高中数学 算法案例课件 新人教A版必修3

合集下载

高中数学人教A版必修三 1.3 算法案例 课件 (共37张PPT)

高中数学人教A版必修三 1.3 算法案例 课件 (共37张PPT)

开始
输入f (x)的系数: a0、a1、a2、a3、a4、a5
输入x0
n=0
v=a5
v= v· x0+a5-n
n=n+1
n < 5? 否 输出v 结束

秦九韶算法的特点:
通过一次式的反复计算,逐步得出高次 多项式的值,对于一个n次多项式,只需做n 次乘法和n次加法即可。
练习:
1、已知多项式f(x)=x5+5x4+10x3+10x2+5x+1
所以:89=1011001(2)
2、十进制转换为二进制(除2取余法:用2连续去除89或所得的
商,然后取余数)
注意: 1.最后一步商为0, 2.将上式各步所得 的余数从下到上排 列,得到: 89=1011001(2)
2 89 48 2 22 2 2 11 2 5 2 2 2 1 0
余数 1 0 0 1 1 0 1
练习 将下面的十进制数化为二进制数? (1)10 (2)20 (3)128 (4)256
2、十进制转换为其它进制
例4 把89 化为五进 制数 解:根据除k取余法 以5作为除数,相应的除法算式为: 5 5
数为0
思考2:辗转相 用程序框图表示出右边的过程 除法中的关键 r=m MOD n 步骤是哪种逻 辑结构? m=n 辗转相除法中 n=r 的关键步骤是哪 r=0? 种逻辑结构?辗 否 是 转相除法是一个 反复执行直到余 数等于0停止的 步骤,这实际上 是一个循环结构。
m=n×q+r
8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+333 1813=333×5+148 333=148×2+37 148=37×4+0

人教版高中数学 A版 必修三 第一章 《1.3算法案例》教学课件

人教版高中数学 A版 必修三 第一章 《1.3算法案例》教学课件

D.8
解析 f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7,
∴加法6次,乘法6次,
∴6+6=12次,故选C.
解析答案
规律与方法
1.辗转相除法,就是对于给定的两个正整数,用较大的数除以较小的数, 若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除 法,直到大数被小数除尽为止,这时的较小的数即为原来两个数的最 大公约数. 2.更相减损术,就是对于给定的两个正整数,用较大的数减去较小的数, 然后将差和较小的数构成新的一对数,继续上面的减法,直到差和较 小的数相等,此时相等的两数即为原来两个数的最大公约数.
1 2345
答案
4.把89化成五进制的末尾数是( D )
A.1
B.2
C.3
1 2345
D.4
答案
5.下列各数中最小的数是 ( D )
A.85(9) C.1 000(4)
B.210(6) D.111 111(2)
1 2345
答案
ቤተ መጻሕፍቲ ባይዱ 规律与方法
1.要把k进制数化为十进制数,首先把k进制数表示成不同位上数字与k的 幂的乘积之和,其次按照十进制的运算规则计算和. 2.十进制数化为k进制数(除k取余法)的步骤:
答案
2.更相减损术的运算步骤 第一步,任意给定两个正整数,判断它们是否都是偶数 .若是,用 2 约简; 若不是,执行 第二步 . 第二步,以较大 的数减去 较小的数,接着把所得的差与 较小 的数比较, 并以大数减小数,继续这个操作,直到所得的数 相等 为止,则这个数(等 数)或这个数与约简的数的乘积就是所求的最大公约数.
解析答案
返回
达标检测
1.7不可能是( A ) A.七进制数 C.十进制数

