新北师大版第一章特殊的平行四边形导学案

合集下载

北师大版九年级上册数学 第一章 特殊平行四边形专题 学案

北师大版九年级上册数学   第一章  特殊平行四边形专题 学案

特殊的平四边形适用学科 初中数学 适用年级 初中三年级适用区域 全国课时时长(分钟) 120分钟知识点1四边形以及特殊四边形的概念、性质、判定 2.三角形、梯形中位线定理及其运用3.梯形、等腰梯形、直角梯形的概念,掌握等腰梯形的性质和判定,运用相关知识进行证明和计算学习目标 1.掌握平行四边形及几种特殊四边形的性质与判定 2.灵活运用有关性质及判定解决问题3.经历四边形基本性质,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础4.让学生理解平面几何观念的基本途径是多种多样的,感知和体验几何图形的现实意义,体验二维空间相互转换关系学习重点 理解和掌握几种常见特殊四边形的性质、判定 学习难点发展合情推理和初步的演绎推理能力学习过程一、复习预习上节课我们复习了勾股定理的内容,接下来请同学们回忆一下1.勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+.2. 勾股定理的证明:(1)方法一:将四个全等的直角三角形拼成如图所示的正方形:()22222142.ABCD S a b c aba b c =+=+⨯∴+=正方形(2)方法二:将四个全等的直角三角形拼成如图所示的正方形:()222221=42.正方形EFGH =-+⨯∴+=S c a b aba b c(3)方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形。

()222222121221c b a c ab b a S =+∴+⨯=+=梯形3. 勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

4. 常用勾股数:3、4、5; 5、12、13; 6、8、10;7、24、25; 8、15、17; 9、40、41。

(牢记)勾股数扩大相同倍数后,仍为勾股数.二、知识讲解1、平行四边形性质及判定,列表归纳平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角垂直平分且相等,每条对角线平分一组对角判定1.两组对边分别平行;2.两组对边分别相等;3.一组对边平行且相等;4.两组对角分别相等;5.两条对角线互相平分.1有三个角是直角的四边形;2有一个角是直角的平行四边形;3对角线相等的平行四边形.1.四边相等的四边形;2.对角线互相垂直的平行四边形;3.有一组邻边相等的平行四边形。

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

第一章《特殊平行四边形》《菱形的性质与判定》(第2课时)【教学目标】1.知识与技能(1).经历菱形判定定理的探索过程,进一步发展合情推理能力.(2).能够用综合法证明菱形的判定定理,进一步发展演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。

3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形判定定理的发现与证明.【教学难点】菱形判定定理的应用.【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习引入(1)菱形的定义;(2)菱形的特征;(3)菱形的性质;提出问题引入新课:想一想我们可以怎样判定一个四边形是菱形?二、探究新知1.菱形的判定1:定义法(有一组邻边相等的平行四边形叫做菱形)数学语言:∵四边形ABCD是平行四边形且AB=AD∴四边形ABCD是菱形2.菱形的判定2的探究:对角线互相垂直的平行四边形是菱形活动内容1:根据菱形的定义,有一组邻边相等的平行四边形是菱形,除此之外,你认为还有什么条件可以判断一个平行四边形是菱形,先想一想,再与同伴交流.处理方式:先由学生独立思考,尝试解答,再采取小组合作的方式,交流讨论,进而得到结论:对角线互相垂直的平行四边形是菱形.活动内容2:通过思考、交流,我们可以发现,对角线互相垂直的平行四边形是菱形,你能证明这个命题吗?处理方式:鼓励学生积极探索,大胆猜想,在此基础上再进行严格地证明.证明过程中,学生可能会有一定的困难,教师要及时予以指导和规范.此处可安排学生板演证明过程.但是要帮助引导学生写出已知、求证,并以本题为例,规范证明命题的一般步骤,即:先将命题改写为“如果···,那么···.”的形式,分析命题的条件和结论,再根据条件和结论画出图形,写出已知、求证,最后再规范证明.同时,本题可能会有学生用证明△AOB ≌△COB 的方法证明BA=BC ,对此,教师可引导学生思考,AC 和BD 的关系,即互相垂直平分,因而可以利用线段垂直平分线定理来证明BA=BC.并对两种方法进行比较.已知: ABCD 中,对角线AC 与BD 相交于点O,AC ⊥BD. 求证: ABCD 是菱形证明:∵四边形ABCD 是平行四边形, ∴AO =CO 又∵AC ⊥BD∴BD 是线段AC 的垂直平分线.∴BA =BC (线段垂直平分线上的点到线段两个端点的距离相等) ∴四边形ABCD 是菱形(菱形的定义).设计意图:由于要判定的是一个平行四边形,因此,若要考虑边,则容易想到定义,若要考虑对角线,则可能受到性质的启发,想到对角线互相垂直的平行四边形是菱形,进而对这一命题进行严格证明,得到结论.3.菱形的判定3的探究:四边相等的四边形是菱形活动内容1:已知线段AC ,你能用尺规作图的方法作一个菱形ABCD ,使AC 为菱形的一条对角线吗?你是怎么做的?思考并独立完成后,与同伴交流.处理方式:学生独立完成作图后可与课本作法进行对比,通过思考作法的正确性,探索得到菱形的另一种判定方法:四条边都相等的四边形是菱形.并对这一判定方法加以证明. 这里可能会有一个问题:对于作图要求,学生可能会不太明确,教师要及时点拨,作图要求是要使已知线段为对角线,因而可以借助菱形的对角线互相垂直且平分这一性质,通过作线段AC 的垂直平分线来完成作图.如还是无法完成,可借鉴课本作法.活动内容2:你所做的四边形是菱形吗?你能得到怎样的结论?你能证明这个结论吗? 处理方式:根据作图过程,学生能猜想出所在在四边形为菱形,进而猜想出菱形的另一种判定方法:四条边都相等的四边形是菱形.对于学生作法的正确性的证明,可以先证明所做四边形为平行四边形,再利用定义,证明是菱形.由此得出结论:四条边都相等的四边形是菱形.AB DC O已知: 在四边形 ABCD 中,AB=BC=CD=AD 求证: 四边形 ABCD 是菱形 证明:∵AB=CD ,BC=AD∴四边形ABCD 是平行四边形 又∵AB=BC∴四边形 ABCD 是菱形归纳:菱形的三个判定:1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.有四条边相等的四边形是菱形. 三、例题讲解例1.下列条件中,不能判定四边形ABCD 为菱形的是( C )A. AC ⊥BD ,AC 与BD 互相平分 B. AB=BC=CD=DAC. AB=BC ,AD=CD ,且AC ⊥BD D. AB=CD ,AD=BC ,AC ⊥BD解析:根据菱形的三个判定可得C 是错误的.例2、如图, ABCD 的两条对角线AC 、BD 相交于点O ,AB=5,AC=8,DB=6, 求证:四边形ABCD 是菱形.证明:∵ 四边形ABCD 是平行四边形 ∴OA=OC=4 OB=OD=3 又∵AB=5∴222BO AO AB += ∴∠AOB=90° ∴AC ⊥BD又∵ 四边形ABCD 是平行四边形 ∴四边形ABCD 是菱形. 四、巩固练习:1.判断下列说法是否正确?为什么?(1)对角线互相垂直的四边形是菱形; ( ×)BCAD(2)对角线互相垂直平分的四边形是菱形;(√)(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(×)(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.(×)2.对角线互相垂直且平分的四边形是( C )A.矩形B.一般的平行四边形C.菱形D.以上都不对3.如图所示,在△ABC中,AB=AC,∠A<90°,边BC,CA,AB的中点分别是点D,E,F,则四边形AFDE是( A )A.菱形 B.正方形 C.平行四边形 D.梯形4.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是( A )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°五.拓展提高1.如图,在平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形,求证:四边形ABCD是菱形。

