轴的计算校核 计算表

合集下载

轴、平键强度计算表

轴、平键强度计算表

平键联接强度计算
输入值 输入值 自动计算值 自动计算值 输入值
输入转矩 输入轴径 d 自动计算键的高度 h 自动计算键的宽度 b 选择键或被联接件的材料 载荷性质
m 3005.00 N · 90.00 mm 14 mm 25 mm 1 钢 1 静载
输入值
按静联接计算(主要承受转矩的键)
自动计算值 选择值
转矩计算表
输入值 输入值 自动计算值
电机功率 轴的转速 自动计算转矩
30 KW 960 r / min m 298.44 N ·
按 扭 转 强 度 估 算 轴 径
输入值 输入值 输入值
电机功率 轴的转速 按右表选择系数 A
30 KW 960 r / min 120 1
输入值
轴上开键槽数量
单键槽 轴径增加 3%
静联接许用挤压应力 [δ ] p 从上栏选择静联接许用 挤压应力数值 [δ ] p 自动计算键的工作长度 L ≥
125~150 130 73.38 mm
பைடு நூலகம்
自动计算值
按动联接计算(以导向或滑动为主的键)
固定值 输入值
键或被联接件的材料 载荷性质 与键有相对滑动的 被联接件表面热处理状态 动联接许用压强 [ρ ] 自动计算键的工作长度 L ≥
自动计算值
估算轴直径 d (计算为最小轴径)
38.93 mm
按 扭 转 刚 度 估 算 轴 径
输入值 输入值 输入值
电机功率 轴的转速 按右表选择系数 B
1.1 KW 60 r / min 92 1
输入值
轴上开键槽数量
单键槽 轴径增加 3%
自动计算值
估算轴直径 d (计算为最小轴径)
34.68 mm

轴的设计、计算、校核

轴的设计、计算、校核

轴得设计、计算、校核以转轴为例,轴得强度计算得步骤为:一、轴得强度计算1、按扭转强度条件初步估算轴得直径机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。

这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。

根据扭转强度条件确定得最小直径为:(mm)式中:P为轴所传递得功率(KW)n为轴得转速(r/min)Ao为计算系数,查表3若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。

以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。

在轴得结构具体化之后进行以下计算。

2、按弯扭合成强度计算轴得直径l)绘出轴得结构图2)绘出轴得空间受力图3)绘出轴得水平面得弯矩图4)绘出轴得垂直面得弯矩图5)绘出轴得合成弯矩图6)绘出轴得扭矩图7)绘出轴得计算弯矩图8)按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值:a)扭切应力理论上为静应力时,取α=0、3。

b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。

c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。

9)校核危险断面得当量弯曲应力(计算应力):式中:W为抗扭截面摸量(mm3),查表4。

为对称循环变应力时轴得许用弯曲应力,查表1。

如计算应力超出许用值,应增大轴危险断面得直径。

如计算应力比许用值小很多,一般不改小轴得直径。

因为轴得直径还受结构因素得影响。

一般得转轴,强度计算到此为止。

对于重要得转轴还应按疲劳强度进行精确校核。

此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。

轴的校核(例题很好)

轴的校核(例题很好)
Transmitting Shaft(传动轴)——指只受转矩不受弯矩或 受很小弯矩的轴,如连接汽车发动机输出轴和后桥的轴。
SEU-QRM
5
Rotating shaft
Transmitting shaft
SEU-QRM
6
转动心轴
不转心轴
SEU-QRM
不转心轴
7
Lifter
1
Motor
2
×
3
1——传动轴:T 2——转轴:T + M 3——转轴:T + M 4——心轴 :M
机械设计 Machine Design
PART Ⅲ
Design of Elements and Parts in General Use
Chapter 19 Design of Shafts
主讲——钱瑞明
SEU-QRM
1
19.1 Introduction 概述
轴用于安装传动零件(如齿轮、凸轮、带轮等),使其有确定 的工作位置,实现运动和动力的传递,并通过轴承支承在 机架或机座上。
左图方案——齿轮2与卷筒3之间用螺栓连接,空套于轴上,固定 心轴。也可改为齿轮2与轴用键连接,转动心轴 。轴直径小。
右图方案——齿轮2和卷筒3分别用键与轴连接,转轴。轴直径大。
×
3
2
Motor
×
1
×
FQ Motor
SEU-QRM
× 3×
2
×
FQ
1
28
Example 2 —— 起重卷筒的两种不同结构方案比较
Input
Output Output T1 +T2
T1
T2
×××
×××