人教A版高中数学必修3第一章.1算法的概念课件

人教A版高中数学必修3第一章.1算法的概念课件

知识探究(二):算法的步骤设计 人教A版高中数学必修3第一章.1算法的概念课件
思考32::设计一个算法,判断8 3975是否为质数。
第一步,用2除783,95 得到余数1,因为余数不为0,所 以2不能整除738.59 第二步,用3除738,59 得到余数2,因为余数不为0,所 以3不能整除783.95
人教A版高中数学必修3第一章.1算法 的概念 课件
算法设计: 第一步, 第二步, 第三步,
第四步,
人教A版高中数学必修3第一章.1算法 的概念 课件
在中央电视台幸运52节目中,有一个猜商品 价格的环节,竟猜者如在规定的时间内大体猜出 某种商品的价格,就可获得该件商品.现有一商品, 价格在0~2000元之间,采取怎样的策略才能在较 短的时间内说出正确(大体上)的答案呢?
第三步,用4除738,59 得到余数31,因为余数不为0,所 以4不能整除783.95
第…四…步,用5除73,5 得得到到余余数数20,,因因为为余余数数不为为00, ,所
以以第55八能不十整能七除整步3除5,.7用88除89,得到余数1,因为余数不
第所为五 以 0,因因步6不所此,此能以,用,整8683除除不85不977能是.,是整得质质除到数8数余9..。数1,因因为此余,数7是不为质0数,. 人教A版高中数学必修3第一章.1算法 的概念 课件
以3不能整除73.5
第三步,用4除73,5 得到余数3,因为余数不为0,所 以4不能整除73.5
第四步,用5除73,5 得得到到余余数数20,,因因为为余余数数不为为00, ,所 以以55能不整能除整3除5.7
第五步,用6除7,得到余数1,因为余数不为0,
所以6不能整除7.
因此,7是质数.
人教A版高中数学必修3第一章.1算法 的概念 课件

人教A版高中数学必修三课件算法案例--进位制新

人教A版高中数学必修三课件算法案例--进位制新

44=2×22+0 22=2×11+0 11=2×5+1 5=2×2+1
=2×(2×22+0)+1 =2×(2×(2×11+0)+0)+1 =2×(2×(2×(2×5+1)+0)+0)+1
=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1
所以89=2×(2×(2×(2×(2×2+1)+1)+0)+0)+1
其它进制:
实际上,十进制数只是计数法中的一种,但它不是唯一 记数法。除了十进制数,生产生活中还会遇到非十进制的 记数制。如时间:60秒为1分,60分为1小时,它是六十进 制的。两根筷子一双,两只手套为一副,它们是二进制的。
二进制、七进制、八进制、十二进制、 六十进制……
二进制只有0和1两个数字,七进制用0~6七个数字 十六进制有0~9十个数字及ABCDEF六个字母.
(2)程序框图:
开始 输入a,k,n
b=0 i=1
把a的右数第i位数字赋给t
b=b+t*ki-1
i=i+1 否
i>n?
是 输出b 结束
2、十进制转换为二进制
方法:除2取余法,即用2连续去除89或所得的商,然后取余数。
例、把89化为二进制数
解:根据“逢二进一”的原则,有
89=2×44+1
89=2×44+1
k
0 (10)
其它进制数化成十进制数公式
例2、设计一个算法,将k进制数a(共有n位)转换为十进制 数b。
(1)算法步骤: 第一步,输入a,k和n的值; 第二步,将b的值初始化为0,i的值初始化为1;
第三步,b=b+ai*ki-1,i=i+1

人教a版必修3数学教学课件第1章算法初步第3节算法案例

人教a版必修3数学教学课件第1章算法初步第3节算法案例
多项式改写,依次计算一次多项式,由于后项计算用到前项的结果,
故应认真、细心,确保中间结果的准确性.若在多项式中有几项不
存在,可将这些项的系数看成0,即把这些项看成0·xn.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
【变式训练3】 用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1
当x=2时的值.
v3=-24×(-2)+2=50.故f(-2)=50.
错因分析:所求f(-2)的值是正确的,但是错解中没有抓住秦九韶算
法原理的关键,正确改写多项式,并使每一次计算只含有x的一次项.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
HONGNANJUJIAO
D典例透析
IANLITOUXI
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做2】 用秦九韶算法求f(x)=2x3+x-3当x=3时的值的过程
中,v2=
.
解析:f(x)=((2x+0)x+1)x-3,
v0=2;
减小数.
解:(1)用辗转相除法求840和1 785的最大公约数.
1 785=840×2+105,
840=105×8.
所以840和1 785的最大公约数是105.