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》
满足什么条件的菱形是正方形? 定理:有一个角是直角的菱形是正方形.
请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形

北师大版九年级数学上册第一章特殊平行四边形

北师大版九年级数学上册第一章特殊平行四边形

为什么?
A
D
证明:矩形ABCD中
∵AB∥CD
O
∴∠OAB=∠OCD,
B
C
∠OBA=∠ODC △ABO与△DCO中
∵ ∠OAB=∠OCD,AB=CD,∠OBA=∠ODC
∴ △ABO ≌△DCO, ∴AO=OD,BO=CO
∴AO+OC=BO+OD,即:AC=BD
如图:矩形的对角线 A
D
相交于点E,你可以找
3、进一步体会证明的必要性以及计算与证明在 解决问题中的作用。
4、体会证明过程中所运用的归纳、概括以及转 化等数学思想方法。
5、培养学生实事求是的辩证唯物主义思想及积 极探究的思想意识。
三、教学指导:
本节课共分为三课时内容,教 学过程中可分为三大步完成,即: 理论、方法积累、思路梳理——合 作交流,互助探索学习——自主探 索,拓展延伸,归纳新知。这充分 体现了螺旋上升的原则。
首先,我们应培养学生很好地掌握已熟悉 的逻辑方法,包括证明的思路和证明过程的 准确表达。
其次,对不同证明方法的探索可以提高学 生的逻辑思维水平。因此,在证明了一个命 题以后,同学们还应该思考是否还有其他的 证明方法,如辅助线的添加方法唯一吗?还 可以从什么角度解决问题……。
五、评价建议:
1、关注学生探索结论、分析思路和方法的 过程。

角形斜边上的 中线等于斜边 的一半。
B
D
具有平行四边形 所有边的性质
矩形 四个角都是直角 性质:
对角线相等且 互相平分
证明:过程
解答过程 :
特殊平行四边形(二)
在认真学习第一课时的基础上,本节课的教学 可按以下环节逐步展开:
1.知识回顾——回想知识,加强记忆、理解。 2.新课引入——动手实践,发现新知。 3.新课讲解——互助合作,探索性质,判别。 4.训练应用——强化训练,加深应用。 5.拓展延伸——类比菱形,探索正方形。 6.小 结——综合思想,归纳思路。 7.作 业——综合知识,强化训练。 下面就每个环节,逐层分析。

北师大版九上 第一章 特殊平行四边形 基于标准的教学设计

北师大版九上 第一章  特殊平行四边形 基于标准的教学设计

第一章特殊的平行四边形1.1 菱形的性质与判定(一)一、目标确定的依据1、课程标准的相关要求探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。

正方形具有矩形和菱形的一切性质。

2、教材分析与八年级下册“平行四边形”一章类似,本章仍将采用探究和证明结合的方式展开相关内容。

课本基于目前学生的知识和能力水平,对本课内容提出了具体的学习任务:进一步发展推理论证能力,运用综合法证明矩形的性质和判定定理,进一步体会证明的必要性和作用,体会归纳等数学思想方法。

