函数y=kx(k≠0),如果在这个函数图像所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是▲.【答案】k>0;14.(2016上海,14,4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记.掷一次锻子,向上的一面出现的点数是3的倍数的概率是▲.【答案】13;15.(2016上海,15,4分)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE 的面积与△ABC的面积的比是▲.【答案】14;16.(2016上海,16,4分)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调査,图2-1和图2-2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是 ▲ .【答案】6000;17.(2016上海,17,4分)如图3,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30%,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约 ▲ 来.(精确到11.73)【答案】208;18.(2016上海,18,4分)如图4,矩形ABCD 中,BC =2.将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分别落在点A ′、C ′处,如果点A ′、C ′、B 在同一条直线上,那么tan ∠ABA ′的彼为 ▲ .三、解答题:(本大题共7题,满分78分〉 19.(2016上海,19,10分) (本题满分10分)计算:1|-124213-⎛⎫⎪⎝⎭.【答案】1-2-9=620.(2016上海,20,10分) (本题满分10分)解方程:12x--244x-=1.【答案】解:去分母,得x+2-4=x2-4.移项、整理得:x2-x-2=0.解方程,得:x1=2,x2=-1.经检验:x1=2是增根,舍去;x2=-1是原方程的根.所以,原方程的根是x=-1.21.(2016上海,21,10分) (本题满分10分,每小题满分各5分)如图5,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE.求:(1)线段BE的长;(2)∠ECB的余切值.【答案】解:(1)∵AD=2CD,AC=3,∴AD=2.在Rt△ABC中,∠ACB=90.,AC=BC=3,∴∠A=A5°,AB∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°.∴AE=AD•cos45∴BE=AB-AE=BE的长是(2)过点E作EH⊥BC,垂足为点H.在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=EB•cos45°=2.又∵BC=3,∴CH=1.在Rt△ECH中,cos∠ECB=CHEH=12,即∠ECB的余切值是12.22.(2016上海,22,10分) (本题满分10分,每小题满分各5分)某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时.A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图6,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图像,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图像.根据图像提供的信息,解答下列问题:(1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?【答案】解:(1)设y B 关于x 的函数解析式为y B =k 1x +b (k 1≠0),由线段EF 过点E (1,0)和点P (3,180),得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩.所以y B 关于x 的函数解析式为y B =90x -90(1≤x ≤6).(2)设y A 关于x 的函数解析式为y A =k 2x (k 2≠0), 由题意,得180=3k 2,即k 2=60,∴y A =60x . 当x =5时,y A =5×60=300(千克). 当x =6时,y A =90×6-90=450(千克). 450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了150千克.23.(2016上海,23,12分) (本题满分12分,每小题满分各6分)已知:如图7,⊙O 是△ABC 的外接國,AB = AC ,点D 在边BC 上,AE ∥BC ,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD.求证:四边形AGCE是平行四边形.【答案】证明:(1)在⊙O中, AB= AC,∴AB=AC.∴∠B=∠ACB•∵AE∥BC,∴EAC=∠ACB,∴∠B=∠EAC.又∵BD=AE,∴△ABD≌△CAE,∴AD=CE.(2)联结AO并延长,交边BC千点H,∵ AB= AC,OA是半径,∴AH⊥BC,∴BH=CH.∵AD=AG,∴DH=HG.∴BH-DH=CH-GH,即BD=CG.∵BD=AE,∴CG=AE.又∵CG∥AE,∴四边形AGCE是平行四边形.24.(2016上海,24,12分) (本题满分12分,毎小题满分各4分)如图8,抛物线y=ax2+bx-5(a≠0)经过点A(4,-5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【答案】解:(1)抛物线y =ax 2+bx -5与y 轴交于点C .∴C (0,-5),∴OC =5. ∵OC =5OB ,∴OB =1.又点B 在x 轴的负半轴上,∴B (-1,0). ∴抛物线经过点A (4,-5)和点B (-1,0). ∴1645550a b a b +-=-⎧⎨--=⎩,解得15a b =⎧⎨=-⎩.∴这条抛物线的表达式为y =x 2-4x -5.(2) 由y =x 2-4x -5,得顶点D 的坐标是(2,-9).联结AC .∵点A 的坐标是(4,-5),点C 的坐标是(0,-5),又S △ABC =12×4×5=10,S △ACD =12×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18. (3)过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =12×AB ×CH =10,AB =CH =在Rt △BCH 中,∠BHC =90°,BC BH ∴tan ∠CBH =CH BH=23. 在Rt △BOE 中,∠BOE =90°,tan ∠BEO =BOEO, ∵∠BEO =∠ABC ,BO EO=23,得EO =32,∴点E 的坐标为(0,32).25.(2016上海,25,14分) (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【答案】解:(1)过点D作DH∥AB,垂足为点H.在Rt△DAH中,∠AHD=90°,AD=15,DH=12,∴AH=9.又∵AB=16,∴CD=BH=AB-AH=7.(2)∵∠AEG=∠DEA,又∠AGE=∠DAE,△AEG∽△DEA.由△AEG是以EG为腰的等腰三角形,可得△DEA是以AE为腰的等腰三角形.①当EG=EA时,∠EAG=∠AGE=∠DAB∴点G与点D重合过点E做EH⊥AD与H点cos ∠A =AH AE =35,AH =152 ∴AE =252②当GE =GA 时, △EAD ∽△EGA . AE GE =ADAG∴AE =AD =15 综上所述,AE =152或15(3)Rt △DHE 巾,∠DHE =90°,DE ∵△AEG ∽△DEA ,AE DE =EGAE.∴EG2DG 2∵DF ∥AE ,∴DF AE =DG EG ,y x =()2222129x xx+--. ∴y =22518x x -,x 的取值范围为9<x <252.。