人教版高中数学必修三第一章第3节 算法案例 课件(共18张PPT)

人教版高中数学必修三第一章第3节 算法案例  课件(共18张PPT)

输入a,k,n
s1,输入a,b,n的值。
b=0
s2,赋值b=0,i=1。
i=1
s3,b=b+ai·ki-1,i=i+1。
s4,判断i>n是否成立。若 是,则执行s5;否则, 返回s3。
s5,输出b的值。
把a的右数第i位数字赋给t
b=b+t·ki-1
i=i+1 N
i>n? Y 输出b
结束
设计一个算法,把k进制数a(共有n 位数)转化成十进制数b。
例2:把89化为五进制的数. 解:以5作为除数,相应的运算式为:
89 = 5 17 + 4 = 5 (5 3 + 2) + 4 = 3 52 + 2 5 + 4 = 324(5)
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5).
例3:把89化为二进制的数.
分析:把89化为二进制的数,需想办法将 89先写成如下形式
k进制数转化为十进制数的方法
先把k进制的数表示成不同位上数字 与基数k的幂的乘积之和的形式,即
anan-1…a1a0(k) =an×kn+an-1×kn-1+…+a1×k1+a0×k0 . 再按照十进制数有n位数)转
化成十进制数b。
开始
算法步骤:
第3节 算法案例
进位制
学习目标:
• 1. 了解进位制的概念,学会表示进位制数
• 2. 理解并掌握各种进位制与十进制之间转换的规 律,会利用各种进位制与十进制之间的联系进行各 种进位制之间的转换.
• 3. 了解各种进位制与十进制之间互相转换的算法, 程序框图和程序

人教A版高中数学必修三课件:1.3《算法案例--辗转相除法与更相减损术》

人教A版高中数学必修三课件:1.3《算法案例--辗转相除法与更相减损术》

小结
比较辗转相除法与更相减损术的区别
(1)都是求最大公约数的方法,计算上辗转相除
法以除法为主,更相减损术以减法为主,计算次数
上辗转相除法计算次数相对较少,特别当两个数字
大小区别较大时计算次数的区别较明显。 (2)从结果体现形式来看,辗转相除法体现结果 是以相除余数为0则得到,而更相减损术则以减数与 差相等而得到
( 1) 5
25
5
35
7
所以,25和35的最大公约数为5
思考:计算8256和6105的最大公约数.
辗转相除法(欧几里得算法)
观察用辗转相除法求8251和6105的最大公约数的过程
第一步 用两数中较大的数除以较小的数,求得商和余数 8251=6105×1+2146
结论: 8251和6105的公约数就是6105和2146的公约数,求8251和 6105的最大公约数,只要求出6105和2146的公约数就可以了。
开始 输入m,n
r=m MOD n
m=n n=r
LOOP UNTIL r=0
PRINቤተ መጻሕፍቲ ባይዱ m END
r=0?
是 输出m 结束


练习:课本p45
1、(1)(4)
ks5u精品课件
二、《九章算术》——更相减损术 算理:可半者半之,不可半者,副置分母、子 之数,以少减多,更相减损,求其等也,以等 数约之。
第二步 对6105和2146重复第一步的做法 6105=2146×2+1813 同理6105和2146的最大公约数也是2146和1813的最大公约数。
完整的过程
8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+333

高中数学人教A版必修三1.3【教学课件】《算法案例》人教版

高中数学人教A版必修三1.3【教学课件】《算法案例》人教版
人民教育出版社 | 必修三
第一章 · 算法初步
第一课时
《 1.3 秦九韶算法与进位制》
人民教育出版社 | 必修三
新课导入
设计求多项式 f ������ = 2������ 5 − 5������ 4 − 4������ 3 + 3������ 2 − 6������ + 7 当 x=5 时的值的算法程序。 x=5
人民教育出版社 | 必修三
思考1:怎么用秦九韶算法求多项式的值。
通过
������0 = ������������ ������������ = ������������−1 ������ + ������������ −������
(k=1,2,……n)这是一个在秦九韶算
法中反复执行的步骤,因此可用循环结构来实现。
一般地,对于一个n次多项式 然后由内向外逐层计算一次多项式的值,即
������2 = ������1 ������ + ������������−2 , ������3 = ������2 ������ + ������������−3 ,…������������ = ������������−1 ������ + ������0
人民教育出版社 | 必修三
思考4:十进制数怎么转化成k进制数? 其方法是除k取余法,用十进制数除以k进制 数,将各步所得的余数从下到上排列,就会 得到相应的k进制数。
人民教育出版社 | 必修三
例题讲解
例1: 求多项式 ������ ������ = ������ 5 − ������ 3 + 2������ 2 − 3 在 ������ = 5 时的函数值。 解:原多项式先化为:
y=2*x^5-5*x^4-4*x^3+3*x^2-6*x+7