驱动轴校核计算

驱动轴校核计算

驱动轴校核计算滚动轴承汽车用等速万向节及其总成1 范围本标准规定了M1类机动车用等速万向节及其总成的定义、代号、类型、结构、尺寸、技术条件。

本标准适用于M1类机动车用等速万向节及其总成,供制造厂生产检验和用户验收。

2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 308,2002 滚动轴承钢球GB/T 699,1999 优质碳素结构钢GB/T 2828.1,2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(ISO 2859-1:1999,IDT)GB/T 2829,2002 周期检验计数抽样程序及表(适用于过程稳定性的检验) GB/T 3077,1999 合金结构钢GB/T 8597,2003 滚动轴承防锈包装GB/T 15089,2001 机动车辆及挂车分类GB/T 18254,2002 高碳铬轴承钢3 定义下列定义适用于本标准。

3.1等速万向节 constant velocity universal joints 输出轴和输入轴的瞬时角速度在所有工作角度都相等,能够传递扭矩和旋转运动的万向节。

3.2 等速万向节总成 constant velocity universal joints assemblies装在差速器或末端减速齿轮与车轮之间,由两套或一套等速万向节、中间轴及其他零件组成的传递扭矩和旋转运动的机械部件。

3.3中心固定型等速万向节 centre fixed constant velocity universal joints 只能改变工作角度的等速万向节。

3.4伸缩型等速万向节 retractable constant velocity universal joints能改变工作角度,并能进行伸缩滑移运动的等速万向节。

轴的强度校核方法

轴的强度校核方法

轴的强度校核方法摘要轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。

轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。

其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。

本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。

校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。

轴的强度校核方法可分为四种:1)按扭矩估算2)按弯矩估算3)按弯扭合成力矩近视计算4)精确计算(安全系数校核)关键词:安全系数;弯矩;扭矩目录第一章引言--------------------------------------- 11.1轴的特点---------------------------------------------1 1.2轴的种类---------------------------------------------1 1.3轴的设计重点-----------------------------------------1第二章轴的强度校核方法----------------------------42.1强度校核的定义-------------------------------------4 2.2轴的强度校核计算-----------------------------------4 2.3几种常用的计算方-----------------------------------5 2.3.1按扭转强度条件计算-------------------------------5 2.3.2按弯曲强度条件计算-------------------------------6 2.3.3按弯扭合成强度条件计算---------------------------7 2.3.4精确计算(安全系数校核计算)----------------------9 2.4 提高轴的疲劳强度和刚度的措施---------------------12第三章总结------------------------------------------13参考文献--------------------------------------------14第一章引言1.1轴的特点:轴是组成机械的主要零件之一。

轴的强度校核方法

轴的强度校核方法

中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法姓名:学号:性别:专业:批次:电子邮箱:联系方式:学习中心:指导教师:2XXX年X月X日中国石油大学(北京)现代远程教育毕业设计(论文)轴的强度校核方法摘要轴是用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递的重要的零件。

为实现机械产品的完整和可靠设计,轴的设计应考虑选材、结构、强度和刚度等要求。

并应对轴的材料或设备的力学性能进行检测并调节,轴的强度校核应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。

最后确定轴的设计能否达到使用要求,对轴的设计十分重要。

本文根据轴的受载及应力情况,介绍了几种典型的常用的对轴的强度校核计算的方法,并对如何精确计算轴的安全系数做了具体的介绍。

当校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。

最后,本文对提高轴的疲劳强度和刚度提出相应改进方法,并对新材料,新技术的应用进行了展望。

关键词:轴;强度;弯矩;扭矩;目录第一章引言 (5)1.1轴类零件的特点 (5)1.2轴类零件的分类 (6)1.3轴类零件的设计要求 (6)1.3.1、轴的设计概要 (6)1.3.2、轴的材料 (6)1.3.3、轴的结构设计 (7)1.4课题研究意义 (9)第二章轴的强度校核方法 (11)2.1强度校核的定义 (11)2.2常用的轴的强度校核计算方法 (11)2.2.1按扭转强度条件计算: (11)2.2.2按弯曲强度条件计算: (13)2.2.3按弯扭合成强度条件计算 (13)2.2.4精确计算(安全系数校核计算) (20)第三章提高轴的疲劳强度和刚度的措施 (25)3.1合理的选择轴的材料 (25)3.2合理安排轴的结构和工艺 (25)3.3国内外同行业新材料、新技术的应用现状 (26)总结 (31)参考文献 (32)第一章引言1.1轴类零件的特点轴是组成各类机械的主要和典型的零件之一,主要起支承传动零部件,传递扭矩和承受载荷的作用。