2016年中考数学试题分项版解析(第02期)专题16 压轴题

2016年中考数学试题分项版解析(第02期)专题16 压轴题

专题16 压轴题一、选择题1.(2016四川省凉山州)已知,一元二次方程28150x x -+=的两根分别是⊙O 1和⊙O 2的半径,当⊙O 1和⊙O 2相切时,O 1O 2的长度是( )A .2B .8C .2或8D .2<O 2O 2<8 【答案】C .考点:1.圆与圆的位置关系;2.根与系数的关系;3.分类讨论.2.(2016四川省宜宾市)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2 【答案】A . 【解析】试题分析:首先连接OP ,由矩形的两条边AB 、BC 的长分别为3和4,可求得OA =OD =5,△AOD 的面积,然后由S △A O D =S △A O P +S △D O P =12OA •PE +OD •PF 求得答案. 试题解析:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形A B C D=AB •BC =48,OA =OC ,OB =OD ,AC =BD =10,∴OA =OD =5,∴S △A C D =12S 矩形A B C D=24,∴S △A O D =12S △A C D =12,∵S △A O D =S △A O P +S △D O P =12OA •PE +12OD •PF =12×5×PE +12×5×PF =52(PE +PF )=12,解得:PE +PF =4.8.故选A .考点:1.矩形的性质;2.和差倍分;3.定值问题.3.(2016四川省宜宾市)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【答案】B.故选B.考点:1.二元一次方程组的应用;2.方案型.4.(2016四川省泸州市)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】D .考点:1.正多边形和圆;2.分类讨论.5.(2016四川省自贡市)圆锥的底面半径为4cm ,高为5cm ,则它的表面积为( )A .12πcm 2B .26πcm 2C cm 2D .16)πcm 2【答案】D . 【解析】试题分析:利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.试题解析:底面半径为4cm ,则底面周长=8πcm ,底面面积=16πcm 2;由勾股定理得,母线长cm ,圆锥的侧面面积=182π⨯=cm 2,∴它的表面积=16π+=16)π cm 2,故选D . 考点:1.圆锥的计算;2.压轴题.6.(2016甘肃省白银市)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【答案】A.当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选A.考点:1.动点问题的函数图象;2.分类讨论.二、填空题7.(2016四川省凉山州)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=CD=P是四边形ABCD四条边上的一个动点,若P到BD的距离为52,则满足条件的点P有个.【答案】2.考点:1.点到直线的距离;2.分类讨论.8.(2016四川省宜宾市)如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为⑤当△ABP≌△ADN时,BP=4.【答案】①②⑤.考点:相似形综合题.9.(2016四川省自贡市)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.【答案】16.考点:1.一次函数综合题;2.压轴题.10.(2016江苏省宿迁市)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.11.(2016江西省)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【答案】5.【解析】试题分析:分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE AE=②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.试题解析:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE AE=②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边考点:1.矩形的性质;2.等腰三角形的性质;3.勾股定理;4.分类讨论.12.(2016甘肃省兰州市)对于一个矩形ABCD 及⊙M 给出如下定义:在同一平面内,如果矩形ABCD 的四个顶点到⊙M 上一点的距离相等,那么称这个矩形ABCD 是⊙M 的“伴侣矩形”.如图,在平面直角坐标系xOy 中,直线l :3y =-交x 轴于点M ,⊙M 的半径为2,矩形ABC D 沿直线运动(BD 在直线l 上),BD =2,AB ∥y 轴,当矩形ABCD 是⊙M 的“伴侣矩形”时,点C 的坐标为 .【答案】(12,2-)或(32,2). 【解析】试题分析:根据“伴侣矩形”的定义可知:圆上的点一定在矩形的对角线交点上,因为只有对角线交点到四个顶点的距离相等,由此画出图形,先求出直线与x 轴和y 轴两交点的坐标,和矩形的长和宽;有两种情况:①矩形在x 轴下方时,作辅助线构建相似三角形得比例式,分别求出DG 和DH 的长,从而求出CG 的长,根据坐标特点写出点C 的坐标;②矩形在x 轴上方时,也分别过C 、B 两点向两坐标轴作垂线,利用平行相似得比例式,求出C 的坐标.考点:1.圆的综合题;2.新定义;3.分类讨论.三、解答题13.(2016上海市)如图,抛物线25y ax bx =+-(a ≠0)经过点A (4,﹣5),与x 轴的负半轴交于点B ,与y 轴交于点C ,且OC =5OB ,抛物线的顶点为点D .(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且∠BEO =∠ABC ,求点E 的坐标.【答案】(1)245y x x =--;(2)18;(3)E (0,32).(2)由245y x x =--,得顶点D 的坐标为(2,﹣9).连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5),又S △ABC =12×4×5=10,S △ACD =12×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18; (3)过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =12×AB ×CH =10,AB =,∴CH =,在RT △BCH 中,∠BHC =90°,BC =,BH ==,∴tan ∠CBH =23CH BH =.∵在RT △BOE 中,∠BOE =90°,tan ∠BEO =BO EO,∵∠BEO =∠ABC ,∴BO EO =23,得EO =32,∴点E 的坐标为(0,32). 考点:二次函数综合题.14.