第三章牛顿运动定律的应用-传送带模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情景 4
(1)可能一直加速 (2)可能一直匀速
(3)可能先减速后反向加速
[典例]
如图 3-2-6 所示,绷
紧的传送带,始终以 2 m/s 的速度 匀速斜向上运行,传送带与水平方向
图 3- 2- 6
间的夹角 θ=30° 。现把质量为 10 kg 的工件轻轻地放在传 送带底端 P 处,由传送带传送至顶端 Q 处。已知 P、Q 之 3 间的距离为 4 m,工件与传送带间的动摩擦因数为 μ= 2 , 取 g=10 m/s2。
(1)通过计算说明工件在传送带上做什么运动; (2)求工件从P点运动到Q点所用的时间。
[解析] 擦力为动力 由牛顿第二定律得:μmgcos θ-mgsin θ=ma 代入数值得:a=2.5 m/s2 则其速度达到传送带速度时发生的位移为 v2 22 x1=2a= m=0.8 m<4m 2×2.5 可见工件先匀加速运动 0.8 m,然后匀速运动 3.2 m (1)工件受重力、摩擦力、支持力共同作用,摩
如图甲所示,水平传送带长 L = 6 m ,两个传送皮带轮 的半径都是 R =0.25 m . 现有一可视为质点的小物体以水 平速度 v 0 滑上传送带. 设皮带轮沿顺时针方向匀速转动, 当转动的角速度为ω 时, 物体离开传送带 B 端后在空中运 动的水平距离为 s.若皮带轮以不同角速度重复上述转动, 而小物体滑上传送带的初速度 v 0 始终保持不变,则可得 到一些对应的ω值和 s 值.把这些对应的值在平面直角坐 标系中标出并连接起来,就得到了图乙中实线所示的 s -ω图像. (g 取 10 m/s2)
解析
物体 A 轻放在 a 点后在摩擦力作用下向右做匀加速直线运动直到
和传送带速度相等.在这一过程中有 v2 v2 μmg a1= m =μg. x1=2a=2μg=0.8 m<ab. v 经历时间为 t1=a =0.8 s. 1 ab-x1 此后随传送带运动到 b 点的时间为 t2= =0.6 s. v 当物体 A 到达 bc 斜面时,由于 mgsin 37° =0.6mg>μmgcos 37° =0.2mg. 所以物体 A 将再次沿传送带做匀加速直线运动,其加速度大小为 a2= gsin 37° -μgcos 37° =4 m/s2,物体 A 在传送带 bc 上所用时间满足 bc= 1 vt3+2a2t3 2,代入数据得 t3=1 s.(负值舍去) 则物体 A 从 a 点被传送到 c 点所用时间为 t=t1+t2+t3=2.4 s.
v (2)匀加速时,由 x1= 2 t1 得 t1=0.8 s x2 3.2 匀速上升时 t2= v = 2 s=1.6 s 所以工件从 P 点运动到 Q 点所用的时间为 t=t1+t2=2.4 s。
[答案] 3.2 m
(1)先匀加速运动0.8 m,然后匀速运动
(2)2.4 s
[题后悟道]
对于传送带问题,一定要全面掌握
牛顿运动定律的应用 传送带模型
传送带模型
[模型概述] 物体在传送带上运动的情形统称为传送带模型。 因物体与传送带间的动摩擦因数、斜面倾角、传送 带速度、传送方向、滑块初速度的大小和方向的不同, 传送带问题往往存在多种可能,因此对传送带问题做出
准确的动力学过程分析,是解决此类问题的关键。
1.水平传送带模型
(2)传送带逆时针转动,当 v
物
小于 v 带时,
f 沿传送带向下,设物体的加速度大小为 a1, mg sin 37°+μ mg cos 37°=ma 1 解得 a1=10 m/s 设v
物
x2=l-x1=11 m 1 又因为 x2=vt2+2a2t2 2, 则有 10t2+t2 2=11 解得:t2=1 s(t2=-11 s 舍去) 所以 t=t1+t2=2 s.
解析
(1) 传送带顺时针转动,物
体相对传送带向下运动, 则物体所 受滑动摩擦力沿斜面向上, 相对传 送带向下匀加速运动, 据牛顿第二 定律有 mg(sin 37° -μcos 37° )=ma 则 a=gsin 37° -μgcos 37° =2 m/s2, 1 2 据 l=2at 得 t=4 s.