高中数学人教A版必修3第一章1.3算法案例课件

高中数学人教A版必修3第一章1.3算法案例课件


9- 3= 6
6 - 3 = 3 减数与差相等
3×2=6
78与36的最大公约数为6.
更相减损术
问题6.根据更相减损术的过程,设计求两个正整数m,n最 大公约数的算法,需要用到什么逻辑结构?为什么?
第一步:任意给定两个正整 算法分析:
数,判断它们是否都是偶数。第一步,给定两个正整数m,n(m>n).
更相减损术
例2. 用更相减损术求78与36的最大公约数.
解: 78与36都是偶数
“可半”
78 ÷ 2 = 39 36 ÷ 2 = 18
“可半者半之”
除 完
39 - 18 = 21 大减小 21 - 18 = 3

18 - 3 = 15

15 - 3 = 12
“更相减损”(辗转相减)

12 - 3 = 9
2 18 30 3 9 15 35
18与30的最大公约数为2 3 6 .
问题1. 求8251与6105的最大公约数. 可以使用短除法吗?
困难:两数比较大、公约数不易视察。 (辗转相除法、更相减损术)
知问
思考1:辗转相除法与更相减损术可以用来解 决什么问题? 可以解决求两个正整数最大公约数的任何问题。
《九章算术》——更相减损术
“可半者半之,不可半者,副置分母、子之数,以少 减多,更相减损,求其等也,以等数约之。”
《九章算术》
刘徽
《九章算术》其作者已不可 考,现今流传的大多是在三 国时期刘徽为《九章》所作 的注本。它是中国古代第一 部数学专著,系统总结了战 国、秦、汉时期的数学成绩, 收录了246个数学问题及其 解法,是当时世界上最简练 有效的应用数学,它的出现 标志中国古代数学形成了完 整的体系。

高中数学人教A版必修三第一章辗转相除法更相减损术算法案例课件

高中数学人教A版必修三第一章辗转相除法更相减损术算法案例课件
继续这个操作,直到所得的减数和差相等为止,则这个等数就是所求的最大公约数。
57 168 D.
225=135×1+90
42
先约简,再求21与18的最大公约数,然后乘以两次约简的因数4
3.分别用辗转相除法和更相减损术求5280和12155的最大公约数. 继续这个操作,直到所得的减数和差相等为止,则这个等数就是所求的最大公约数。
试求8251和6105的最大公约数
(1)5 25 35 57
所以,25和35的最大 公约数为5
(2)7 49 63 79
思考:当两个数较大时,除了用这 种方法外还有没有其它方法?
所以,49和63的最大 公约数为7
一、辗转相除法(欧几里得算法)
所谓辗转相除法,就是对于给定的两个数,用较大的数除 以较小的数。若余数不为零,则将余数和较小的数构成新的一 对数,继续上面的除法,直到大数被小数除尽,则这时较小的 数就是原来两个数的最大公约数。
利用辗转相除法求下列两数的最大公约数.
思考:如何求1734,816,1343的最大公因数. 17
148=37×4+0
继续上面的除法,直到大数被小 数除尽,则这时较小的数就是原 来两个数的最大公约数。
显然37是148和37的最大公约数,也就是8251和6105的最大公约数.
练习
1. 用辗转相除法求225和135的最大公约数.
225=135×1+90
45
135=90×1+45
90=45×2
练习
用更相减损术求98与63的最大公约数
2、小学学过的求两个数最大公约数的方法?
21-18=3
18-3=15 15-3=12
55
12-3=9

高中数学(人教版A版必修三)配套课件:1.3算法案例(一)

高中数学(人教版A版必修三)配套课件:1.3算法案例(一)