(2016上海市)如图所示,梯形ABCD 中,AB ∥DC ,∠B =90°,AD =15,AB =16,BC =12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE =∠DAB .(1)求线段CD 的长;(2)如果△AEC 是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE =x ,DF =y ,求y 关于x 的函数解析式,并写出x 的取值范围.【答案】(1)7;(2)15或252;(3)22518x y x -=(2592x <<).考点:1.四边形综合题;2.相似三角形综合题;3.分类讨论;4.压轴题.15.(2016北京市)在等边△ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).【答案】(1)40°;(2)①作图见解析;②证明见解析.考点:三角形综合题.16.(2016北京市)在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x =3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.【答案】(1)①2;②1y x =- 或 1y x =-+;(2)1≤m ≤5 或者51m -≤≤-.考点:1.圆的综合题;2.新定义.17.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.【答案】(1)EF=t;(2)t=83;(3)228(0)383 (4)3tSt⎧≤≤⎪⎪=⎨⎪+-<≤⎪⎩;(4)t=4;t=3.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2016吉林省长春市)如图,在平面直角坐标系中.有抛物线2(3)4y a x =-+和2()y a x h =-.抛物线2(3)4y a x =-+经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B .P 是抛物线2(3)4y a x =-+上一点,且在x 轴上方.过点P 作x 轴的垂线交抛物线2()y a x h =-于点Q .过点Q 作PQ 的垂线交抛物线2()y a x h =-于点'Q (不与点Q 重合),连结'PQ .设点P 的横坐标为m .(1)求a 的值;(2)当抛物线2()y a x h =-经过原点时,设△'PQQ 与△OAB 重叠部分图形的周长为l .②求l 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、Q 、'Q 为顶点的四边形是轴对称图形?直接写出h 的值.【答案】(1)49a =-;(2)①43;②24 (03)1171010(36)163m m l m m m <≤⎧⎪=⎨-++<<⎪⎩;(3)h =3或3-3+考点:1.二次函数综合题;2.分类讨论;3.压轴题.19.(2016四川省凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【答案】(1)A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)共有三种方案,详见解析,购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.最值问题;4.方案型.20.(2016四川省凉山州)如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标; (3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3). 【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA =AC 、②MA =MC 、③AC =MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c =++中,得:09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩考点:1.二次函数综合题;2.分类讨论;3.综合题;4.动点型.21.(2016四川省宜宾市)如图,已知二次函数21y a x b x =+过(﹣2,4),(﹣4,4)两点.(1)求二次函数1y 的解析式;(2)将1y 沿x 轴翻折,再向右平移2个单位,得到抛物线2y ,直线y =m (m >0)交2y 于M 、N 两点,求线段MN 的长度(用含m 的代数式表示);(3)在(2)的条件下,1y 、2y 交于A 、B 两点,如果直线y =m 与1y 、2y 的图象形成的封闭曲线交于C 、D 两点(C 在左侧),直线y =﹣m 与1y 、2y 的图象形成的封闭曲线交于E 、F 两点(E 在左侧),求证:四边形CEFD 是平行四边形.【答案】(1)21132y x x =--;(2)(3)证明见解析.CD =12x x -==,由219(1)22y m y x =-⎧⎪⎨=+-⎪⎩,消去y 得到22820x x m +-+=,设两个根为1x ,2x ,则EF =12x x -==∴EF =CD ,EF ∥CD ,∴四边形CEFD 是平行四边形.考点:二次函数综合题.22.(2016四川省巴中市)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE +CD =AD .连结CE ,求证:C E 平分∠BCD .【答案】证明见解析.考点:1.平行四边形的性质;2.和差倍分.23.(2016四川省巴中市)如图,在平面直角坐标系中,抛物线245y mx mx m =+-(m <0)与x 轴交于点A 、B (点A 在点B 的左侧),该抛物线的对称轴与直线3y x =相交于点E ,与x 轴相交于点D ,点P 在直线y x =上(不与原点重合),连接PD ,过点P 作PF ⊥PD 交y 轴于点F ,连接DF .(1)如图①所示,若抛物线顶点的纵坐标为 (2)求A 、B 两点的坐标;(3)如图②所示,小红在探究点P 的位置发现:当点P 与点E 重合时,∠PDF 的大小为定值,进而猜想:对于直线3y x =上任意一点P (不与原点重合),∠PDF 的大小为定值.请你判断该猜想是否正确,并说明理由.【答案】(1)2333y x x =--+;(2)A (﹣5,0)、B (1,0);(3)∠PDF =60°.考点:1.二次函数综合题;2.定值问题.24.(2016四川省广安市)如图,抛物线2y x bx c =++与直线132y x =-交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由. (3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标.【答案】(1)2932y x x =+-;(2)P (2-1--,(﹣1,132-),(﹣3,152-);(3)P (32-,152-). 【解析】试题分析:(1)先确定出点A 坐标,然后用待定系数法求抛物线解析式;(2)先用m 表示出PD ,当PD =OA =3,故存在以O ,A ,P ,D 为顶点的平行四边形,得到243m m +=,分两种情况进行讨论计算即可;(3)由△PAM 为等腰直角三角形,得到∠BAP =45°,从而求出直线AP 的解析式,最后求出直线AP 和抛物线的交点坐标即可. 试题解析:(1)∵直线132y x =-交于A 、B 两点,其中点A 在y 轴上,∴A (0,﹣3),∵B (﹣4,﹣5),考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.25.