八年级数学下册四边形知识点总结

合集下载

八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点一、平行四边形的定义在数学中,平行四边形是指具有两组对边分别平行的四边形。

也就是说,平行四边形有两对边分别平行,并且对边长度相等。

这个定义很重要,因为它决定了平行四边形的性质和特点。

二、平行四边形的性质1. 对角线性质:平行四边形的两条对角线互相平分,即对角线长度相等。

2. 对边性质:平行四边形的对边互相平行且长度相等。

3. 内角性质:平行四边形的内角互相补角,即相对的内角之和为180度,所以任意对角线夹角互为补角。

4. 定理:平行四边形的对角线互相平分并且等长。

三、平行四边形的应用平行四边形在几何学中有着广泛的应用,尤其在计算面积和解决实际问题时非常有用。

1. 面积计算:平行四边形的面积等于底边长乘以高,即S=底×高。

2. 平行四边形的性质在解决实际问题时很有用,比如建筑设计、地图绘制等。

四、个人观点和理解平行四边形是几何学中一个非常重要的概念,它具有丰富的性质和应用价值。

在学习和掌握平行四边形知识点的过程中,我深刻体会到了数学的逻辑性和严谨性。

通过对平行四边形的研究,我不仅提高了自己的数学思维能力,也更加深入地理解了几何学在现实生活中的应用。

总结回顾通过本文的阐述,我们深入探讨了八年级下册数学平行四边形的知识点,包括定义、性质、应用等方面。

我们了解到平行四边形具有特定的对角线性质和对边性质,以及在面积计算和实际问题中的应用。

通过学习和掌握这些知识,我们不仅能提高自己的数学水平,也能更好地理解几何学在实际生活中的重要性。

希望本文的内容能够帮助你更深入地理解平行四边形的知识,提高数学学习的兴趣和能力。

平行四边形是几何学中非常重要的一个概念,它的性质和应用非常广泛。

在平行四边形的学习过程中,除了了解其定义、性质和应用外,还可以进一步深入探讨平行四边形的相关定理及证明,以及与其他几何图形的关联等内容。

1. 平行四边形的相关定理在学习平行四边形的过程中,我们可以深入了解一些与平行四边形相关的定理,比如平行四边形的对角线互相平分并且等长、平行四边形的对角线长度的平方和等于边长的平方和等等。

八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点平行四边形是我们在数学学习中会遇到的一个重要概念。

它具备一些特殊的性质和规律,对于我们解题和解析几何的能力有很大的帮助。

本文将详细介绍八年级下册数学平行四边形的知识点,包括定义、性质、判定方法及相关定理。

一、平行四边形的定义平行四边形是指具有两组对边平行的四边形。

四边形的两组对边分别是平行边,而对边之间的两组夹角分别是对顶角。

平行四边形的定义为:如果一个四边形的对边互相平行,则它是一个平行四边形。

平行四边形的对边长度相等,对角线互相等长。

二、平行四边形的性质平行四边形有一些独特的性质,掌握这些性质对于解题非常重要。

1. 对边性质:平行四边形的对边互相平行且相等长,即两对对边分别平行且长度相等。

2. 对角性质:平行四边形的对角线互相平分且相等长,即两条对角线分别相等长且平分。

3. 额角性质:平行四边形的一个内角与外角之和为180度,即内外角互为补角。

4. 同底角性质:平行四边形的两组对边夹角相等,即对等长的两边相对应的角相等。

5. 对顶角性质:平行四边形的两组对角之和为180度,即对等长的两个对角之和为180度。

三、平行四边形的判定方法对于给定的四边形,我们可以利用以下判定方法来确定它是否为平行四边形。

1. 判定方法一:如果一个四边形的对边长度相等,那么它是一个平行四边形。

2. 判定方法二:如果一个四边形的对角线互相相等,那么它是一个平行四边形。

3. 判定方法三:如果一个四边形的一个内角与外角之和为180度,那么它是一个平行四边形。

利用这些判定方法,我们可以轻松地确定一个四边形是否是平行四边形。

四、平行四边形的相关定理平行四边形还有一些重要的定理,它们进一步扩展了平行四边形的性质和应用。

1. 对角线分割定理:平行四边形的对角线把它分割成两个面积相等的三角形。

2. 对角线互补定理:平行四边形的对角线相交于一点,这个点将对角线分成互补角。

3. 等腰三角形定理:平行四边形的对边相等,则它是一个等腰三角形。

人教版八年级下册数学平行四边形知识点归纳及练习教学总结

人教版八年级下册数学平行四边形知识点归纳及练习教学总结

平行四边形复习
C
D
A
O
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方
形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
平行四边形
矩形
菱形正

形。

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区平行四边形是初二数学必考内容,甚至于中考卷里也时常出现它的身影,而且所占分值还不少。