对于本节课的知识,教科书提出的学习任务,重点集中在了学生的能力培养上,因为本节课的知识,对学生来说从认知角度上缺乏挑战性,大部分学生都已经能够熟练运用矩形的性质和判定方法,所以,在教学时,我们应该把目标上升一个层次,从关注学生是否能证明这些定理提高到关注学生如何找到解题思路,从关注学生是否能顺利证明提高到关注学生是否合理严密的使用数学语言严格证明,从关注学生合作解题提高到让每一个学生都能独立完成证明的过程。

3、学情分析学生活动经验基础:在相关知识的学习中,学生已经经历了大量的证明活动,特别是平行四边形的相关证明推理,学生已经逐渐体会到了证明的必要性和证明在解决实际问题时的作用,从而初步具备了证明特殊平行四边形性质和判定定理的能力;同时,在前面的相关活动中,学生已经初步了解了归纳、概括及转化等数学思想方法,大量的活动经验丰富了学生的数学思想,锻炼了学生的能力,使学生具备了在解题中合理运用方法的能力。

二、学习目标1.通过观察、猜想、证明等过程,能自己归纳并证明出菱形的性质。

2.通过练习,能用菱形的性质规律解决一些具体的实际问题。

三、评价任务1.会分清平行四边形和菱形的性质区别。

北师大版九年级数学上册全册教案

北师大版九年级数学上册全册教案

第一章特殊平行四边形1 菱形的性质与判定第1课时菱形的性质【知识与技能】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度】培养学生主动探究的习惯、严密的思维意识和审美意识.【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.一、情境导入,初步认识四人为一小组先在组内交流自己收集的有关菱形的图片,实物等,然后进行全班性交流.引入定义:有一组邻边相等的平行四边形叫做菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解1.见教材P3第1题.2.见教材P3例1 .3.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15B.153 2C.7.5D.153【教学说明】本题考查有一个角是60°的菱形的一条对角线等于菱形的边长.4.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC且交BC的延长线于点E.求证:DE=12 BE.分析:由四边形ABCD是菱形,∠ABC=60°,易得BD⊥AC,∠DBC=30°,又由DE∥AC,即可证得DE⊥BD,由30°所对的直角边等于斜边的一半,即可证得DE=12 BE.证明:方法一:如图,连接BD,∵四边形ABCD是菱形,∠ABC=60°,∴BD⊥AC,∠DBC=30°,∵DE∥AC,∴DE⊥BD,即∠BDE=90°,∴DE=12 BE.方法二:∵四边形ABCD是菱形,∠ABC=60°,∴AD∥BC,AC=AD,∵AC∥DE,∴四边形ACED是菱形,∴DE=CE=AC=AD,又四边形ABCD是菱形,∴AD=AB=BC=CD,∴BC=EC=DE,即C为BE的中点,∴DE=BC=12 BE.【教学说明】此题考查了菱形的性质,直角三角形的性质等知识.此题难度不大,注意数形结合思想的应用.5.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2,又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°,∴BE=1.【教学说明】本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.学生自主完成,如有一定难度可相互交流,最后由教师总结.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.1.布置作业:教材“习题1.1”中第1、2 题.2.完成练习册中相应练习.本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.第2课时菱形的判定【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC ⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2 .2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG =∠CFG =∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.第3课时菱形的性质与判定的运用【知识与技能】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.【过程与方法】经历菱形性质定理及判定定理的应用过程,体会数形结合、转化的思想.【情感态度】培养良好的探究意识以及推理能力,感悟其应用价值;培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】利用菱形性质定理与判定定理解决一些相关问题.【教学难点】菱形性质的探究.一、情境导入,初步认识活动:如图,你能用一张锐角三角形纸片ABC折出一个菱形,使∠A成为菱形的一个内角吗?【教学说明】通过折纸活动激发学生的兴趣,同时对于菱形的相关判定方法也进行了巩固.二、思考探究,获取新知如图,两张等宽的纸条交叉重叠在一起,重叠部分ABCD是菱形吗?为什么?拓展:若纸条的宽度是4cm ,∠ABC=60°,你会求菱形的面积吗?你有几种不同的方法?与同学交流.【归纳结论】菱形面积的计算公式:①如图,S 菱形ABCD =AB ·DE ,即菱形的面积等于底乘高;②S 菱形ABCD =12AC ·BD ,即菱形的面积等于两条对角线乘积的一半.【教学说明】对菱形性质的归纳是学生对菱形特征的认识、是知识的一次升华,有助于培养学生的概括能力,突出教学重点.三、运用新知,深化理解如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 的重点.(1)求证:四边形BDEF 是菱形;(2)若AB=10cm ,求菱形BDEF 的周长.解:(1)证明:∵E 、F 分别是AC 、AB 的中点,∴EF=12BC ,EF ∥CB. 又∵D 、E 分别是BC 、AC 的中点,∴DE=12AB ,DE ∥AB, ∴四边形BDEF 是平行四边形.又∵AB=BC ,∴EF=DE ,∴四边形BDEF 是菱形.(2)∵F 是AB 的中点,∴BF=12AB.又∵AB=10cm,∴BF=5cm.∵四边形BDEF是菱形,∴BD=DE=EF=BF,∴四边形BDEF的周长为4×5=20(cm).【教学说明】菱形的性质与判定的综合应用,一般先证明四边形是菱形,再利用菱形的性质进行求解或证明,要注意两者的区别与联系.四、师生互动、课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.3”中第2、3、4题.2.完成练习册中相应练习.通过复习回顾菱形的性质和判定,唤醒学生的记忆,然后给学生设置好一个个有梯度的问题,调动学生的求知欲,树立勇于战胜自我的信念.2 矩形的性质与判定第1课时矩形的性质【知识与技能】了解矩形的有关概念,理解并掌握矩形的有关性质.【过程与方法】经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.