新版轴的强度校核方法-新版-精选.pdf

新版轴的强度校核方法-新版-精选.pdf

另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,
则外伸段轴径与电动机轴径不能相差太大, 否则难以选择合适的联轴
器,取
d' min
0.8d电动机轴 ,查表,取 d电动机轴
38mm, 则:
d' min
0.8d电动机轴
0.8 * 38 30.4mm
综合考虑,可取
d' min
32mm
通过上面的例子, 可以看出, 在实际运用中, 需要考虑多方面实
8
依次确定式中的各个参数:
根据减速器输出轴的受力条件,已知:
Ft 8430N Fr 3100N Fa 1800N Fr 2v 3160N Fr1v 787 N Fr 2H 5480N Fr1H 2860N T 1429.49 N m
根据图分析可得:
M H Fr 2H L1 5480 93.5 512400N mm
际因素选择轴的直径大小。
2.2.2 按弯曲强度条件计算:
由于考虑启动、 停车等影响, 弯矩在轴截面上锁引起的应力可视
为脉动循环变应力。

ca
其中:
M ≤[ 0 ] 1.7[ -1 ]
W
M 为轴所受的弯矩, N·mm
2
W 为危险截面抗扭截面系数 ( mm3 ) 具体数值查机械设计手册 B19.3-15 ~17.
( 2)做出弯矩图 在进行轴的校核过程中最大的难度就是求剪力和弯矩, 画出剪力 图和弯矩图,因此在此简单介绍下求剪力和弯矩的简便方法。 横截面上的剪力在数值上等于此横截面的左侧或右侧梁段上所
3
有竖向外力(包括斜向外力的竖向分力)的代数和 。外力正负号的
规定与剪力正负号的规定相同。 剪力符号: 当截面上的剪力使考虑的

轴的校核

轴的校核
设计公式: (mm) 轴上有键槽
放大:3~5%一个键槽;7~10%二个键槽。 取标准植
——许用扭转剪应力(N/mm2),表11-3 ——考虑了弯矩的影响
A0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明
对于空心轴: (mm)
, d1—空心轴的内径(mm)
注意:如轴上有键槽,则d 放大:3~5%1个;7~10%2个 取整。
§11—4 轴的刚度及振动稳定性
一、轴的刚度计算
防止轴过大的弹性变莆而影响轴上零件的正常工作,要求控制其受载后的变形量不超过最大允许变形量。
1、弯曲刚度
按材料力学公式计算出轴的挠度y和偏转角
挠曲线方程:
挠度: 积分二次
偏转角: 积分一次
[y]——轴的允许挠度,mm,表11-16
S——许用安全系数,表11-5
其中:

综合影响因素—材料特性, 、 、 、 ——见第二章,具体见例题。
2、静强度校核——校核轴对塑性变形的抵抗能力(略)
考虑瞬间最大瞬时载荷的影响。
SS——许用安全系数 SS=1.2~2
②表面强化处理(高频淬火、表面渗碳、氰化、氮化、喷丸、碾压)使轴的表层产生预压应力→提高轴的抗疲劳能力。
[ ]——轴的允许偏转角mm,rad,表11-6
2、扭转刚度——每米长的扭转角度
扭转角 °/m
一般传动轴,许用扭转角 ,精密传动轴:
二、轴的振动稳定性及临界转速
轴由于组织不均匀,加工误差等原因,质心会偏离轴线产生离心力,随着轴的旋转离心力(方向)会产生周期性变化→周期性的干扰力→弯曲振动(横向)→当振动频率与轴本身的弯曲自振频一致时→产生弯曲共振现象。——较常见

轴的强度计算.

轴的强度计算.

轴的强度计算一、按扭转强度条件计算适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算;②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936TT T d n P W T ττ≤⨯== Mpa (11-1) 设计公式: 3036][1055.95nP A n P d T =⨯⨯≥τ(mm )⇒轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。

⇒取标准植][T τ——许用扭转剪应力(N/mm 2),表11-3 T ][τ——考虑了弯矩的影响A 0——轴的材料系数,与轴的材料和载荷情况有关。

注意表11-3下面的说明 对于空心轴:340)1(β-≥n P A d (mm )⇒ 6.0~5.01≈=d d β, d 1—空心轴的内径(mm )注意:如轴上有键槽,则d ⇒放大:3~5%1个;7~10%2个⇒取整。