为此,特意给大家整理了初二数学下册必考之【平行四边形】,7大常见题型+知识点+误区!平行四边形定义:有两组对边分别平行的四边形是平行四边形。

表示:平行四边形用符号“□”来表示。

平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。

平行四边形的判定:两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从对角线看:对角钱互相平分的四边形是平行四边形从角看:两组对角分别相等的四边形是平行四边形。

若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。

7大常见题型分析(1)利用平行四边形的性质,求角度、线段长、周长等例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。

例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。

分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。

(完整版)八年级下四边形知识点经典题型要点总结

(完整版)八年级下四边形知识点经典题型要点总结

朔州市文曲星教育文化培训中心中考四边形与三角形复习要求是,能运用这些图形进行镶嵌,你必须会计算特殊的初中数学四边形,能根据图形的条件把四边形面积等分。

能够对初中数学特殊四边形的判定方法与联系深刻理解。

掌握平行四边形、矩形、菱形、正方形、等腰梯形的概念、性质和常用判别方法,特别是梯形添加辅助线的常用方法.掌握三角形中位线和梯形中位线性质的推导和应用。

会画出四边形全等变换后的图形,会结合相关的知识解题.结合几何中的其他知识解答一些有探索性、开放性的问题,提高解决问题的能力·(一)、平行四边形的定义、性质及判定.1:两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4·对称性:平行四边形是中心对称图形.(二)、矩形的定义、性质及判定.1-定义:有一个角是直角的平行四边形叫做矩形.2·性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4·对称性:矩形是轴对称图形也是中心对称图形.(三)、菱形的定义、性质及判定.1·定义:有一组邻边相等的平行四边形叫做菱形.(1)菱形的四条边都相等;。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形.(4)菱形的面积等于两条对角线长的积的一半:s 菱=争6(n、6 分别为对角线长).3.判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.对称性:菱形是轴对称图形也是中心对称图形.(四)、正方形定义、性质及判定.'1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;(4)正方形的对角线与边的夹角是45。

八年级数学四边形知识点复习归纳

八年级数学四边形知识点复习归纳

一、四边形的基本概念1.四边形的定义:四边形是由四条线段所围成的一个闭合图形。

2.四边形的要素:四边形有四条边和四个角。

二、四边形的分类1.按边的性质分类(1)等边四边形:四条边都是相等的,如正方形、正菱形。

(2)等腰四边形:有两边相等,如等腰梯形。

(3)直角四边形:有一个角是直角,如矩形、正方形。

(4)平行四边形:对边都是平行的,如矩形、菱形。

2.按角的性质分类(1)直角四边形:有一个角是直角,如矩形、正方形。

(2)等角四边形:四个角都是相等的,如菱形。

(3)锐角四边形:四个角都是锐角,如平行四边形。

(4)钝角四边形:有一个角是钝角,如矩形。

三、四边形的性质和定理1.对边性质(1)平行四边形的对边相等。

(2)等腰梯形的非平行边相等。

(3)矩形的对边相等,且对角线相等。

2.对角线性质(1)矩形的对角线相等,且互相平分。

(2)菱形的对角线相等,且互相垂直。

(3)平行四边形的对角线互相平分。

(4)任意四边形的对角线互相延长交于一点。

3.角性质(1)平行四边形的对角线所夹角相等。

(2)矩形的对角线所夹角是直角。

(3)菱形的对角线所夹角是直角,且互相平分。

(4)任意四边形的一个角和它的补角合为180°。

四、四边形的面积计算方法1.矩形的面积:面积=长×宽。

2.正方形的面积:面积=边长×边长。

3.菱形的面积:面积=对角线1×对角线2÷24.平行四边形的面积:面积=底边×高。

5.梯形的面积:面积=上底+下底×高÷2五、问题求解1.根据形状和条件,判断图形是否为四边形。

2.根据已知条件,利用四边形的性质和定理进行证明。

3.根据已知条件,计算四边形的面积。

4.根据已知条件,计算未知边长或角度大小。

六、常见的四边形误区1.平行四边形的对边相等:虽然平行四边形的对边是平行的,但并不一定相等。

2.矩形和正方形是同一个图形:矩形和正方形都是矩形的特例,但它们的四边长度并不相等。

八年级下册数学平行四边形知识点总结

八年级下册数学平行四边形知识点总结

稿子一
嘿,小伙伴们!今天咱们来聊聊八年级下册数学里的平行四边形那些事儿。

平行四边形啊,简单说就是两组对边分别平行的四边形。

这可是个很重要的图形哦!
它有好多特点呢。

比如说,对边平行且相等,这就意味着它的两组对边长度是一样的,而且互相平行,是不是很神奇?
还有哦,它的对角也是相等的。

想象一下,两个相对的角就像双胞胎一样,大小一样呢!
平行四边形的对角线也有小秘密,它们互相平分。

要判断一个四边形是不是平行四边形,也有办法。

如果两组对边分别相等,或者一组对边平行且相等,那它就是平行四边形啦。

平行四边形的面积计算也不难,就是底乘以高。

记住哦,这个高可一定要看准了。

在做题的时候,可一定要看清楚条件,别弄混了。

怎么样,平行四边形是不是还挺有趣的?
稿子二
亲爱的小伙伴们,咱们一起来瞅瞅八年级下册数学的平行四边形知识点呀!
平行四边形,这可是个常常出现的图形呢!
它的两组对边那是必须平行的,就像两条平行线永不相交一样。