(2016四川省成都市)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接ED ,BE . (1)求证:△ABD ∽△AEB ; (2)当43AB BC 时,求tanE ; (3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.【答案】(1)证明见解析;(2)12;(3)8.考点:圆的综合题.26.(2016四川省成都市)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由.【答案】(1)13a =,A (-4,0),B (2,0);(2)y =2x +2或4433y x =--;(3)存在,N (-132-, 1). 【解析】由⎪⎩⎪⎨⎧-+=+=3832312x x y k kx y ,∴038)32(312=---+k x k x ,∴1223x x k+=-+,212123y y kx k kx k k +=+++=,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (312k -,232k ).假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k ﹣3,由⎪⎩⎪⎨⎧-+=-+=38323132x x y k kx y ,解考点:1.二次函数综合题;2.压轴题.27.(2016四川省攀枝花市)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.【答案】(1)3011;(2;(3)0<t ≤1813或3011<t ≤5.考点:1.圆的综合题;2.分类讨论;3.动点型;4.压轴题.28.(2016四川省攀枝花市)如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,﹣3) (1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积.(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q ,是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式,若不存在,请说明理由.【答案】(1)223y x x =--;(2)P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;(3)存在,113y x =-.在223y x x =--中,令y =0可得2023x x =--,解得x =﹣1或x =3,∴A 点坐标为(﹣1,0),∴AB =3﹣(﹣1)=4,且OC =3,∴S △ABC =12AB •OC =12×4×3=6,∵B (3,0),C (0,﹣3),∴直线BC 解析式为y =x ﹣3,设P 点坐标为(x ,223x x --),则M 点坐标为(x ,x ﹣3),∵P 点在第四限,∴PM =23(23)x x x ----=23x x -+,∴S △PBC =12PM •OH +12PM •HB =12PM •(OH +HB )=12PM •OB =32PM ,∴当PM 有最大值时,△PBC 的面积最大,则四边形ABPC 的面积最大,∵PM =23x x -+=239()24x --+,∴当x =32时,PM max =94,则S △PBC =3924⨯=278,此时P 点坐标为(32,154-),S 四边形ABPC =S △ABC +S △PBC =6+278=758,即当P 点坐标为(32,154-)时,四边形ABPC 的面积最大,最大面积为758;考点:1.二次函数综合题;2.存在型;3.最值问题;4.二次函数的最值;5.动点型;6.压轴题.29.(2016四川省泸州市)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:B E是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.【答案】(1)证明见解析;(2)考点:1.圆的综合题;2.三角形的外接圆与外心;3.切线的判定.30.(2016四川省泸州市)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线2=+相交于A(1,,B(4,0)两点.y mx nx(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出MNNC的值,并求出此时点M的坐标.【答案】(1)2y=+;(2)D(1,0)或(0)或(0);(3),M(1,).综上可知存在满足条件的D 点,其坐标为(1,0)或(0,2)或(0,2);(3)如图2,过P 作PF ⊥CM 于点F ,∵PM ∥OA ,∴Rt △ADO ∽Rt △MFP ,∴MF ADPF OD==∴MF =,在Rt △ABD 中,BD =3,AD =∴tan ∠ABD =∴∠ABD =60°,设BC =a ,则CN =a ,在Rt △PFN 中,∠PNF =∠BNC =30°,∴tan ∠PNF =3PF PN =,∴FN =,∴MN =MF +FN =PF ,∵S △B C N =2S △P M N ,∴22122=⨯⨯,∴a =PF ,∴NC =a =PF ,∴MNNC ==,∴MN =NC ==a ,∴MC =MN +NC =()a ,∴M 点坐标为(4﹣a ,()a ),又M 点在抛物线上,代入可得2))a a -+-=()a ,解得a =3或a =0(舍去),OC =4﹣a =1,MC =,∴点M 的坐标为(1,).考点:1.二次函数综合题;2.分类讨论;3.动点型;4.存在型;5.压轴题. 31.(2016四川省资阳市)已知抛物线与x 轴交于A (6,0)、B (54-,0)两点,与y 轴交于点C ,过抛物线上点M (1,3)作MN ⊥x 轴于点N ,连接OM .(1)求此抛物线的解析式;(2)如图1,将△OMN 沿x 轴向右平移t 个单位(0≤t ≤5)到△O ′M ′N ′的位置,MN ′、M ′O ′与直线AC 分别交于点E 、F .①当点F 为M ′O ′的中点时,求t 的值;②如图2,若直线M ′N ′与抛物线相交于点G ,过点G 作GH ∥M ′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.【答案】(1)241921515y x x =-++;(2)①1;②t =2时,EH 最大值为考点:1.二次函数综合题;2.最值问题;3.二次函数的最值;4.存在型;5.平移的性质;6.压轴题.32.(2016山东省临沂市)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【答案】(1)22 (01)157 (1)x xyx x<<⎧=⎨+>⎩甲,=163y x+乙;(2)当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.当0<x <12或x >4时,选甲快递公司省钱. 考点:1.一次函数的应用;2.分段函数;3.方案型.33.(2016山东省临沂市)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA =QA ?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)21566y x x =-,直角三角形;(2)103;(3)M 1(52),M 2(52,M 3(52,2),M 4(52,2-).