【情感态度】培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.【教学重点】掌握矩形的性质,并学会应用.【教学难点】理解矩形的特殊性.一、情境导入,初步认识将收集来的有关长方形的图片给学生观察,让学生进行感性认识,引入新课——矩形.【教学说明】让学生体会到数学来源于生活,找到数学的价值.二、思考探究,获取新知1.拿一个活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?【归纳结论】矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).让学生观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?【教学说明】采用观察、操作、交流、演绎的手法来解决重点突破难点.【归纳结论】矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.3.矩形是轴对称图形吗?如果是,它有几条对称轴?4.如图,在矩形ABCD中,AC、BD相交于点O,求AO与BD的数量关系.【归纳结论】直角三角形斜边上的中线等于斜边的一半.【教学说明】引导学生尽可能多地发现结论,养成善于观察的好习惯.三、运用新知,深化理解1.已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知条件,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD = 2OA=2×4=8(cm).2.已知:如图,矩形ABCD,AB长8cm ,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.分析:因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.解:(1)设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6. 则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE·DB=AD·AB,解得AE =4.8cm.3.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.【教学说明】给予学生足够的时间,让学生独立思考,小组合作,由不同学生表述自己的不同思路,展示不同的方法.使学生能做一题会一类,熟知矩形中的基本图形.4.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20 cm.解:本题需分两种情况解答.即矩形的一个角的平分线分一边为4cm和3cm,或者矩形的角平分线分一边为3cm和4cm.当矩形的一个角的平分线分一边为4cm和3cm时,矩形的周长为2×(3+4)+2×4=22cm;当矩形的角平分线分一边为3cm和4cm时,矩形的周长为2×(3+4)+2×3=20cm.【教学说明】本题考查的是矩形的基本性质,学生需要注意的是分两种情况作答即可.四、师生互动,课堂小结1.师生共同回顾矩形的性质.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.4”中第2、3题.2.完成练习册中相应练习.本节课以“平行四边形变形为矩形的过程”的演示引入课题,将学生的视线集中在数学图形上,思维集中在数学思考上,更好地突出了观察的对象,使学生更容易把握问题的本质,真实、自然、和谐,体现了数学学习的内在需要,加强了学生对知识之间的理解和把握.第2课时矩形的判定【知识与技能】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【过程与方法】经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法.【情感态度】培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要.【教学重点】理解并掌握矩形的判定方法及其证明,掌握判定的应用.【教学难点】定理的证明方法及运用.一、情境导入,初步认识事例引入:小华想做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?【教学说明】事例引入,激发学生的兴趣.二、思考探究,获取新知动手操作,拿一个活动的平行四边形教具,轻轻拉动一个点.思考:1.随着∠α的变化,两条对角线的长度将发生怎样的变化?2.当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?【教学说明】让学生动脑思考,动手操作.为下面的学习做准备.【归纳结论】对角线相等的平行四边形是矩形.证明:(见教材P14例题)矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论,并与同伴交流.【归纳结论】有三个角是直角的四边形是矩形.【教学说明】培养学生的归纳总结能力,同时也训练了学生的语言表达能力和分析问题的能力.三、运用新知,深化理解1. 对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.解析:矩形的判定定理有:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形.2.下列说法正确的是(D )A.一组对边平行且相等的四边形是矩形B.一组对边平行且有一个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是矩形D.一个角是直角且对角线互相平分的四边形是矩形解析:A、一组对边平行且相等的四边形是平行四边形,故A错误;B、一组对边平行且相等并有一个角是直角的四边形是矩形,故B错误;C、对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”),故C 错误;D、对角线互相平分且相等的四边形是矩形,故D正确.【教学说明】让学生口答第1、2道题,训练学生的语言表达能力.3.如图所示,□ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH是矩形.解:∵∠HAB+∠HBA=90°.∴∠H=90°.同理可求得∠HEF=∠F=∠FGH=90°∴四边形EFGH是矩形.【教学说明】在黑板上展示第3题,有多种证明方法的题目学生口答展示,教师予以总结.既训练了学生的语言表达能力,也训练了学生的书写能力和分析问题的能力.四、师生互动,课堂小结1.师生共同回顾矩形有哪些判定定理?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.5”中第2、3题.2.完成练习册中相应练习.本节课用逻辑推理的方法对以前曾用直观感知、操作说明得到的矩形判定进行的重新研究,让学生充分感受到逻辑推理是研究几何的重要方法.尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高.第3课时矩形的性质与判定的运用【知识与技能】熟练运用矩形的性质和判定定理进行相关的计算和证明.【过程与方法】经历从性质到判定的转化过程,合理、准确地运用已有的知识进行推导、证明,体会数学知识之间的联系和区别.【情感态度】通过严谨的推理,强化学生的规范意识.