而且这两组对边的长度还相等,是不是很整齐?
它的两组对角也是相等的哟,感觉就像天生一对对的。

再说对角线,互相平分这点可别忘啦。

判断是不是平行四边形,方法得记住呀。

要是两组对边平行,或者两组对边相等,那准没错。

还有呢,平行四边形的面积公式要牢记,底乘高就搞定。

做题的时候,得细心再细心。

比如有时候会让你证明一个图形是平行四边形,那就得根据条件,灵活运用那些判断方法。

平行四边形就像一个神秘的小城堡,里面藏着好多有趣的知识等我们去发现呢!怎么样,是不是觉得没那么难啦?。

人教版八年级数学下册知识点第十八章《平行四边形》

人教版八年级数学下册知识点第十八章《平行四边形》

第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。

表示:平行四边形用“□”表示。

2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。

的顺序依次排列。

点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。

平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。

如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。

∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。

数学四边形知识点归纳总结

数学四边形知识点归纳总结

数学四边形知识点归纳总结一、四边形的分类1. 矩形:具有四条边,四个角均为直角的四边形。

2. 正方形:具有四条边,四个角相等且均为直角的四边形。

3. 平行四边形:具有两组对边平行的四边形。

4. 梯形:具有两对对边平行的四边形。

5. 不规则四边形:具有四条边,四个角不一定相等或一定不是直角的四边形。

二、四边形的性质1. 对角线长度关系:四边形的对角线长度满足一定的关系,例如矩形和正方形的对角线相等,平行四边形的对角线互相等长。

2. 对角关系:四边形的内角之和为360度,即A+B+C+D=360°。

3. 对边关系:平行四边形的对边相等,矩形和正方形的对边相等且相邻边互相垂直。

4. 相关角关系:平行四边形的对角相等,矩形和正方形的内角均为直角。

5. 对角平分:梯形的对角线互相平分对角。

三、四边形的相关定理1. 矩形的定理(1)对角线相等定理:矩形的对角线相等。

(2)角关系定理:矩形的内角均为直角。

(3)对边关系定理:矩形的对边相等且相邻边互相垂直。

2. 正方形的定理(1)对角线垂直平分定理:正方形的对角线互相垂直且平分对角。

(2)对角线相等定理:正方形的对角线相等。

(3)角关系定理:正方形的内角均为直角。

3. 平行四边形的定理(1)对角线长度关系定理:平行四边形的对角线长度关系为AC=BD。

(2)对角关系定理:平行四边形的对角相等。

(3)对边关系定理:平行四边形的对边相等。

4. 梯形的定理(1)梯形中短底角关系定理:梯形的短底边和长底边的非公共边上的内角相等。

四、四边形的面积计算1. 矩形的面积:矩形的面积为长乘以宽。

2. 正方形的面积:正方形的面积为边长的平方。

3. 平行四边形的面积:平行四边形的面积为底边乘以高。

4. 梯形的面积:梯形的面积为上底加下底乘以高再除以2。

五、四边形的应用1. 人工建筑:在建筑领域,四边形的应用非常广泛,例如门窗的设计、房屋的布局等都需要对四边形进行计算和应用。

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

八年级数学下册第六章平行四边形1平行四边形的性质平行四边形及其性质知

平行四边形及其性质【学习目的】1.理解平行四边形的概念,掌握平行四边形的性质定理和断定定理.2.能初步运用平行四边形的性质进展推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 理解平行四边形的不稳定性及其实际应用.4. 掌握两个推论:“夹在两条平行线间的平行线段相等〞。