上面提到的几类传送带模型,尤其注意要根据具体 情况适时进行讨论,看一看有没有转折点、突变点, 做好运动阶段的划分及相应动力学分析。
现在传送带传送货物已被广泛地应用,如图3-2-7 所示为一水平传送带装置示意图。紧绷的传送带AB始终 保持恒定的速率v=1 m/s运行,一质量为m=4 kg的物体
被无初速度地放在A处,传送带对物体的滑动摩擦力使
物体开始做匀加速直线运动,随后物体又以与传送带相 等的速率做匀速直线运动。设物体与传送带之间的动摩 擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2。
图3-2-7 (1)求物体刚开始运动时所受滑动摩擦力的大小与加速度 的大小; (2)求物体做匀加速直线运动的时间; (3)如果提高传送带的运行速率,物体就能被较快地传送 到B处,求物体从A处传送到B处的最短时间和传送带对 应的最小运行速率。
解析:(1)滑动摩擦力Ff=μmg=0.1×4×10 N=4 N, 加速度a=μg=0.1×10 m/s2=1 m/s2。 (2)物体达到与传送带相同速率后不再加速,则 v 1 v=at1,t1=a=1 s=1 s。
(3)物体始终匀加速运行时间最短,加速度仍为a=1 m/s2,当物体到 达右端时,有 vmin2=2aL,vmin= 2aL= 2×1×2 m/s=2 m/s, 所以传送带的最小运行速率为2 m/s。 物体最短运行时间由vmin=atmin, vmin 2 得tmin= a =1 s=2 s。
(1)小明同学在研究了图甲的装置和图乙的图像后作出了以 下判断:当ω<4 r ad/s 时,小物体从皮带轮的 A 端运动到 B 端过程中一直在做匀减速运动.他的判断正确吗?请你再 指出当 ω>28 r ad/s 时,小物体从皮带轮的 A 端运动到 B 端 的过程中做什么运动.(只写结论,不需要分析原因) (2)求小物体的初速度 v 0 及它与传送带间的动摩擦因数μ . (3)求 B 端距地面的高度 h .
解析
(1)小明的判断正确
当 ω>28 rad/s 时,小物体从 A 端运动到 B 端的过程中一直 在做匀加速运动 (2)当 ω<4 rad/s 时,小物体在 B 端的速度大小是 v1=ω1R=1 m/s 当 ω>28 rad/s 时,小物体在 B 端的速度大小是 v2=ω2R=7 m/s 由匀变速直线运动规律有 v2 2-v0 2=2aL v0 2-v1 2=2aL f 由牛顿第二定律有 a=m=μg 联立以上各式并代入数据解得 v0=5 m/s μ=0.2
如图所示,倾角为 37°,长为 l=16 m 的传送带,转动速度为 v = 10 m/s,动摩擦因数μ =0.5,在传送 带顶端 A 处无初速度地释放一个质量 为 m =0.5 kg 的物体.已知 sin 37°= 0.6,cos 37°=0.8,g=10 m/s2.求:
图4
(1)传送带顺时针转动时, 物体从顶端 A 滑到底端 B 的时间; (2)传送带逆时针转动时, 物体从顶端 A 滑到底端 B 的时间.
A. 5 s C.3 s B.( 6-1) s D.5 s
(
)
F 解析:物体在传送带上做加速运动时:a=m=μg=1 m/s2 v02 加速运动的位移x1= =0.5 m 2a v0 时间t1= a =1 s 匀速运动的位移x2=x-x1=2 m x2 时间t2= =2 s,总时间为3 s。 v0 答案:C
(3)小物体离开 B 端 后做平抛运动 由平抛运动规律有 s=v2t=3.5 m 1 h=2gt2 解得 h=1.25 m
如图所示,传送带的水平部分 ab = 2 m ,斜面部分 bc =4 m ,bc 与水平面的夹角α =37°.一个小物体 A 与传送 带的动摩擦因数μ =0.25,传送带沿图示的方向运动, 速 率 v =2 m/s.若把物体 A 轻放到 a 处, 它将被传送带送到 c 点,且物体 A 不会脱离传送带.求物体 A 从 a 点被传 送到 c 点所用的时间. (已知: sin 37°= 0.6, cos 37°= 0.8, g=10 m/s2)
情景 2Fra Baidu bibliotek
情景 3
2.倾斜传送带模型
项目 情景 1 图示 滑块可能的运动情况 (1)可能一直加速 (2)可能先加速后匀速 (1)可能一直加速 (2)可能先加速后匀速 (3)可能先以a1加速后以a2加速
情景
2
项目
图示
滑块可能的运动情况 (1)可能一直加速
情景 3
(2)可能先加速后匀速 (3)可能一直匀速 (4)可能先以a1加速后以a2加速
项 目
图示
滑块可能的运动情况
情
景1
(1)可能一直加速
(2)可能先加速后匀速
项目
图示
滑块可能的运动情况
(1)v0>v时,可能一直减速,也可能 先减速再匀速 (2)v0<v时,可能一直加速,也可能 先加速再匀速 (1)传送带较短时,滑块一直减速达 到左端 (2)传送带较长时,滑块还要被传送 带传回右端。其中v0>v返回时速度 为v,当v0<v返回时速度为v0
答案:(1)4 N
1 m/s2 (2)1 s
(3)2 s
2 m/s
如图3-2-11所示,传送带保持
v0=1 m/s的速度运动,现将一质量
m=0.5 kg的物体从传送带左端放上, 图3-2-11 设物体与传送带间动摩擦因数μ=0.1,传送带两端水 平距离x=2.5 m,则物体从左端运动到右端所经历的 时间为(g=10 m/s2)
2
=v 带 时经历的时间为 t1,位移为 x 1
v 10 1 t1= = s =1 s,x 1= a1t1 2=5 m< l=16 m 2 a1 10 当物体运动速度等于传送带速度瞬间, 有 mg sin 37°>μ mgcos 37°, 则下一时刻物体相对传送带向下运动, f 向上,设加速度为 a2,则 mgsin 37°-μ mgcos 37° a2= =2 m/s 2 m