【教学重点】灵活运用矩形的性质和判定定理进行相关的计算和证明.【教学难点】利用矩形的相关性质构造新的图形,进而对知识进行转化.一、情境导入,初步认识如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE.求AE的长.【教学说明】通过例题感受知识的应用的同时体会知识之间的联系及转化,并通过规范的步骤强调教学推理的严谨性.二、思考探究,获取新知已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN为△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E.求证:四边形ADCE是矩形.【思考】在上例中,连接DE,交AC于点F.(1)试判断四边形ABDE的形状,并证明你的结论;(2)线段DF与AB有怎样的关系?请证明你的结论.【教学说明】让学生感受矩形与等腰三角形之间的联系,感受知识转化在解决问题中的作用.三、运用新知,深化理解1.见教材P16~P17例3.2.如图,O是矩形ABCD的对角线的交点,过点O的直线EF分别交AB、CD于点E、F,那么阴影部分的面积是矩形ABCD的面积的(B )3.(一题多解)如图所示,△ABC为等腰三角形,AB=AC,CD⊥AB于D,P为BC上的一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F,则有PE+PF=CD,你能说明为什么吗?解:解法一:能.如图所示,过P点作PH⊥DC,垂足为H.可得四边形PHDE是矩形,∴PE=DH,PH∥BD∴∠HPC=∠B又∵AB=AC∴∠B=∠ACB∴∠HPC=∠FCP.又∵PC=CP,∠PHC=∠CFP=90°∴△PHC≌△CFP∴PF=HC∴DH+HC=PE+PF即:DC=PE+PF.解法二:能.如图,延长EP,过C点作CH⊥EP,垂足为点H,如图所示,可得四边形HEDC是矩形,∴EH=PE+PH=DC,CH∥AB∴∠HCP=∠B.∴△PHC≌△PFC∴PH=PF∴PE+PF=DC.【教学说明】通过应用性的练习,巩固基础知识的同时,感受知识的综合运用在解题过程中的重要性,使所学知识进行深化.四、师生互动,课堂小结通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.6”中第1、2、3题.2.完成练习册中相应练习.本节课在复习前一节课内容的基础上利用矩形的性质和判定解决具体问题,在例题的选择和设计上,追寻知识向能力的转化,让学生主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,同时训练学生清晰、有条理地表达自己的思考过程,从而培养学生的推理能力和分析问题的能力.3 正方形的性质与判定第1课时正方形的性质【知识与技能】使学生掌握正方形的概念,知道正方形具有矩形和菱形的一切性质,并会用它们进行有关的论证和计算.【过程与方法】学会用正方形的性质解决一些问题,进一步发展学生的推理能力,促进其逐步掌握说理的基本方法.【情感态度】通过分析正方形的概念、性质与矩形、菱形的概念、性质的联系和区别,对学生进行辩证唯物主义教育.【教学重点】正方形的性质.【教学难点】正方形的性质.一、情境导入,初步认识1.在我们的生活中除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?2.展示正方形图片,学生观察它们有什么共同特征?【教学说明】学生回答后,再展示图片,使学生感受到生活中到处存在数学,激发学习热情.【归纳结论】有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.二、思考探究,获取新知1.做一做:用一张长方形的纸片折出一个正方形.2.观察:这个正方形具有哪些性质?【教学说明】让学生在动手操作中对正方形产生感性认识.【归纳结论】正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.3.议一议:平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地说明吗?【教学说明】小组交流,引导学生从角、对角线的角度归纳总结.使学生感受变化过程,更清晰地了解各四边形之间的联系与区别.三、运用新知,深化理解1.见教材P21例1 .2.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中互相全等的三角形的对数为()A.12B.13C.26D.30解析:根据全等三角形的判定可以确定全等三角形的对数,由于图中全等三角形的对数较多,可以根据斜边长的不同确定对数,可以做到不重不漏.设AB=3,图中所有三角形均为等腰直角三角形,其中,斜边长为1的有5个,它们组成102的有6个,它们组成15对全等三角形;斜边长为2的有2个,它们组成1对全等三角形;共计26对.故选C.3.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为(1,0)和(1,1).(只写一组)解析:首先根据正方形ABCD的点A(0,1),点B(0,0),在坐标系内找出这两点,根据正方形各边相等,从而可以确定C,D的坐标.∵正方形ABCD 的点A(0,1),点B(0,0),∴AD∥x轴,CD∥y轴,这样画出正方形,即可得出C与D的坐标,分别为:C(1,0),D(1,1).4.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF度数.分析:根据角平分线的判定,可得出△ABF≌△AGF,故有∠BAF=∠GAF,再证明△AGE≌△ADE,有∠GAE=∠DAE,所以可得∠EAF=45°.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=12(∠DAG+ ∠BAG)=12∠DAB=45°,故∠EAF=45°【教学说明】主要考查了正方形的性质和全等三角形的判定.5.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数.分析:(1)延长EB至G,使BG=DF,连接AG.利用正方形的性质,证明△AGE≌△AFE,△FAE≌△GAE,得出DF+BE=EF;(2)根据△AGE≌△AFE及角之间的关系从而求得∠EFC的度数;解:(1)延长EB至G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠ADF=∠BAD=90°,∵BG=DF,∴△ABG≌△ADF,∴AG=AF,∵∠BAE=30°,∠DAF=15°,∴∠FAE=∠GAE=45°,∵AE=AE,∴△FAE≌△GAE,∴EF=EG=GB+BE=DF+BE;(2)∵△AGE≌△AFE,∴∠AFE=∠AGE=∠DFA=90°-∠DAF=75°,∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°,∴∠EFC=30°.【教学说明】学生独立完成以培养学生的独立意识.四、师生互动,课堂小结1.师生共同回顾正方形有哪些性质?2.通过本节课的学习你还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题1.7”中第2 、3题.2.完成练习册中相应练习.本课虽然是学习正方形的性质,实际上应起到对平行四边形、矩形、菱形性。