“夹在两条平行线间的垂线段相等〞.【要点梳理】知识点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD〞,读作“平行四边形ABCD〞.要点诠释:平行四边形的根本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 知识点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:〔1〕平行四边形的性质定理中边的性质可以证明两边平行或者两边相等;角的性质可以证明两角相等或者两角互补;对角线的性质可以证明线段的相等关系或者倍半关系.〔2〕由于平行四边形的性质内容较多,在使用时根据需要进展选择.〔3〕利用对角线互相平分可解决对角线或者边的取值范围的问题,在解答时应联络三角形三边的不等关系来解决.知识点三、平行线的性质定理1.两条平行线间的间隔:〔1〕定义:两条平行线中,一条直线上的任意一点到另一条直线的间隔,叫做这两条平行线间的间隔 .注:间隔是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.【典型例题】类型一、平行四边形的性质1.如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即〔AO+OB+AB〕-〔BO+OC+BC〕=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.举一反三:【变式】如图:在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC =4.求AE:EF:FB的值.【答案】解:∵ ABCD是平行四边形,所以AB∥CD,∠ECD=∠CEB∵CE为∠DCB的角平分线,∴∠ECD=∠ECB,∴∠ECB=∠CEB,∴BC=BE∵BC=4,所以BE=4∵AB=6,F为AB的中点,所以BF=3∴EF=BE-BF=1,AE=AB-BE=2∴AE:EF:FB=2:1:3.2.平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,假如△CDM的周长是40cm,求平行四边形ABCD的周长.【思路点拨】由四边形ABCD是平行四边形,即可得AB=CD,AD=BC,OA=OC,又由OM⊥AC,根据垂直平分线的性质,即可得AM=CM,又由△CDM的周长是40cm,即可求得平行四边形ABCD 的周长.【答案与解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵OM⊥AC,∴AM=CM,∵△CDM的周长是40,即:DM+CM+CD=DM+AM+CD=AD+CD=40,∴平行四边形ABCD的周长为:2〔AD+CD〕=2×40=80〔cm〕.∴平行四边形ABCD的周长为80cm.【总结升华】此题考察了平行四边形的性质与线段垂直平分线的性质.解题的关键是注意数形结合思想的应用.举一反三:【变式】如图,平行四边形ABCD的对角线AC.BD相交于点O,EF过点O且与AB.CD分别相交于点E.F,连接EC.〔1〕求证:OE=OF;〔2〕假设EF⊥AC,△BEC的周长是10,求平行四边形ABCD的周长.【答案】〔1〕证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△FDO和△EBO中∵OD OBFOD EOFDO EBBO ⎧⎪=⎨⎪∠=∠∠∠⎩=∴△FDO≌△EBO〔AAS〕,∴OE=OF;〔2〕解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10∴BC+BE+CE=BC+AB=10,∴平行四边形ABCD的周长=2〔BC+AB〕=20.3.如图,口ABCD的周长为52cm,AB边的垂直平分线经过点D,垂足为E,口ABCD的周长比△ABD的周长多10cm.∠BDE=35°.〔1〕求∠C的度数;〔2〕求AB和AD的长.〔1〕由于DE是AB边的垂直平分线,得到∠ADE=∠BDE=35°,于是推出∠A═55°,【思路点拨】根据平行四边形的性质得到∠C=55°;〔2〕由DE是AB边的垂直平分线,得到DA=DB,根据平行四边形的性质得到AD=BC,AB=DC,由于口ABCD的周长为52,于是得到AB+AD=26,根据口ABCD的周长比△ABD的周长多10,得到BD=16,AD=16〔cm〕,于是求出结论.