(3)存在,∵21566y x x =-,∴抛物线的对称轴为x =52,∵A (5,0),B (0,10),∴AB = 设点M (52,m );①若BM =BA 时,∴225()(10)1252m +-=,∴m 1=202+,m 2=202-M 1(52,202+),M 2(52②若AM =AB 时,∴225()1252m +=,∴m 3=2,m 4=2-,∴M 3(52,2),M 4(52,2-); ③若MA =MB 时,∴222255(5)()(10)22m m -+=+-,∴m =5,∴M (52,5),此时点M 恰好是线段AB 的中点,构不成三角形,舍去;∴点M 的坐标为:M 1(52,202+),M 2(52,202-),M 3(52,2),M 4(52,2-).考点:1.二次函数综合题;2.动点型;3.存在型;4.分类讨论;5.压轴题.34.(2016山东省德州市)如图,⊙O 是△ABC 的外接圆,AE 平分∠BAC 交⊙O 于点E ,交BC 于点D ,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:B E=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【答案】(1)直线l与⊙O相切;(2)证明见解析;(3)214.∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE CE,∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l,∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB =∠BAE +∠ABF ,∴∠EBF =∠EFB ,∴BE =EF .(3)由(2)得BE =EF =DE +DF =7.∵∠DBE =∠BAE ,∠DEB =∠BEA ,∴△BED ∽△AEB ,∴DE BE BE AE =,即477AE=,解得;AE =494,∴AF =AE ﹣EF =494﹣7=214. 考点:圆的综合题.35.(2016山东省德州市)已知,m ,n 是一元二次方程2+430x x +=的两个实数根,且|m |<|n |,抛物线2y x bx c =++的图象经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,试求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)△BCD 是直角三角形;(3)S =2213(03)2213 (03)22t t t t t t t ⎧-+<<⎪⎪⎨⎪-<>⎪⎩或.考点:1.二次函数综合题;2.分类讨论.36.(2016江苏省宿迁市)如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N . (1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.【答案】(1)245y x x =-++;(2)38+(3)25.。

2016年上海市中考数学试卷-含答案详解

2016年上海市中考数学试卷-含答案详解

2016年上海市中考数学试卷一、选择题(本大题共6小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如果a与3互为倒数,那么a是( )A. −3B. 3C. −13D. 132. 下列单项式中,与a2b是同类项的是( )A. 2a2bB. a2b2C. ab2D. 3ab3. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是( )A. y=(x−1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是( )次数2345人数22106A. 3次B. 3.5次C. 4次D. 4.5次5. 已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设BC⃗⃗⃗⃗⃗ =a⃗,AD⃗⃗⃗⃗⃗⃗ =b⃗ ,那么向量AC⃗⃗⃗⃗⃗ 用向量a⃗、b⃗ 表示为( )A. 12a⃗+b⃗ B. 12a⃗−b⃗ C. −12a⃗+b⃗ D. −12a⃗−b⃗6. 如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( )A. 1<r<4B. 2<r<4C. 1<r<8D. 2<r<8二、填空题(本大题共12小题,共48.0分)7. 计算:a3÷a=______ .8. 函数y=3x−2的定义域是______ .9. 方程√x−1=2的解是______.10. 如果a=1,b=−3,那么代数式2a+b的值为______ .211. 不等式组{2x<5x−1<0的解集是______.12. 如果关于x的方程x2−3x+k=0有两个相等的实数根,那么实数k的值是______ .13. 已知反比例函数y=k(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着xx的值增大而减小,那么k的取值范围是______ .14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是______.15. 在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是______ .16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是______.17. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______米.(精确到1米,参考数据:√3≈1.73)18. 如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为______.三、计算题(本大题共1小题,共10.0分)19. 解方程:1x−2−4x2−4=1.四、解答题(本大题共6小题,共68.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年上海市中考数学试卷、选择题:本大题共6小题,每小题4分,共24分1如果a与3互为倒数,那么a是()A. - 3B. 3C.—一D. 一3 322. 下列单项式中,与 a b是同类项的是()2 2 2 2A . 2a bB . a b C. ab D. 3ab3•如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()2 2 2 2A. y= (x —1)+2B. y= (x+1)+2C. y=x +1D. y=x +34. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这次数2345人数22106A . 3 次B . 3.5 次C . 4 次D. 4.5 次5. 已知在△ ABC中,AB=AC , AD是角平分线,点D在边BC上,设打=::'=「,那么向量「用向量、..表示为()6. 如图,在Rt△ ABC 中,/ C=90 ° AC=4 , BC=7,点D 在边BC 上,CD=3 ,O A 的半径长为3,0 D与O A相交,且点B在O D夕卜,那么O D的半径长r的取值范围是()A . 1v r v 4B . 2v r v 4C . 1v r v 8D . 2v r v 8二、填空题:本大题共12小题,每小题4分,共48分37 .计算:a3书= ___________ .20名男生该周参加篮■C .1 T -I-+ B.1 T -I:+ D.38函数y= 一 -的定义域是x - 29.方程J,. j_=2 的解是_______________ .10 .如果, b=- 3,那么代数式2a+b的值为______________________ .(2垃<511. ______________________________________ 不等式组:的解集是.12. 