1 2345
2.关于利用更相减损术求156和72的最大公约数,下列说法正确的是( B ) A.都是偶数必须约简 B.可以约简,也可以不约简 C.第一步作差为156-72=84,第二步作差为72-84=-12 D.以上皆不正确
答案
1 2345
3.用辗转相除法求210与98的最大公约数需作除法的次数为( B )
A.1
B.2
C.3
D.4
答案
4.用更相减损术求147和42的最大公约数是( C )
A.6
B.7
C.21
D.42
1 2345
答案
1 2345
5.用秦九韶算法计算多项式f(x)=6x6+5x5+4x4+3x3+2x2+x+7在x=0.4
时的值时,需做加法和乘法的次数的和为( C )
A.10
B.9
C.12
答案
知识点二 求n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0的值的算法 思考 衡量一个算法是否优秀的重要参数是速度.把多项式f(x)=x5+x4+ x3+x2+x+1变形为f(x)=((((x+1)x+1)x+1)x+1)x+1,然后求当x=5时 的值,为什么比常规逐项计算省时? 答案 从里往外计算,充分利用已有成果,可减少重复计算. 秦九韶算法的一般步骤: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0改写成如下形式: (…((anx+an-1)x+an-2)x+…+a1)x+a0,求多项式的值时,首先计算 最内层括号内 一次多项式的值,即v1= anx+an-1 ,然后由内向外逐层计 算一次多项式的值,即
解 f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,
所以有v0=7, v1=7×3+6=27, v2=27×3+5=86, v3=86×3+4=262, v4=262×3+3=789, v5=789×3+2=2 369, v6=2 369×3+1=7 108, v7=7 108×3=21 324. 故当x=3时,多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x的值为21 324.