北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)

北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)

北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 【知识关系】【知识点梳理】知识点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 知识点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 知识点二、菱形高底平行四边形⨯=S1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形. 3.面积:4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.知识点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 知识点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 知识点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形2对角线对角线高==底菱形⨯⨯S 宽=长矩形⨯S1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=1 2BC,进而得到EF=12CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCAMA MCAMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC, ∴MD=MC ,由①知四边形ADCN 是平行四边形, ∴MD=MN =MA =MC , ∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】 解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6, 又∵ 在Rt △ADC 中,. ∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,10AC =222(8)4x x -=+222DC FC DF +=解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案. 【答案与解析】 探究:AE =EF证明:∵△BHE 为等腰直角三角形, ∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形, ∴∠FCE =12∠DCE =45°, ∴∠H =∠FCE.由正方形ABCD 知∠B =90°,∠HAE =90°+∠DAE =90°+∠AEB, 而AE ⊥EF ,∴∠FEC =90°+∠AEB , ∴∠HAE =∠FEC.由正方形ABCD 知AB =BC ,∴BH -AB =BE -BC , ∴HA =CE,∴△AHE ≌△ECF (ASA ), ∴AE =EF. 【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三: 【变式】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 .【答案】 65°。

百炼百胜北师大版九年级数学上册学案:第一章特殊平行四边形

百炼百胜北师大版九年级数学上册学案:第一章特殊平行四边形

第一章 特殊平行四边形专题一 菱形的性质、判定及应用1. 如图,在四边形ABCD 中,AC=BD=6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2= .2. 顺次连接四边形ABCD 各边中点所得到的四边形是菱形,则四边形ABCD 一定是( )A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形 3. 阅读材料:我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物. 比如我们 通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩 形、等腰梯形等)来逐步认识四边形. 我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判 定方法,然后通过解决简单的问题巩固所学知识. 请解决以下问题:(1)如图,我们把满足AB=AD 、CB=CD 且AB≠BC 的四边形ABCD 叫做“筝形”,写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外)并选出一个进行证明.专题二 矩形的性质、判定及应用4. 如图,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′、BC ′,则图中共有等腰三角形的个数是( )A BD ABD 备用图1(写性质用)ABD 备用图2 (写判定方法用) ABD备用图3 (证明判定方法用)A B D FCE 5. 如图,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好使D 点与A点重合,得到△PEA ,连接EB ,△ABE 是什么特殊三角形?请说明理由.6. 如图,在梯形ABCD 中,AD 如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB =30,菱形OCED 的面积为38,求AC 的长.8. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交B于Q.(1)求证: OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与 D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.ABCDEODCBAPE专题三 正方形的性质、判定及应用9. 正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .10. 如图,在一张△ABC 纸片中,∠C=90°,∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )A .1B .2C .3D .411. 长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩 形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个 边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为_____________.12. 从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.现有一平行四边形纸片ABCD ﹙如图③﹚,已知∠A =45°,AB =6,AD =4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为 .图 ② 图 ①a bA图 ③BCD第一次操作 第二次操作【知识要点】1.几种特殊四边形的性质和判定: (1)特殊平行四边形具有一般平行四边形的一切性质,需要注重各自图形的特殊性质.(2)判别菱形:①说明是平行四边形+邻边相等; ②说明是平行四边形+对角线垂直;③四条边相等。

初中数学8年级下册《特殊的平行四边形》导学案

初中数学8年级下册《特殊的平行四边形》导学案

课题 19.2 特殊的平行四边形课时:五课时第一课时 19.2.1 矩形的性质【学习目标】1.掌握矩形的性质定理及推论。

2.能熟练应用矩形的性质进行有关证明和计算。

【重点难点】重点:掌握矩形的性质定理。

难点:利用矩形的性质进行证明和计算。

【导学指导】阅读教材P94-P96相关内容,思考、讨论、合作交流后完成下列问题:1.什么是矩形?2.矩形是特殊的平行四边形,平行四边形具有的性质它有没有?平行四边形的边有什么性质?角呢?对角线呢?那么它特殊在什么地方?所以它有什么性质?如何记住它呢?3.矩形的一条对角线把它分成了两个什么三角形?由矩形的性质,你可以得到这个三角形的什么性质?【课堂练习】1.教材P95练习第1,2,3题。

2.Rt△ABC中,两条直角边分别为6和8,则斜边上的中线长为。

【要点归纳】今天你有什么收获?与同伴交流一下。

【拓展训练】1. 将矩形纸片ABCD 沿对角线BD 对折,再折叠使AD 与对角线BD 重合,得折痕DG ,若AB=8,BC=6,求AG 的长。

2. 在四边形ABCD 中,∠ABC=∠ADC=90°,E 是AC 的中点,EF 平分∠BED 交BD 于点F 。

(1) 猜想:EF 与BD 具有怎样的关系?(2) 试证明你的猜想。

ABD第二课时矩形的判定【学习目标】1.理解并掌握矩形的判定方法。

2.能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养分析能力。

【重点难点】重点:矩形的判定定理及推论。

难点:定理的证明方法及运用。

【导学指导】复习旧知:1.什么是平行四边形?什么是矩形?2.矩形有哪些性质?你能猜想如何判定矩形吗?学习新知:阅读教材P95-P96相关内容,思考、讨论、合作交流后完成下列问题:1.利用矩形的定义可以判定一个平行四边形是矩形,由此你发现什么?2.还有哪些方法可以证明一个四边形是矩形?如何证明?试一试。

【课堂练习】1.教材P96练习第1,2题。

北师大版九年级数学上册全册学案(89页)