【答案与解析】解:〔1〕∵DE是AB边的垂直平分线,∴∠ADE=∠BDE=35°,∴∠A=90°﹣∠ADE=55°,∵口ABCD,∴∠C=∠A=55°;〔2〕∵DE是AB边的垂直平分线,∴DA=DB,∵四边形ABCD是平行四边形,∴AD=BC,AB=DC,∵口ABCD的周长为52,∴AB+AD=26,∵口ABCD的周长比△ABD的周长多10,∴52﹣〔AB+AD+BD〕=10,∴BD=16,∴AD=16〔cm〕,∴AB=26﹣16=10〔cm〕.【总结升华】此题主要考察了线段垂直平分线的性质,平行四边形的性质,能综合应用这两个性质是解题的关键.4.如图1,P为Rt△ABC所在平面内任一点〔不在直线AC上〕,∠ACB=90°,M为AB 的中点.操作:以PA.PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.〔1〕请你猜测与线段DE有关的三个结论,并证明你的猜测;〔2〕假设将“Rt△ABC〞改为“任意△ABC〞,其他条件不变,利用图2操作,并写出与线段DE有关的结论〔直接写答案〕.【思路点拨】〔1〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可;〔2〕连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可.【答案与解析】DE∥BC,DE=BC,DE⊥AC,证明:连接BE,∵M为AB中点,∴AM=MB,在△PMA和△EMB中∵===PM MEPMA EMB AM BM∠∠⎧⎪⎨⎪⎩,∴△PMA≌△EMB〔SAS〕,∴PA=BE,∠MPA=∠MEB,∴PA∥BE.∵四边形PADC是平行四边形,∴PA∥DC,PA=DC,∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形,∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.〔2〕解:DE∥BC,DE=BC.【总结升华】此题考察了平行四边形性质和断定,全等三角形的性质和断定,平行线的性质和断定的综合运用.举一反三:【变式】:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB的平分线交DE于点M,交DF于点N,交DC于点P.〔1〕求证:∠ADE=∠CDF;〔2〕假如∠B=120°,求证:△DMN是等边三角形.【答案】证明:〔1〕∵四边形ABCD是平行四边形,∴∠DAB=∠C,DC∥AB,∵DE⊥AB于点E,DF⊥BC于点F,∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,∴∠ADE=∠CDF.〔2〕证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,∴∠DAP=∠BAP,∵DC∥AB,∴∠DPA=∠BAP,∴∠DAP=∠DPA,∴DA=DP,∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,∴△DAM≌△DPN,∴DM=DN,∵∠B=120°,∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,∴△DMN是等边三角形.类型二、平行线性质定理及其推论5.如图1,直线m∥n,点A.B在直线n上,点C.P在直线m上;〔1〕写出图1中面积相等的各对三角形:△CAB与△PAB.△BCP与△APC.△ACO与△BOP__________________;〔2〕如图①,A.B.C为三个顶点,点P在直线m上挪动到任一位置时,总有__________△PAB 与△ABC的面积相等;〔3〕如图②,一个五边形ABCDE,你能否过点E作一条直线交BC〔或者延长线〕于点M,使四边形ABME的面积等于五边形ABCDE的面积.【思路点拨】〔1〕找出图①中同底等高的三角形,这些三角形的面积相等;〔2〕因为两平行线间的间隔是相等的,所以点C.P到直线n间的间隔相等,也就是说△ABC 与△PAB的公一共边AB上的高相等,所以总有△PAB与△ABC的面积相等;〔3〕只要作一个三角形CEM与三角形CED的面积相等即可.【答案与解析】解:〔1〕∵m∥n,∴点C.P到直线n间的间隔与点A.B到直线m间的间隔相等;又∵同底等高的三角形的面积相等,∴图①中符合条件的三角形有:△CAB与△PAB.△BCP与△APC,△ACO与△BOP;〔2〕∵m∥n,∴点C.P到直线n间的间隔是相等的,∴△ABC与△PAB的公一共边AB上的高相等,∴总有△PAB与△ABC的面积相等;〔3〕连接EC,过点D作直线DM∥EC交BC延长线于点M,连接EM,线段EM所在的直线即为所求的直线.【总结升华】此题主要考察了三角形的面积及平行线的性质,利用平行线间的间隔相等得到同底等高的三角形是解题的关键.创作人:历恰面日期:2020年1月1日。