高中数学人教A版必修三第一章1.3.3进位制-算法案例课件

高中数学人教A版必修三第一章1.3.3进位制-算法案例课件

把89化为五进制的数.
5 89 5 17 53
0
余数
4 2 3
∴ 89=324(5)
练习:把3282化为16进制的数.
10
11
12
13
14
15
A
B
C
D
E
F
思考 你会把三进制数10221(3)化为二进制数吗?
解:第一步:先把三进制数化为十进制数: 10221(3)=1×34+0×33+2×32+2×31+1×30
51
把89化为二进制的数.
2 89
2 44 2 22 2 11 25
22 21
0
余数
1 0 0 1 1 0 1
把算式中各步所得的余 数从下到上排列,得到
89=1011001(2) 可以用2连续去除89或所得 商(一直到商为0为止),然后 取余数---除2取余法.
这种方法也可以推广为把 十进制数化为k进制数的 算法,称为除k取余法.
=81+18+6+1=106. 第二步:再把十进制数化为二进制数:
106=1101010(2). ∴10221(3)=106=110就是几,基数都是大于1的数.
按照十进制数的运算规则计算出结果, 结果就是十进制下该数的大小了.
1.3算法案例
进位制
十进制数3721中的3表示3个千,7表示7个百,2表示2个 十,1表示1个一,从而它可以写成下面的形式:
3721=3×103+7×102+2×101+1×100.
同理: 3421(5)= 3×53+4×52+2×51+1×50.
每一位上的数都是整数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
为了区分不同的进位制,常在数的右下角标明基数, 十进制一般不标注基数. 七进制的13,写成13(7);二进制的10,写成10(2)
一般地,若k是一个大于1的整数,那么以k 为基数的k进制数可以表示为一串数字连写在一起 的形式:
anan1 a1a0(k)(0 an k,0 an1, ,a1,a0 k).
2 11 0
25 1
从下到上排列,
22 1
21 0 01
得到89=1011001(2)
可以推广为把十进制数化为k进制 训练题2 把156化为八进制数
89=324(5) 156 234(8)
思考:把 11011(2)化为四,八进制数表示
思路:利用十进制作为中间桥梁转化
其它进制数化成十进制数公式
16
适应训练
将下列数化为十进制 1. 101011 (2) 2. 1234 (5) 3. 1021 (8)
Key :43, 194, 529
17
十进制数化为其它进制数:
解例:5
把89化为二进制数。
除2取余法
余数
2 89
1.最后一步商为0,
2 44 1
2 22 0
2.把上式各步所得的余数
例如:3721 表示有:1个1,2个十, 7个百即7个10的 平方, 3个千即3个10的立方 于是,我们可以得到下面这个式子
3721 3103 7 102 2101 1100
与十位制类似,其他的进位制也可以按照 位置原则计数,也可以表示成不同位上数 字与基数的幂的乘积之和的形式。
13
你能类比十位制数的表示方法表示其他进 制的数吗?
3
在商代的甲骨文中,已经有了一、二、三、
四、五、六、七、八、九、十、百、千、万
的数字,而有了这些记数字,就可以记录十
万以内的任何自然数了
4
按照中国古代的筹算规则,算筹记数的表示方法为:
个位用纵式,十位用横式,百位再用纵式,千位再用 横式,万位再用纵式……这样从右到左,纵横相间, 以此类推,就可以用算筹表示出任意大的自然数了5。
19
小结
一、进位制
anan1 a1a0(k) (0 an k,0 an1,
,a1,a0 k).
二、各进制数之间的转化(只限整数) 1、其它进制数化成十进制数公式 anan1 a1a0(k )
an k n an1 k n1 a1 k1 a0 k 0 2、十进制数化成k进制数
每个数位都是小于K的自然数,但首位不能为11 0
新知反馈练习
下列写法正确的是: ( A )
A、751(16)
B、751(7)
C、095(12)
D、901(2)
anan1 a1a0(k) (0 an k, 0 an1, , a1, a0 k).
每个数位都是小于K的自然数, 但首位不能为0
12
我们常见的数字都是十进制的,比如一般的数值计 算,但是并不是生活中的每一种数字都是十进制 的。
半斤=八两
古人有半斤八两之说,就是十六进制的体现 6
时间和角度的单位用六十进位制
7
电子计算机用的是二进制
8
进位制
进位制是人们为了计数和运算方便而约定的计数 系统。 比如: 满二进一,就是二进制;
满十进一,就是十进制; 满十二进一,就是十二进制; 满六十进一,就是六十进制
算法案例 ——进位制
1
课程标准:通过阅读中国古代数学中的算法案例, 体会中国古代数学对世界数学发展的贡献。
另外,考纲,学业水平测试对进位制也无明确要求, 但在高二的学业水平测试中出现了一道进位制之间的 转化题目。 通过高一备课组的集体教研,我们认为学生通 过本节课的学习,必须知道进位制的概念,并 能熟练进行不同进制之间的相互转化。
2
学习目标: 1.列举日常生活中进位制的例子,体会进位 制的应用在生活中是常见的,并会概括几进 制的概念。 2.通过例3的学习,会把二进制数转化为十进 制数,发现且会总结k进制数转化为十进制数 的规律方法并熟练运用; 3. 通过例5的学习,会把十进制数转化为二 进制数,发现且会总结十进制数转化为k进制 数的规律方法并熟练运用。
基数: “满几进一”就是几进制,几进制的基数就是几.
9
一、进位制的表示方法 我们了解十进制吗?所谓的十进制,它是 如何构成的?
十进制由两个部分构成
第一、它有0、1、2、3、4、5、6、7、 8、9十个数字;
(用10个数字来记数,称基数为10)
第二、它有“权位”,即从右往左为个位、 十位、百位、千位等等。
除k取余法
20
作业
• P48 A组3
21
基本能力提升
(1).129=81( ) (2).1a100(2)=1b01(3),求a和b的值
Key: 16 a=1,b=0
22
尝试表示 7342(8), 11001(2)
11001(2) 1 24 1 23 0 22 0 21 1 20
7423(8) 7 83 3 82 4 81 2 80
14
二、k进制数与十进制数的转换:
例3.把二进制数110011(2)化为十进制数.
110011(2) 1 25 1 24 0 23 0 22 1 21 1 20
32 16 0 0 2 1
=51
上述方法可以推广为把k进制数化为十进制数 的算法
15
探究:
若anan1 a1a0(k )表示一个k进制数,请你把它写成各位 上数字与k的幂的乘积之和的形式。
anan1 a1a0(k ) an k n an1 k n1
a1 k1 a0 k 0
相关文档
最新文档