如果关于x的方程x2- 3x+k=0有两个相等的实数根,那么实数k的值是_____________ .13 •已知反比例函数y= (k#)),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而x减小,那么k的取值范围是_______________ .14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、•£点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是_______________ .15•在△ ABC中,点D、E分别是边AB、AC的中点,那么△ ADE的面积与△ ABC的面积的比是_____________ .16•今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是_____________ .17. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°测得底部C的俯角为60°此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为_____________ 米.(精确到1米,参考数据:V1-1.73)18. 如图,矩形ABCD中,BC=2 ,将矩形ABCD绕点D顺时针旋转90°点A、C分别落在点A'、C处.如3果点A'、C'、B在同一条直线上,那么tan/ABA的值为___________________ .如图,在 Rt △ ABC 中,/ ACB=90 ° AC=BC=3,点 D 在边 AC 上,且 AD=2CD , DE 丄 AB ,垂足为 点E ,联结CE ,求:O IE 3 予方y 时(1) 求证:AD=CE ;(2) 如果点G 在线段DC 上(不与点D 重合),且AG=AD ,求证:四边形 AGCE 是平行四边形.解答题:本大题共 7小题,共78分 19. 计算:I 一 -11-20.解方程:」21. B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了 1小时,B 种机器人也开始搬运,如图,线段 OG 表示A 种机器人 的搬运量y A (千克)与时间x (时)的函数图象, 根据图象提供的信息,解答下列问题:(1) 求y B 关于x 的函数解析式;(2)如果A 、 jfsB 两种机器人连续搬运 5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?23.已知:如图,O O 是厶ABC 的外接圆,•-=,,点 D 在边 BC 上,AE // BC , AE=BD .(1)线段BE 的长;ISO求四边形ABCD 的面积;25 .如图所示,梯形 ABCD 中,AB // DC ,Z B=90 ° AD=15 , AB=16 ,BC=12,点 E 是边 AB 上的动点, 点F 是射线CD 上一点,射线 ED 和射线AF 交于点G ,且/ AGE= / DAB . (1)求线段CD 的长;(2) 如果△ AEC 是以EG 为腰的等腰三角形,求线段 AE 的长;(3) 如果点F 在边CD 上(不与点C 、D 重合),设AE=x , DF=y ,求y 关于x 的函数解析式,并写出x224 .如图,抛物线 y=ax +bx - 5 (a 旳)经过点A ( 4,- 5),与x 轴的负半轴交于点 B ,与y 轴交于点C ,且0C=50B ,抛物线的顶点为点(1) 求这条抛物线的表达式;(2)且/ BEO= / ABC ,求点 E 的坐标.A联结 AB 、BC 、CD 、DA , 备用圏故选A .【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.23.如果将抛物线 y=x 2+22 2 2 2A . y= (x - 1) +2B . y= (x+1) +2C . y=x +1D . y=x +3 【考点】二次函数图象与几何变换.【分析】根据向下平移,纵坐标相减,即可得到答案.22016年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共 6小题,每小题4分,共24分 1如果a 与3互为倒数,那么a 是( ) A . - 3 B . 3 CD . 3 3【考点】倒数.【分析】根据乘积为 1的两个数互为倒数,可得答案. 【解答】解:由a 与3互为倒数,得a是,故选:D .【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关22.下列单项式中,与 a b 是同类项的是(2 2 2 2A . 2a bB . a bC . abD . 3ab 【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可. 【解答】解:A 、2a 2b 与a 2b 所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;2 2 2B 、 a b 与ab 所含字母相同,但相同字母 C 、 ab 2与Xb 所含字母相同,但相同字母2D 、 3ab 与a b 所含字母相同,但相同字母 b 的指数不相同,不是同类项,故本选项错误; a 的指数不相同,不是同类项,本选项错误; a 的指数不相同,不是同类项,本选项错误.向下平移1个单位,那么所得新抛物线的表达式是()【解答】解:•••抛物线y=x +2向下平移1个单位,•••抛物线的解析式为y=x2+2 - 1即y=x2+1 .故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a个单位长度纵坐标要减|a|.4•某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A . 3 次B . 3.5 次C. 4 次D . 4.5 次【考点】加权平均数.【分析】加权平均数:若n个数X i, X2, X3,…,X n的权分别是W i , W2, W3,…,W n,则x1w1+x2w2+ --+xnwnw1+w2+ --+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2炖+3丈+4 XI0+5 W)€0=(4+6+40+30 )€080吃0=4 (次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法•本题易出现的错误是求2, 3, 4, 5这四个数的平均数,对平均数的理解不正确.5•已知在△ ABC中,AB=AC , AD是角平分线,点D在边BC上,设r = 一,:=,那么向量用向量-、卜表示为()【考点】3平面向量.【分析】由△ ABC中, AD 是角平分线,结合等腰三角形的性质得出BD=DC,可求得•「的值,然后利用三角形法则,求得答案.【解答】解:如图所示: •••在△ ABC中,AB=AC , AD是角平分线,3 BD=DC ,•••「= [,.. ' 电,T-=■■,.一 ■+ = 一 ■+ "■- •• •,_ .+1 -三+ -【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在 Rt △ ABC 中,/ C=90 ° AC=4 , BC=7,点 D 在边 BC 上,CD=3 ,O A 的半径长为 3,0 D 与O A 相交,且点B 在O D 夕卜,那么O D 的半径长r 的取值范围是()A . 1v r v 4B . 2v r v 4C . 1v r v 8D . 2v r v 8 【考点】圆与圆的位置关系;点与圆的位置关系. 【分析】连接AD , 根据勾股定理得到 AD=5 ,根据圆与圆的位置关系得到 r > 5 -3=2 , 由点B 在O D 夕卜, 于是得到r v 4, 即可得到结论.