二、按弯扭合成强度条件计算条件:已知支点、距距,M 可求时步骤:如图11-17以斜齿轮轴为例1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a )2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b )3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c )4、作合成弯矩图22V H M M M +=(图11-17d )5、作扭矩图T α(图11-17e )6、作当量弯矩图22)(T M M ca α+=α——为将扭矩折算为等效弯矩的折算系数∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力∴α与扭矩变化情况有关1][][11=--b b σσ ——扭矩对称循环变化 α=6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

轴结构设计和强度校核

轴结构设计和强度校核

一、轴的分类按承受的载荷不同, 轴可分为:转轴——工作时既承受弯矩又承受扭矩的轴。

如减速器中的轴。

虚拟现实。

心轴——工作时仅承受弯矩的轴。

按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。

如火车轮轴。

固定心轴——工作时轴承受弯矩,且轴固定。

如自行车轴。

虚拟现实。

传动轴——工作时仅承受扭矩的轴。

如汽车变速箱至后桥的传动轴。

固定心轴转动心轴转轴传动轴二、轴的材料轴的材料主要是碳钢和合金钢。

钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。

由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。

合金钢比碳钢具有更高的力学性能和更好的淬火性能。

因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。

必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。

但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。

高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。

轴的常用材料及其主要力学性能见表。

三、轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构尺寸。

轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。

由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。

轴的设计计算及校核实例

轴的设计计算及校核实例

轴的设计计算及校核实例
轴是用来支撑旋转的机械零件,如齿轮、带轮、链轮、凸轮等。

轴的设计计算主要包括选材、结构设计和工作能力计算。

以下是一个轴的设计计算及校核实例:
1. 按扭矩初算轴径:选用45#调质,硬度217-255HBS。

根据()2表14-1、P245(14-2)式,并查表14-2,取c=115,得d≥115×(5.07/113.423)1/3mm=40.813mm。

考虑有键槽,将直径增大5%,则d=40.813×(1+5%)=4
2.854mm。

初选d=50mm。

2. 选择轴承:因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承。

参照工作要求并根据,根据d=50mm,选取单列角接触球轴承7208AC型。

在进行轴的设计时,需要考虑多方面的因素,并进行详细的计算和校核。

如果你需要进行轴的设计计算,建议咨询专业的工程师或查阅相关设计手册。

轴、平键强度计算表

轴、平键强度计算表

输入值电机功率30KW 输入值轴的转速960r / min 自动计算值
自动计算转矩
N ·
m 输入值电机功率30KW 输入值轴的转速960r / min 输入值
按右表选择系数 A
3%
自动计算值
估算轴直径 d (计算为最小轴径)mm
输入值电机功率55KW 输入值轴的转速15r / min 输入值
按右表选择系数 B
3%
自动计算值
估算轴直径 d (计算为最小轴径)mm
单键槽轴上开键槽数量轴径增加输入值
轴上开键槽数量1
单键槽轴径增加129183.86按 扭 转 刚 度 估 算 轴 径
转 矩 计 算 表
120298.44按 扭 转 强 度 估 算 轴 径
输入值
38.931
平键联接强度计算
按静联接强度校核计算
按动联接强度校核计算。

轴承校核计算 计算表

轴承校核计算 计算表

序表 派生轴向力Fd计算步骤参数数值备注与图示轴向力Fae(N)(向左为正)400径向力Fre(N)900切向力Fte(N)2200表1 轴承预期计算寿命轮节圆d(mm)314距离a(mm)200距离b(mm)320左轴承径向力Fr1(N)1512.62右轴承径向力Fr2(N)875.66200Fa1=Fa2=Fa 轴承类型7000AC 左轴承派生轴向力Fd1(N)1028.58右轴承派生轴向力Fd2(N)595.45根据Fae判断被压紧轴承左侧轴承被压紧表2 径向动载荷系数X和轴左轴承轴向力Fa1(N)995.45右轴承轴向力Fa2(N)595.45轴承型号(查样本)7207C 基本额定静载荷C0(N)20000估算e值(首次取0.45)0.4在左侧填入数值估算左Fd1(N)605.05估算右Fd2(N)350.26根据Fae判断被压紧轴承右侧轴承被压紧右轴承轴向力Fa2(N)1005.05左轴承轴向力Fa1(N)605.05右轴承Fa2/C00.0503左轴承Fa1/C00.0303右轴承e20.4220左轴承e10.4013右轴承派生轴向力Fd2(N)369.51左轴承派生轴向力Fd1(N)607.01右轴承轴向力Fa2(N)1007.01左轴承轴向力Fa1(N)607.01轴承型号32206圆锥滚子轴承Y1值1.6圆锥滚子轴承左轴承派生轴向力Fd1(N)472.69调心滚子轴承右轴承派生轴向力Fd2(N)273.64调心球轴承根据Fae判断被压紧轴承左侧轴承被压紧已知条件轴承校核计算合集序:典型轴承模型受力分析说明:此模型广泛应用于齿轮或皮带/链传动。