初中四边形知识点总结归纳

初中四边形知识点总结归纳

初中四边形知识点总结归纳四边形作为初中数学中的重要内容,是学习几何学不可或缺的一部分。

在初中阶段,我们需要系统地学习和掌握四边形的性质、分类以及相关的定理。

本文将对初中四边形的知识点进行总结和归纳,帮助大家更好地理解和掌握这一部分知识。

1. 四边形的定义四边形是由四条线段组成的图形。

四边形的特点是有四个顶点、四条边和四个内角。

2. 四边形的分类根据边长和角度的不同,四边形可以分为以下几类:1) 矩形:具有四个右角的四边形,对边相等。

2) 正方形:具有四个相等边和四个右角的四边形。

3) 平行四边形:具有两对平行边的四边形。

4) 长方形:具有四个右角的四边形,对边相等。

5) 菱形:具有四个相等边的四边形。

6) 梯形:具有两对平行边的四边形。

7) 不规则四边形:没有特殊性质的四边形。

3. 四边形的性质1) 内角和定理:任意四边形的内角和等于360度。

2) 对角线性质:- 矩形、正方形和菱形的对角线相互平分。

- 平行四边形的对角线互相等长。

- 不规则四边形的对角线一般不相等。

3) 矩形、正方形和菱形的边长关系:正方形的边长等于矩形或菱形的长度,矩形和菱形的边长相等。

4) 平行四边形的边长关系:对边相等。

5) 梯形的特点:有一个对角线作为它的中线,两腰相等的梯形是等腰梯形。

6) 不规则四边形的特点:没有特殊性质,边长和角度都可能不相等。

4. 四边形的重要定理1) 矩形的重要定理:- 矩形的对角线相等。

- 矩形的四个角都是直角。

- 矩形的边互相垂直。

2) 正方形的重要定理:- 正方形的对角线相等且垂直。

- 正方形的对角线平分角。

- 正方形的四个角都是直角。

3) 平行四边形的重要定理:- 平行四边形的对边平行且相等。

- 平行四边形的对角线互相平分。

4) 菱形的重要定理:- 菱形的对角线互相垂直。

- 菱形的对角线平分角。

5. 解题技巧和注意事项1) 综合运用已知条件和四边形的性质来解题。

2) 注意图形的标记和注释,保持清晰易懂。

初中数学四边形知识点总结

初中数学四边形知识点总结

初中数学四边形知识点总结一、四边形的基本概念。

1. 四边形的定义。

- 由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。

在初中阶段,我们主要研究平面四边形。

2. 四边形的内角和与外角和。

- 内角和:四边形的内角和为360°。

可以通过将四边形分割成两个三角形,因为三角形内角和为180°,所以四边形内角和是360°。

- 外角和:四边形的外角和为360°。

多边形的外角和定理:任意多边形的外角和都为360°。

3. 四边形的分类。

- 凸四边形:把四边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

- 凹四边形:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁的情况,这样的四边形叫做凹四边形。

初中重点研究凸四边形,凸四边形又包括平行四边形、梯形等特殊四边形。

二、平行四边形。

1. 平行四边形的定义。

- 两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。

2. 平行四边形的性质。

- 边的性质:- 平行四边形的两组对边分别平行且相等。

即AB = CD,AD = BC,AB∥CD,AD∥BC。

- 角的性质:- 平行四边形的两组对角分别相等,邻角互补。

即∠A = ∠C,∠B = ∠D,∠A+∠B = 180°等。

- 对角线的性质:- 平行四边形的对角线互相平分。

即OA=OC,OB = OD(设AC、BD相交于点O)。

3. 平行四边形的判定。

- 边的判定:- 两组对边分别平行的四边形是平行四边形(定义判定)。

- 两组对边分别相等的四边形是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

- 角的判定:- 两组对角分别相等的四边形是平行四边形。

- 对角线的判定:- 对角线互相平分的四边形是平行四边形。

4. 平行四边形的面积。

浙教版数学八年级下册第四章《平行四边形》复习总结:知识点与练习

浙教版数学八年级下册第四章《平行四边形》复习总结:知识点与练习

教师:学生:时间:_ 2016 _年_ _月日段第__ 次课
ABCD中,延长
随堂练习三:
.若平行四边形的两邻边的长分别为
17在ABCD中,AB比AD大2,∠DAB的角平分线AE交CD于E,∠ABC的角平分线BF交CD于F,若平行四边形ABCD的周长为24,求CE、FD、EF的长
19已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 是平行四边形.
20、如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形吗?说明理由.
21.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
22.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;
(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.
23已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.。

八年级下册数学知识点(3)-平行四边形+实数+一元一次不等式

八年级下册数学知识点(3)-平行四边形+实数+一元一次不等式

第六章平行四边形6.1 平行四边形及其性质两组对边分别平行的四边形叫做平行四边形。

在四边形ABCD中,AB//CD,AD//BC,因此它是平行四,记作ABCD,读作“平行四边形ABCD”。

平行四边形的性质定理:平行四边形的性质定理1 平行四边形的对边相等。

平行四边形的性质定理2 平行四边形的对角相等。

平行四边形的性质定理3 平行四边形的对角线互相平分。

6.2 平行四边形的判定(定理)平行四边形的判定定理1 一组对边平行且相等的四边形是平行四边形。

平行四边形的判定定理2 两组对边分别相等的四边形是平行四边形。

平行四边形的判定定理3 对角线互相平分的四边形是平行四边形。

6.3 特殊的平行四边形矩形:有一个角是直角的平行四边形叫做矩形。

矩形的性质定理1 矩形的四个角都是直角。

矩形的性质定理2 矩形的对角线相等。

矩形的判定定理1 有三个角是直角的四边形是矩形。

矩形的判定定理2 对角线相等的平行四边形是矩形。

菱形:有一组邻边相等的平行四边形叫做菱形。

菱形的性质定理1 菱形的四条边都相等。

菱形的性质定理2 菱形的对角线互相垂直。

菱形的判定定理1 四条边相等的四边形是菱形。

菱形的判定定理2 对角线互相垂直的平行四边形是菱形。

正方形:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

6.4 三角线的中位线定理三角形的中位线:连接三角形两边中点的线段,叫做三角形的中位线。

三角形的中位线定理三角形的中位线平行于第三边,并且等于第三边的一半。

直角三角形的性质定理2 直角三角形斜边上的中线等于斜边的一半。

第七章实数7.1算术平方根一般地,如果一个正数χ的平方等于a,即χ2=a,那么这个整数χ叫做a的算数平方根,记作“a”,读作“根号a”特别地,规定0的算术平方根是0,即0=0.7.2 勾股定理在直角三角形中,如果两条直角边分别为a与b,斜边为c,那么a2+b2=c2也就是说,直角三角形两直角边的平方和等于斜边的平方。