【解答】解:连接AD , •/ AC=4 , CD=3,/ C=90 ° /• AD=5 ,TO A 的半径长为3, O D 与O A 相交,r >5 - 3=2 , •/ BC=7 ,/• BD=4 , •••点B 在O D 夕卜, /• r v 4,•••O D 的半径长r 的取值范围是2v r v 4,故选B .【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为 圆上;当d > r 时,点在圆外;当d v r 时,点在圆内.二、填空题:本大题共 12小题,每小题4分,共48分327.计算:a 3皆 a 2.【考点】同底数幕的除法. 【专题】计算题.【分析】根据同底数幕相除,底数不变指数相减进行计算即可求解. 【解答】解:a 3^a=a 3-1=a 2.故答案为:a 2.【点评】本题考查了同底数幕的除法的运算性质,熟记运算性质是解题的关键.38函数y=..-的定义域是 x 老. 【考点】函数自变量的取值范围.【分析】直接利用分式有意义的条件得出答案.3【解答】解:函数 y=——r 的定义域是:x 担.X 一 £ 故答案为:X 吨.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程 €•:: = ' =2的解是 _x=5 .d ,则当d=r 时,点在【考点】无理方程.【分析】利用两边平方的方法解出方程,检验即可. 【解答】解:方程两边平方得, X -仁4, 解得,x=5,把x=5代入方程,左边=2,右边=2 , 左边=右边,则x=5是原方程的解, 故答案为:x=5 .【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关 键.10 •如果a=w , b= - 3,那么代数式2a+b 的值为 -2 .【考点】代数式求值. 【专题】计算题;实数.【分析】把a 与b 的值代入原式计算即可得到结果. 【解答】解:当 a= , b= - 3时,2a+b=1 - 3= - 2,2故答案为:-2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11•不等式组*的解集是 X V 1x 一【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.5解①得xV — 解②得x V 1,则不等式组的解集是 x V 1. 故答案是:x V 1 .【解答】解:公<5…①I -…②【点评】本题考查了一元一次不等式组的解法: 解一元一次不等式组时,一般先求出其中各不等式的解集, 再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x 的方程x 2- 3x+k=0有两个相等的实数根,那么实数 【考点】根的判别式;解一元一次方程.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于 出结论.【解答】解:•••关于 x 的方程x 2- 3x+k=0有两个相等的实数根,2= (- 3) — 4 XI >k=9 — 4k=0 ,g解得:k=.4故答案为:兰4【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出度不大,解决该题型题冃时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13•已知反比例函数 y= ' (k^0),如果在这个函数图象所在的每一个象限内, y 的值随着x 的值增大而减小,那么k 的取值范围是 k > 0 .【考点】反比例函数的性质.【分析】直接利用当 k > 0,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随x 的增大而减小;当k v 0,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随x 的增大而增大,进而得出答案.【解答】解:•••反比例函数 y= (k 旳),如果在这个函数图象所在的每一个象限内,y 的值随着x 的值s 增大而减小,.k 的取值范围是:k >0. 故答案为:k > 0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.k 的值是 -一 4一k 的一元一次方程,解方程即可得9 — 4k=0 .本题属于基础题,难14.有一枚材质均匀的正方体骰子,它的六个面上分别有 一面出现的点数是 3的倍数的概率是一3—【考点】概率公式.1点、2点、--6点的标记,掷一次骰子,向上的【专题】计算题.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率='=.6 3故答案为.3【点评】本题考查了概率公式:随机事件A的概率P (A )=事件A可能出现的结果数除以所有可能出现的结果数.15•在△ ABC中,点D、E分别是边AB、AC的中点,那么△ ADE的面积与△ ABC的面积的比是.一4 —【考点】三角形中位线定理.S【分析】构建三角形中位线定理得DE // BC,推出△ ADE ABC,所以’_=(丄)2,由此即可证明.【解答】解:如图,••• AD=DB , AE=EC ,••• DE // BC . DE= BC ,2• △ ADE ABC ,2… =(--)故答案为.4【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16•今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图•根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是_ 6000 •【考点】条形统计图;扇形统计图.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800 韶0%=12000,公交12000 X50%=6000 ,故答案为:6000 •【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键•条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°测得底部C的俯角为60°此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:疋V.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD , DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan 30° =三=—AD 90 3解得:BD=30 .二,DC DC 片tan60= . = = •,解得:DC=90「,故该建筑物的高度为:BC=BD+DC=120 ~«208 ( m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°点A、C分别落在点A'、C处•如果点A'、C、B在同一条直线上,那么tan/ABA的值为冒—【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan/ BA C,根据/ ABA = / BA C解答即可.【解答】解:设AB=x,贝U CD=x , A C=x+2 , •/ AD // BC,•匸卫-丄E即-戈" 「, > !,解得,x1= ! - 1 , X2= - ! - 1 (舍去),•/ AB // CD,•••/ ABA =/ BA C,BC 2 Vs -1tan/ BA'c= ;一= :「.