(1)当为直齿轮或皮带/链轮时,轴向力Fae=0;(2)当为齿轮传动时,径向力Fre为齿轮的重力;当为皮带轮时,Fre为重力和预紧力的合力;(3)切向力Fte可以通过转矩T求得,T=Fte*d/2。

圆锥滚子轴承不经常使用的仪器间断使用轴承径向力每天8h运转两端为深沟球轴承时轴向力Fa(N)两端为7000C时的轴向力深沟球轴承角接触轴承两端为7000AC 或7000B时的轴向力24H连续运作机械轴承类型e平均值=0.4116两端为圆锥滚子轴承时的轴向力Fre Fae Fte a b d 将此值填入再次计算Fae Fae 面朝面安装背靠背安装12Y F F r d左轴承轴向力Fa1(N)673.64表3 轴承载荷系数fp 右轴承轴向力Fa2(N)273.64步骤参数取值备注径向载荷Fr(N)5500表4 温度系数ft轴向载荷Fa(N)2500工作温度(℃)转速n(r/min)1250ft预期计算寿命Lh(h)5000参考表1要求轴承孔径(mm)50表5 NHK深沟球轴承样本轴承型号6310基本额定动载荷Cr(N)62000基本额定静载荷C0(N)38500相对轴向载荷Fa/C00.0649e值0.2649表2附1自动计算轴径载荷比Fa/Fr0.45对比Fa/Fr与e Fa/Fr>e 径向动载荷系数X 0.56表2轴向动载荷系数Y1.6338表2附1自动计算NHK圆锥滚子轴承样本载荷系数fp1.2表3温度系数ft1表4当量动载荷P(N)8597.30P=fp(XFr+YFa)指数ε3.00所需基本额定动载荷C61997.25C≤Cr 计算寿命Ls(h)5000.66Ls≥Lh NHK角接触球轴承样本步骤参数取值备注径向载荷Fr(N)5500轴向载荷Fa(N)2500转速n(r/min)1250预期计算寿命Lh(h)5000参考表1要求轴承孔径(mm)30确定轴承类型圆锥滚子轴承(3系)轴承型号32206基本额定动载荷Cr(N)52000基本额定静载荷C0(N)60000圆锥滚子轴承e值0.38圆锥滚子轴承Y1值 1.6子轴承时的轴向力载荷性质将以上计算的Fr和Fa的较大值带入下方对应表格计算无/轻微冲击深沟球轴承(6系)校核计算中等或中等惯性冲已知条件强大冲击已知条件1,按安装尺寸或受力分析初选轴承查样本,如表52,计算当量动载荷P3,校核轴承额定动载荷或使用寿命轴承额定动载荷Cr满足要求寿命满足要求,可以使用校核基本额定动载荷C=校核寿命Lh,二者等效,校核其一即可圆锥滚子轴承(3系)或角接触球轴承(7系)校核计算1,按安装尺寸或受力分析初选轴承查样本,如表57系不用填若不合格则重新选择型号若不ε61060h L n t f P C ⨯⨯=ε⎪⎪⎭⎫ ⎝⎛⨯⨯=P Cr t f n Ls 60610相对轴向载荷Fa/C00.0417轴径载荷比Fa/Fr0.45系数e0.3800对比Fa/Fr与e Fa/Fr>e 径向动载荷系数X 0.4表2轴向动载荷系数Y1.6000载荷系数fp1.2表3温度系数ft1表4NHK圆柱滚子样本截图当量动载荷P(N)7440.00P=fp(XFr+YFa)指数ε3.33所需基本额定动载荷C44033.41C≤Cr 计算寿命Ls(h)8703.76Ls≥Lh 步骤参数取值备注径向载荷Fr(N)5500此处只考虑轴向载荷转速n(r/min)1250预期计算寿命Lh(h)5000参考表1要求轴承孔径(mm)40载荷系数fp1.2表3温度系数ft 1表4当量动载荷P(N)6600.00P=fp*Fr 指数ε3.33所需基本额定动载荷C39061.90初选选择轴承型号N208基本额定动载荷Cr(N)43500基本额定静载荷C0(N)43000计算寿命Ls(h)7157.42Ls≥Lh步骤参数取值备注径向载荷Fr(N)5500轴向载荷Fa(N)2500转速n(r/min)1250预期计算寿命Lh(h)5000参考表1要求轴承孔径(mm)50轴承型号基本额定动载荷Cr(N)基本额定静载荷C0(N)3,寿命计算寿命满足要求,可以使用2,计算当量动载荷P3,校核轴承额定动载荷或使用寿命轴承额定动载荷Cr满足要求寿命满足要求,可以使用校核基本额定动载荷C=校核寿命Lh,二者等效,校核其一即可圆柱滚子轴承(N系)选型计算已知条件1,计算轴承额定动载荷2,轴承选型查样本,如表5其他轴承校核计算已知条件1,按安装尺寸或受力分析初选轴承查样本,如表5不合格则重新选择型号若ε61060h L n t f P C ⨯⨯=ε⎪⎪⎭⎫ ⎝⎛⨯⨯=P Cr t f n Ls 60610ε61060h L n t f P C ⨯⨯=ε⎪⎪⎭⎫ ⎝⎛⨯⨯=P Cr t f n Ls 60610相对轴向载荷Fa/C0#DIV/0!e值表2附1自动计算轴径载荷比Fa/Fr0.45对比Fa/Fr与e Fa/Fr>e 径向动载荷系数X 表2轴向动载荷系数Y表2载荷系数fp1.2表3温度系数ft1表4当量动载荷P(N)P=fp(XFr+YFa)指数ε球轴承 3.00所需基本额定动载荷C0.00C≤Cr 计算寿命Ls(h)#DIV/0!#DIV/0!附图1 双支点各单向固定附图1 一端固定一端游动说明:1,轴承类型的选择:a 载荷:滚子轴承用于较大载荷,球轴承用于中轻载荷;纯径向载荷一般用深沟球轴承、圆柱棍子轴承、滚针轴承;纯轴向载荷可选用推力轴承(较小的纯轴向载荷可选用推力球球轴承,较大的纯轴向载荷可选用推力滚子轴承);径向载荷+不大的轴向载荷可选用深沟球、角接触球(70000C\70000AC)、圆锥滚子(α=10~18°);径向载荷+较大的轴向载荷可选用角接触球(70000AC/70000B)、圆锥滚子(α=27~30°)、向心轴承+推力轴承组合。