北师大版九年级数学上册全册学案(89页)

北师大版九年级上册数学数学导学案单位:教师:日期:第一章 特殊的平行四边形1.1 菱形的性质与判定第一课时 性质学习过程:一、自主预习(10分钟)自学课本例题以上的内容,完成下列问题: 如何从一个平行四边形中剪出一个菱形来的四边形叫做菱形,生活中的菱形有 。

按探究步骤剪下一个四边形。

①所得四边形为什么一定是菱形?②菱形为什么是轴对称图形? 有 对称轴。

图中相等的线段有: 图中相等的角有:③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。

性质:证明:二、合作解疑(20分钟) 菱形性质的应用1.菱形的两条对角线的长分别是6cm 和8cm ,求菱形的周长和面积。

2.如图,菱形花坛ABCD 的边长为20cm ,∠ABC=60° 沿菱形的两条对角线修建了两条小路AC 和BD , 求两条小路的长和花坛的面积。

3.如图是边长为16cm 的活动菱形衣帽架,若墙上钉子间的距离AB=BC=16cm ,则∠1= .4.如右图,在菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF. 求证:①△ABE ≌△ADF ;平行四边形菱形 ?1 CB A A②∠AEF=∠AFE.综合应用拓展如图,在菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB =4. 求:(1)∠ABC 的度数;(2)菱形ABCD 的面积.三、限时检测(10分钟)1.______________的平行四边形叫做菱形.2.按图示的虚线折纸,然后连接ABCD 可得菱形,由此可以得 到_____________的四边形是菱形.3.木工做菱形窗棂时总要保持四条边框一样长,道理是__________________________________ . 第3题图4.菱形的对角线长分别为6和8,则这个菱形的周长是_______,面积是______. 5.下面性质中,菱形不一定具有的是( )A .对角线相等B .是中心对称图形C .是轴对称图形D .对角线互相平分 6.菱形的周长为20 cm ,两邻角的比为1:2,则较短对角线的长是_____________;一组对边的距离是____________. 7.以菱形ABCD 的钝角顶点A 引BC 边的垂线,恰好平分BC ,则此菱形各角是____________.1.1 菱形的性质与判定第一课时 判定学习过程:一、自主预习(10分钟) 1.复习(1)菱形的定义: (2)菱形的性质1 性质2(3)运用菱形的定义进行菱形的判定,应具备几个条件? 2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗? 3.【探究】用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形? 通过演示,容易得到: 菱形判定方法1 :注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直. 通过下面菱形的作图,可以得到从一般四边形直接判定菱形的方法: 菱形判定方法2 :二、合作解疑(20分钟))1.判断题,对的画“√”错的画“×”(1).对角线互相垂直的四边形是菱形( )AB C D(2).一条对角线垂直另一条对角线的四边形是菱形( ) (3)..对角线互相垂直且平分的四边形是菱形( ) (4).对角线相等的四边形是菱形( ) 2.已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC分别交于E 、F .求证:四边形AFCE 是菱形.3.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗? 求证:(1)四边形ABCD 是平行四边形(2) 过A 作AE ⊥BC 于E 点, 过A 作AF ⊥CD 于F.用等积法说明BC=CD. (3) 求证:四边形ABCD 是菱形.综合应用拓展如图,在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点. 求证:MN 与PQ 互相垂直平分.三、限时检测(10分钟) 1.填空:(1)对角线互相平分的四边形是 ;(2)对角线互相垂直平分的四边形是 ;(3)对角线相等且互相平分的四边形是 ;(4)两组对边分别平行,且对角线 的四边形是菱形. 2.下列条件中,能判定四边形是菱形的是 ( ).(A )两条对角线相等 (B )两条对角线互相垂直(C )两条对角线相等且互相垂直 (D )两条对角线互相垂直平分.3.如图,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,DE 和CE 相交于E , 求证:四边形OCED 是菱形。

最新北师大版九年级上册数学导学案(全册共)

最新北师大版九年级上册数学导学案(全册共)

最新北师大版九年级上册数学导学案(全册共119页)目录第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质第2课时菱形的判定1.2矩形的性质与判定第1课时矩形的性质第2课时矩形的判定1.3正方形的性质与判定第1课时正方形的性质第2课时正方形的判定第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程第2课时一元二次方程的解及其估算2.2 用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程第2课时用配方法求解较复杂的一元二次方程2.3 用公式法求解一元二次方程第1课时用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题2.4 用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系2.6 应用一元二次方程第1课时几何问题及数字问题与一元二次方程第2课时第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率第2课时概率与游戏的综合运用3.2 用频率估计概率第四章图形的相似4.1 成比例线段第1课时线段的比和成比例线段第2课时比例的性质4.2 平行线分线段成比例4.3 相似多边形4.4 探索三角形相似的条件第1课时利用两角判定三角形相似第2课时利用两边及夹角判定三角形相似第3课时利用三边判定三角形相似第4课时黄金分割4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质第1课时相似三角形中的对应线段之比第2课时相似三角形的周长和面积之比4.8 图形的位似第1课时位似多边形及其性质第2课时平面直角坐标系中的位似变换第五章投影与视图5.1 投影第1课时投影的概念与中心投影第2课时平行投影与正投影5.2 视图第1课时简单图形的三视图第2课时复杂图形的三视图第六章反比例函数6.1 反比例函数6.2 反比例函数的图象与性质第1课时反比例函数的图象第2课时反比例函数的性质第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。