广 ,A/T—1• tan/ ABA =—,2故答案为:—-【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分1 1 _ 219•计算:城-誇-迈办(专〕-【考点】实数的运算;负整数指数幕.【分析】利用绝对值的求法、分数指数幕、负整数指数幕分别化简后再加减即可求解.【解答】解:原式=「- 1 - 2 - 2「+9=6 -“]::【点评】本题考查了实数的运算及负整数指数幕的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.1 420. 解方程:—=1.苯_2 x - 4【考点】解分式方程.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2 - 4=x2- 4,移项、合并同类项得,x2- x - 2=0 ,解得X1=2 , X2= - 1 ,经检验x=2是增根,舍去;x= - 1是原方程的根,所以原方程的根是x= - 1 .【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21. 如图,在Rt△ ABC 中,/ ACB=90 ° AC=BC=3,点D 在边AC 上,且AD=2CD , DE 丄AB,垂足为点E,联结CE,求:(1) 线段BE的长;【考点】解直角三角形;勾股定理.【分析】(1)由等腰直角三角形的性质得出/ A= / B=45 °由勾股定理求出AB=3二,求出/ ADE= / A=45 °由三角函数得出AE=[,即可得出BE的长;(2)过点E作EH丄BC,垂足为点H,由三角函数求出EH=BH=BE ?cos45°2,得出CH=1,在Rt △ CHE 中,由三角函数求出 cot / ECB=== 即可.EH 2【解答】解:(1)v AD=2CD , AC=3 , ••• AD=2 ,•••在 Rt △ ABC 中,/ ACB=90 ° AC=BC=3 ,•/ A = / B =45 ° AB={Cb 「= ; ■ :; =3. ■,•/ DE 丄 AB , • / AED=90 ° / ADE= / A=45 ° • AE=AD ?cos45°=2 x~十,2書• BE=AB - AE=3_=2 匚 即线段BE 的长为2 (2)过点E 作EH 丄BC ,垂足为点H ,如图所示: •••在 Rt △ BEH 中,/ EHB=90 ° / B=45 °•/ BC=3 , • CH=1 ,在 Rt△ CHE中,cot/ ECB= .「r ,【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三 角形的性质,通过作辅助线求出CH 是解决问题(2)的关键.• EH=BH=BE ?cos45°2=2,22. 某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段0G表示A种机器人的搬运量y A (千克)与时间x (时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?-——----- :_: ------ >O IE 3 勺6裁时【考点】一次函数的应用.【分析】(1)设设y B关于x的函数解析式为y B=kx+b (k旳),将点(1, 0)、(3, 180)代入一次函数函数的解析式得到关于k, b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3, 180)代入可求得y A关于x的解析式,然后将x=6, x=5 代入一次函数和正比例函数的解析式求得y A, y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b (k M D).f将点(1 , 0)、(3, 180)代入得:呼严3k+b=180解得:k=90, b= - 90.所以y B关于x的函数解析式为y B=90x - 90 (1纟詬).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5 时,y A=60^5=300 (千克);x=6 时,y B=90 >6 - 90=450 (千克).450 - 300=150 (千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23. 已知:如图,O O是厶ABC的外接圆,:’=「,点D在边BC上,AE // BC, AE=BD .(1)求证:AD=CE ;(2) 如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【分析】(1)根据等弧所对的圆周角相等,得出/ B= / ACB,再根据全等三角形的判定得△ ABD ◎△ CAE , 即可得出AD=CE ;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH丄BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在O O中,v■- = ,••• AB=AC ,•••/ B= / ACB ,•/ AE // BC ,•••/ EAC= / ACB ,•••/ B= / EAC ,覚二CA在厶ABD 和厶CAE 中,*Z B二BE=AE•••△ ABD ◎△ CAE ( SAS),• AD=CE ;(2)连接AO并延长,交边BC于点H,•••「=・,OA为半径,••• AH 丄BC,••• BH=CH ,•/ AD=AG ,• DH=HG ,• BH - DH=CH - GH,即BD=CG , •/ BD=AE , • CG=AE ,•/ CG // AE ,•••四边形AGCE 是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、 弧、弦之间的关系,把这几个知识点综合运用是解题的关键.224. 如图,抛物线y=ax +bx - 5 (a 诧))经过点A ( 4,- 5),与x 轴的负半轴交于点 B ,与y 轴交于点C , 且0C=50B ,抛物线的顶点为点 D .(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形 ABCD 的面积;【分析】(1)先得出C 点坐标,再由0C=5B0,得出B 点坐标,将A 、B 两点坐标代入解析式求出a ,b ;(2) 分别算出△ ABC 和厶ACD 的面积,相加即得四边形 ABCD 的面积;(3) 由/ BEO= / ABC 可知,tan / BEO=tan / ABC ,过C 作AB 边上的高 CH ,利用等面积法求出 CH , 从而算出tan / ABC ,而BO 是已知的,从而利用 tan / BEO=tan / ABC 可求出EO 长度,也就求出了 E 点 坐标.2【解答】解:(1):抛物线y=ax +bx - 5与y 轴交于点C,BEO= / ABC ,求点E 的坐标.且/• C (0,- 5),-=3 ,••• 0C=5 .•/ 0C=50B ,• 0B=1 ,又点B 在x 轴的负半轴上, • B (- 1, 0).•••抛物线经过点 A (4, - 5)和点B (- 1 ,又 ABC =+>4>5=10, ACD =+ >4 >4=8 , 二 S 四边形 ABCD=S ^ABC +S ^ACD=18 .(3) 过点C 作CH 丄AB ,垂足为点 H .S A ABC =>A B >C H =10 , AB =5 :,• CH=2 7,在 RT △ BCH 中,/ BHC=90 ° BC= , BH=BO •••在 RT △ B0E 中, Z BOE =90 ° 吮 BE0= ,_,vZ BE0= Z ABC ,0),a -b - 5=0 连接 •••点 A 的坐标是(4,- 5),点C 的坐标是5), 2, ACb — q ,•••点E 的坐标为(。

相关文档
最新文档