机械设计轴的计算与校核

机械设计轴的计算与校核

d
177.43
径向力:
Fr

Ft tan n cos

3845 tan 20 cos1117,3,,
图15-15
1427N
轴向力:F=Fttan =3845tan1117,3,, 767N
齿轮上作用力的大小、方向见图15-15(b)所示
5)计算轴承反力 (图15-15c及e)
W
提高轴的强度的常用措施
增大轴径; 改变材料及热处理;
改进轴的表面质量以提高 轴的疲劳强度
改进轴的结构设计
M, bH

64 R1H
641245.1
79686.4N mm
M ,, bH

M, bH

F

d
2
79686.4 767 177.43 2
11642N mm
垂直弯矩图如图15-15f
MbV 64 R1V
641922.5
123040N mm
§15.3 轴的强度校核
按扭转强度条件计算 按弯扭合成强度条件计算 作扭矩图 作出当量弯矩图 计算弯曲应力,校核轴的强度
§15.3 轴的强度校核
1.按扭转强度条件计算
校核式:T

MT Wp
9.55 106 0.2d 3
P n
[ ]T
(12 1)
抗扭截面系数
P251,表15-5
合成弯矩图如图15-15g
M, b

M
, bH

MbV
2

79686.42 1230402 146590N mm
M ,, b

M

轴的计算设计说明

轴的计算设计说明

轴的设计与校核高速轴的计算。

(1)选择轴的材料选取45钢,调制处理,参数如下: 硬度为HBS =220抗拉强度极限σB =650MPa 屈服强度极限σs =360MPa 弯曲疲劳极限σ-1=270MPa 剪切疲劳极限τ-1=155MPa 许用弯应力[σ-1]=60MPa 二初步估算轴的最小直径由前面的传动装置的参数可知1n= 323.6 r/min;1p=6.5184(KW);查表可取OA=115;机械设计第八版370页表15-3==311minnpAdo 3323.66.518115⨯=31.26mm 三.轴的机构设计(1)拟定轴上零件的装配方案如图(轴1),从左到右依次为轴承、轴承端盖、小齿轮1、轴套、轴承、带轮。