初二数学八下平行四边形所有知识点总结和常考题型练习题

初二数学八下平行四边形所有知识点总结和常考题型练习题

平行四邊形知識點一、四邊形相關1、四邊形的內角和定理及外角和定理四邊形的內角和定理:四邊形的內角和等于360°。

四邊形的外角和定理:四邊形的外角和等于360°。

推論:多邊形的內角和定理:n 邊形的內角和等于•-)2(n 180°; 多邊形的外角和定理:任意多邊形的外角和等于360°。

2、多邊形的對角線條數的計算公式設多邊形的邊數為n ,則多邊形的對角線條數為2)3(-n n 。

二、平行四邊形1.定義:兩組對邊分別平行的四邊形是平行四邊形. 平行四邊形的定義既是平行四邊形的一條性質,又是一個判定方法.2.平行四邊形的性質:平行四邊形的有關性質和判定都是從 邊、角、對角線 三個方面的特征進行簡述的.(1)角:平行四邊形的對角相等,鄰角互補;(2)邊:平行四邊形兩組對邊分別平行且相等;ABDO C(3)對角線:平行四邊形的對角線互相平分;(4)面積:①S ==⨯底高ah ; ②平行四邊形的對角線將四邊形分成4個面積相等的三角形.3.平行四邊形的判別方法①定義:兩組對邊分別平行的四邊形是平行四邊形 ②方法1:兩組對邊分別相等的四邊形是平行四邊形③方法2:一組對邊平行且相等的四邊形是平行四邊形 ④方法3:兩組對角分別相等的四邊形是平行四邊形⑤方法4: 對角線互相平分的四邊形是平行四邊形三、矩形1. 矩形定義:有一個角是直角的平行四邊形是矩形。

2. 矩形性質①邊:對邊平行且相等; ②角:對角相等、鄰角互補,矩形的四個角都是直角;③對角線:對角線互相平分且相等; ④對稱性:軸對稱圖形(對邊中點連線所在直線,2條).3. 矩形的判定:滿足下列條件之一的四邊形是矩形①有一個角是直角的平行四邊形; ②對角線相等的平行四邊A DB CO形; ③四個角都相等識別矩形的常用方法① 先說明四邊形ABCD 為平行四邊形,再說明平行四邊形ABCD 的任意一個角為直角.② 先說明四邊形ABCD 為平行四邊形,再說明平行四邊形ABCD 的對角線相等.③ 說明四邊形ABCD 的三個角是直角.4. 矩形的面積① 設矩形ABCD 的兩鄰邊長分別為a,b ,則S 矩形=ab .四、菱形1. 菱形定義:有一組鄰邊相等的平行四邊形是菱形。

初二下学期数学 八年级下学期数学知识点总结(精选8篇)

初二下学期数学 八年级下学期数学知识点总结(精选8篇)

初二下学期数学八年级下学期数学知识点总结(精选8篇)初二下册数学知识点篇一1、平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析加权平均数、中位数、众数、极差、方差初二下册数学知识点归纳北师大版篇二第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点平行四边形是初中数学中比较基础的一个概念,在八年级下册的数学课程中也有涉及。

平行四边形的定义是:两组平行边相对的四边形。

根据这个定义,我们可以得出以下几个平行四边形的性质。

1. 对角线互相平分平行四边形的两条对角线互相平分,即将平行四边形的任意一条对角线分成两段,两段长度相等,并且分点的连线也是平行四边形的对角线之一。

2. 对边相等平行四边形的对边相等,即平行四边形的任意两组相对的边长相等,如图所示。

这个性质可以用来判断一个四边形是否为平行四边形。

3. 钝角相等,锐角相等平行四边形的相邻两个角中,有一个是锐角,另一个则是钝角。

而且在同一平行四边形中,钝角相等,锐角相等。

这个性质可以通过平行线之间的夹角定理证明。

4. 相邻补角相等平行四边形的相邻两个角是补角,即它们的和为180度。

在同一平行四边形中,相邻两个角是相等的,因此它们的补角也是相等的。

5. 高度定理平行四边形的高度是指从一个点到与其在同一条平行线上的另一条边的垂线长度。

平行四边形的面积可以通过底边长乘以高度来求得。

除了以上五个性质外,还有一些其他的平行四边形知识点也很重要,如平移变换、旋转变换等。

这些知识点可以通过实例来加深理解。

例如,通过将一张平行四边形的图形进行平移变换,可以得到一个与原图形形状相同、大小相同、但位置不同的新图形。

如果在原图形上标注出一些点或线段,那么在进行平移变换时,这些点或线段也会进行相应的移动。

这个知识点在解决棋盘问题、填表格等方面非常实用。

总之,平行四边形是数学中一个基础且重要的概念,掌握好它的一些基本性质和知识点,不仅可以提高数学成绩,还可以在实际生活中应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A C B
D 第9章 四边形(请记熟前两页)
对边不平行的四边形
一般梯形 梯形 等腰梯形 四边形 特殊梯形 直角梯形
矩形
平行四边形 }正方形
菱形
一、平行四边形
定义:有两组对边分别平行的四边形叫做平行四边形。

性质:1、对边:分别平行且相等;
2、对角:分别相等;
3、对角线:互相平分;
4、对称性:中心对称图形。

判定定理 1、两组对边分别平行的四边形是平行四边形(定义);
2、两组对边分别相等的四边形是平行四边形;
3、一组对边平行且相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形;
5、对角线互相平分的四边形是平行四边形。