(2)根据轴向定位的要求确定轴的各段直径和长度 1.轴的最小直径显然是安装带轮处的直径1d,取∏-I d=32 mm ,为了保证轴端挡圈只压在带轮上而不压在端面上,,故Ⅰ段的长度应比带轮的宽度略短一些,取带轮的宽度为50 mm ,现取47l mm Ⅰ=。

带轮的右端采用轴肩定位,轴肩的高度111.0~07.0dd h =,取h =2.5mm ,则Ⅲ-∏d=37 mm 。

轴承端盖的总宽度为20 mm ,根据轴承端盖的拆装及便于对轴承添加润滑脂的要求,取盖端的外端面与带轮的左端面间的距离l =30 mm ,故取∏l=50 mm.2.初步选责滚动轴承。

因为轴主要受径向力的作用,一般情况下不受轴向力的作用,故选用深沟球滚动轴承,由于轴Ⅲ-∏d=37 mm ,故轴承的型号为6208,其尺寸为=d 40mm ,=D 80mm,18=B mm.所以ⅣⅢ-d=ⅣⅢ-d=40mm ,ⅣⅢ-l=ⅧⅦ-l=18mm3.取做成齿轮处的轴段Ⅴ–Ⅵ的直径ⅥⅤ-d=45mm ,ⅥⅤ-l=64mm取齿轮距箱体内壁间距离a =10mm , 考虑到箱体的铸造误差, 4.在确定滚动轴承位置时,应距箱体内壁一段距离s , 取s =4mm ,则=-V IV l s+a =4mm +10mm =14mmⅤⅣ-d=48mm同理ⅦⅥ-l=s+a=14mm ,ⅦⅥ-d=43 mm至此,已经初步确定了各轴段的长度和直径 (3)轴上零件的轴向定位齿轮,带轮和轴的轴向定位均采用平键(详细的选择见后面的键的选择过程)(4)确定轴上的倒角和圆角尺寸参考课本表15-2,取轴端倒角为1×45°,各轴肩处的圆角半径R=1.2mm(四)计算过程1.根据轴的结构图作出轴的计算简图,如图,对于6208深沟球滚轴承的mm a 9=,简支梁的轴的支承跨距: L=32LL+=l llllⅧⅦⅦⅥⅥⅤⅤⅣⅣⅢ-----++++-2a=18+14+64+14+18-2⨯9=120mm1L=47+50+9=106mm ,2L=55 mm,3L=65mm2.作用在齿轮上的力d T F t 212==4203.1952⨯=916.6N==βαcos tan ntrFF333.6NN FF t a6.916==计算支反力水平方向的ΣM=0,所以055.110.2=-F F t H N ,F HN 2=458.3N=-65.110.1F F t NH 0,F NH 1=541.6N垂直方向的ΣM=0,有=-65.110.1F F r NV 0, FNV 1=197N =-55.110.2F Fr NV 0,FNV 2=166.8N计算弯矩 水平面的弯矩32LF MNH CH⨯==653.458⨯=29789.5mm N ⋅垂直面弯矩=⨯=⨯=55197211L F MNV CV 10840mm N ⋅=⨯=⨯=658.166322L F MNV CV 10840mm N ⋅合成弯矩1C M =122CV CH M M +=31700mm N ⋅ 2C M =222CV CH M M +=31700mm N ⋅根据轴的计算简图做出轴的弯矩图和扭矩图,可看出C 为危险截面,现将计算出的截面C 处的H V M M 、及M 的值列于下表:3.按弯扭合成应力校核轴的硬度进行校核时,通常只校核轴上承受最大弯距和扭距的截面(即危险截面C )的强度。

轴的强度校核方法

轴的强度校核方法

2.2常用的轴的强度校核计算方法进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采 取相应的计算方法,并恰当地选取其许用应力。

对于传动轴应按扭转强度条件计算。

对于心轴应按弯曲强度条件计算。

对于转轴应按弯扭合成强度条件计算。

2.2.1按扭转强度条件计算:这种方法是根据轴所受的扭矩来计算轴的强度, 对于轴上还作用 较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。

通常 在做轴的结构设计时,常采用这种方法估算轴径。

实心轴的扭转强度条件为:P TT _WT9550000严w T由上式可得轴的直径为d.nT 为扭转切应力,MPa式中:T 为轴多受的扭矩,N • mmW T 为轴的抗扭截面系数,mm 3n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm[T ]为许用扭转切应力,Mpa [片]值按轴的不同材料选取,常用轴的材料及[r ]值见下表:表1 轴的材料和许用扭转切应力空心轴扭转强度条件为:-=dl其中1即空心轴的内径*与外径d之比,通常取1 =0.5-0.6 d这样求出的直径只能作为承受扭矩作用的轴段的最小直径。

例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P仁2.475kw, 输入转速n仁960r/min,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则:P 丨2 475d min - A o 112 15.36mm,厲960因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,贝心d m/ =d min (1 7%) =15.36 (1 7%) = 16.43mm另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取d min =0.8d电动机轴,查表,取d电动机轴=38mm,贝卩:d m in = 0.8d电动机轴=0.8* 38 = 30.4mm综合考虑,可取d min' =32mm通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴传递功率
Kw
பைடு நூலகம்
4.25
轴转速n
r/min
33
转矩T
N.m
1229.83
最小计算轴径
mm
53.90
第二步,轴扭转强度校核(2选1)
已知电机功率和轴转速时
电机与轴参数
单位
输入与计算 备注
电机功率P
Kw
1
轴转速n
r/min
1400
最小设计轴径d mm
10
直驱输出力矩T N.m
6.82
必须>负载所需T
扭转剪应力τ
mm
10
Gpa mm4
79 981.75
°/m
0.74
备注
参考右侧数据库 和右侧库对比
电机启动时间t数据库 电机种类 伺服(0.05~0.2) 步进(0.1~0.3) 普通异步 重载
许用扭转强度[τ]数据库 材料牌号 20,Q235 30 35,Q275 321(Cr18Ni9Ti) 45 40Cr,42SiMn 35SiMn,38CrMnMo 420(2Cr13/3Cr13)
料切变模量G数据库 G(GPa) 79.4 79.4 44 73~76 39 41 26 24~26 0.5
扭转刚度[φ]经验库 [φ](°/m) 0.25~0.5 0.5~1 ≥1
说明: 对于受扭转轴的校核分为扭转强度校核和刚度校核
1,扭转强度校核公式:τ=T/Wt≤[τ] 其中τ的量纲Mpa(N/mm²),T为转矩,量纲N.mm,Wt为扭转截 面系数,量纲mm³,可查询机械设计手册第5版3-105或通过以下 公式计算得到: 实心轴:Wt=πd³/16;空心轴:Wt=π(D4-d4)/(16*D)
轴选用的材料
轴的计算与校核
45
[τ](Mpa)
40
第一步,根据负载算出最小传动轴径(3选1)
当直连回转体负载时 T=J*α
负载参数
单位
输入与计算 备注
转动惯量J
kg.mm²
1000
SW中查惯性张量
正常转速n
r/min
60
电机启动时间t
s
0.5
参考右侧库
转动加速度α 所需转矩T
rad/s² N.m
12.57 12.57
Mpa
34.74
数据判断
安全
已知减速机输出转矩时
减速机与轴参数 单位
最小设计轴径d mm
减速机输出力矩T N.m
扭转剪应力τ
Mpa
数据判断
输入与计算 10
0 安全
备注 查表,必须>负载T
轴参数 轴传递的扭矩 最小设计轴径d 切变模量G 极惯性矩Ip 刚度φ
第三步,轴刚度校核
单位
输入与计算
N.m
1000
材料切变模量G数据库 材料 碳钢 合金钢,不锈钢 灰口铸铁,白口铸铁 球墨铸铁 纯铜,锰青铜 黄铜,铝青铜 铝合金 扎制铝 木材
许用扭转刚度[φ]经验库 传动精度要求 精密传动 一般传动 要求不高的轴
机启动时间t数据库 t(s) 0.1 0.2 0.5 ≥1
用扭转强度[τ]数据库 [τ](Mpa) 20 25 30 30 40 52 52 52
2,刚度校核校核公式:φ=(180/π)*T/(G*Ip)≤[φ] 其中G*Ip为扭转刚度,G为切变模量,量纲为GPa的常量,碳钢 均为79GPa(79KN/mm²),Ip为极惯性矩,通过CAD或SW草 图模块画出截面可以查询到,量纲为mm^4,也可通过公式计算 实心轴:Ip=πd4/32;空心轴:Ip=π(D4-d4)/32
α=△ω/△t =2π*n/60/t
最小计算轴径
mm
11.70
当带传动、链传动、齿轮齿条、卷扬机构等负载力时 T=F*L
负载参数
单位
输入与计算 备注
负载力F
N
力臂或回转半径L mm
所需转矩T
N.m
0
最小计算轴径
mm
0
当已知轴传递功率和轴转速时 T=9549P/n,只需校核刚度
电机与负载参数 单位
输入与计算 备注
相关文档
最新文档