三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

二、矩形
定义:有一个角是直角的平行四边形。

性质:1、具有平行四边形的所有性质;
2、四个角都是直角;
3、对角线互相平分且相等;
4、对称性:中心对称图形,轴对称图形。

判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

直角三角形斜边上的中线等于斜边的一半。

⎧⎨⎩
⎧⎨⎩⎧⎨⎩⎧⎨⎩
三、菱形
定义:邻边相等的平行四边形。

性质:1、具有平行四边形的所有性质;
2、四条边都相等;
3、对角线互相垂直,并且每一条对角线平分一组对角;
4、对称性:中心对称图形、轴对称。

判定定理: 1.一组邻边相等的平行四边形是菱形(定义);
2.对角线互相垂直的平行四边形是菱形;
3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)
四、正方形
定义:一个角是直角的菱形或邻边相等的矩形。

性质:1、四条边都相等;
2、四个角都是直角;
3、正方形既是矩形,又是菱形。

判定定理:1、邻边相等的矩形是正方形。

2、有一个角是直角的菱形是正方形。

五、梯形
定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

1、直角梯形的定义:有一个角是直角的梯形
2、等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:1、同一底边上的两个角相等;
2、两条对角线相等;
3、两腰相等;
4、对称性:轴对称图形。

等腰梯形判定定理:1、两腰相等的梯形是等腰梯形;
2、同一底上两个角相等的梯形是等腰梯形;
3、对角线相等的梯形是等腰梯形;
解梯形问题常用的辅助线:如图
C F B E
D A A B C D B ()E
四边形练习
1.ABCD 中,∠A 的平分线分BC 成4cm 和3cm 两条线段,
则ABCD 的周长为 .
2.在ABCD 中,∠C=60º,DE ⊥AB 于E,DF ⊥BC 于F .
(1)则∠EDF= ; (2)如图,若AE=4,CF=7, 则ABCD 周长= ; 3.(1)在平行四边形ABCD 中,若∠C=∠B+∠D ,则∠A= .
(2)已知在ABCD ,∠A 比∠B 小20º,则∠C 的度数是 .
(3)在ABCD 中,周长为100cm ,AB-BC=20cm ,则AB= , BC= .
(4)在ABCD 中,周长为30cm ,且AB :BC=3:2,则AB= cm.
4.下列命题中,错误的是( )
A .矩形的对角线互相平分且相等
B .对角线互相垂直的四边形是菱形
C .等腰梯形的两条对角线相等
D .等腰三角形底边上的中点到两腰的距离相等
5. 在下列命题中,正确的是( )
A .一组对边平行的四边形是平行四边形
B .有一个角是直角的四边形是矩形
C .有一组邻边相等的平行四边形是菱形
D .对角线互相垂直平分的四边形是正方形
6. 下列错误的是( )
A .一组邻边相等的平行四边形是菱形
B .一组邻边相等的矩形是正方形
C . 一组对边平行且相等的四边形是平行四边形
D .一组对边相等且有一个角是直角的四边形是矩形
7. 下列命题中,真命题是( )
A .两条对角线相等的四边形是矩形
B .两条对角线互相垂直的四边形是菱形
C .两条对角线互相垂直且相等的四边形是正方形
D .两条对角线互相平分的四边形是平行四边形
8.已知矩形的对角线长为13,周长为34,则这个矩形的面积为 .
9. 如图,梯形纸片ABCD , ∠B=60°,AD ∥BC ,AB=AD=2,BC=6,将纸片折叠,使点B 与点D 重合,折痕为AE ,则CE=___________.
C
A B C D E F
10. 如图,折叠矩形的一边CD ,使点C 落在AB 上的点F 处,已知AB=10cm , BC=8cm ,则EC 的长为________.
11、如图,AD 是△ABC 的角平分线.DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .四边形AEDF 是菱形吗?说明你的理由. (不用全等,你可以做出来吗?试试看)
12、如图,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .
13、如图,等腰△ABC 中,AB=AC, D 是BC 边上的一点,DE ∥AC ,DF ∥AB ,通过观察分析线段DE ,DF ,AB 三者之间有什么关系?试说明你的结论成立的理由。

(不用全等,你可以做出来吗?试试看)
14、如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由. (不用全等,你可以做出来吗?试试看)
15、四边形ABCD是等腰梯形,其中AD=BC,若AD=5,CD=2,AB=8,求梯形ABCD 面积.(关键是会画出正确的图形)
16、以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连结BE、CF,(1)试探索BE和CF的关系?并说明理由.
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.
答案:
1、22㎝
2、(1)60·(2)48
3、(1)120·(2)80·(3)35㎝15㎝
4、B
5、C
6、D
7、D
8、60
9、4
10、3
11、(略)。

相关文档
最新文档