新北师大版第1章特殊的平行四边形全章导学案

新北师大版第1章特殊的平行四边形全章导学案

菱形的性质与判定 导学案第一课时一、学习准备:1、 叫做平行四边形2、平行四边形的对边 ,对角 ,邻角 ,对角线3、一组对边 的四边形是平行四边形,两组对边分别 的四边形是平行四边形,两组对边分别相等的四边形是 。

两条对角线 的四边形是平行四边形。

学习目标:1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1和性质2三、自学提示: 1、自主学习:叫做菱形。

菱形是 的平行四边形。

2、合作探究:例1:已知四边形ABCD 是菱形,且AD=BC ,求证四边相等。

性质1: 例2:已知四边形ABCD 是菱形,求证AC ⊥BD 。

性质2: 例3:已知四边形ABCD 是菱形,求证AC 、BD 各平分一组对角。

性质3:例4:在菱形ABCD 中,已知AC=6,BD=8,边上的高是4.8,求菱形ABCD 的面积。

性质4:注意,性质5:菱形具有 的一切性质。

思考:菱形具有而平行四边形不一定具有的性质有哪些?菱形是 图形,对称轴有 条,即两条 所在的直线。

四、学习小结:这节课你有哪些收获和体会? 五、夯实基础:1、(1)菱形的对角线长为24和10,则菱形的边长为 ,周长为 ,面积为 。

(2)在菱形ABCD 中,已知∠ABC=60°,AC=4,则AB= 。

OD C BA(3)菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.(4)已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 .(5)已知菱形ABCD的周长为20cm,∠A:∠ABC=1:2,则BD= cm.(6)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.60°C.45°D.30°(7)菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是()A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分(8)已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.六、能力提升:1、已知菱形ABCD的边长为2 cm,∠BAD=120°对角线AC、BD相交于点O,试求出菱形对角线的长和面积.2、如图,已知菱形ABCD的对角线交于点O,AC=16cm,BD=12cm,求菱形的高.菱形的性质与判定第二课时一、学习准备:你还记得菱形的定义吗?菱形有哪些特殊性质?边:__________________________;______________________________角:__________________________;______________________________对角线:_____________________________________________________对称性:二、学习目标:1.理解并掌握菱形的定义及两个判定方法,明确菱形证明的三种切入方式;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力. 三、自学提示:(一)、自主学习:1.(菱形的判定方法一)菱形的定义:有 的 叫做菱形. 2.用符号语言可以表示为:∵四边形ABCD 是 四边形 ∵ ___ =____ ∴四边形 ABCD 是菱形△ABC 中,AD 平分∠BAC 交BC 于D 点,过D 作DE ∥AC 交AB 于E 点, 过D 作DF ∥AB 交AC 于F 点. 求证:(1)四边形AEDF 是平行四边形(2)∠2﹦∠3(3)四边形AEDF 是菱形 (二):合作探究推证菱形判定二、三,并会用该种方法进行有关的证明.相平分的四边形是 四边形,如果两条对角线又互相垂直,那么这个四边形的邻边有什么关系,所以如果平行四边形的对角线互相垂直,那么这个四边形一定是 形。

2021学年九年级上下册数学导学案(北师大版)

2021学年九年级上下册数学导学案(北师大版)

第一章特殊平行四边形第一章特殊平行四边形EF D C B AF ED C BA 2、如图所示,在□ABCD 中,AE,CF 分别是∠BAD 和∠BCD 的平分线,若添加一个条件,仍无法判断四边形AECF为菱形的是( ) A.AE=AF B.EF ⊥ACC.∠B=60°D.AC 是∠EAF 的平分线三、例题展示例1:如图所示,ABCD 的对角线AC 的垂直平分线与边AD 、BC分别交于E 、F .求证:四边形AFCE 是菱形.例2:如图所示,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E,DF∥AB 交AC 于F,试判断四边形AEDF 的形状,并证明你的结论.四、课堂检测H E 第5题第一章特殊平行四边形第一章特殊平行四边形课题 1.2矩形的性质与判定(第一课时)教师二备Q P D C B A例2:如图所示,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. (1) 求证:∠PBA=∠PCQ=30°;(2)求证:PA=PQ 四.课堂检测 1 1、矩形ABCD 的边AD=3cm ,对角线AC 、BD 的夹角∠AOB=120°,则AC= . 2 2、 Rt △ABC 的两直角边长分别为3和4,则斜边上的中线是 ,斜边上的高是 . 3 3、矩形的面积为12cm 2,一条边长为3cm ,则矩形的对角线长为_______ 4 4、已知点E 是矩形ABCD 的边BC 的中点,那么S △AED =(_)ABCD S 矩形A.21B.41C.51D.615 5、矩形ABCD 沿AC 折叠,使点B 落在点E 处, 求证:EF=DF. 66、已知:在矩形ABCD 中,E 为DC 边上一点,BF ⊥AE 于点F ,且BF =BC .求证:AE =AB.7、如图,在矩形ABCD 中,对角线AC 和BD 相交于点O,过顶点C 作BD 的平行线与AB 的延长线相交于点E,求证:△ACE 是等腰三角形教学反思 第一章 特殊平行四边形课题1.2矩形的性质与判定(第二课时)教师二备第5题 第6题F B D C A E 第7题O ED CBA第一章特殊平行四边形一、问题引入1、矩形的性质定理:除了具有与平行四边形一样的性质之外,矩形所具有的特殊性质是:①矩形的____________________都是直角; ②矩形的对角线___________.2、矩形的判定定理:①有一个角是直角的________________是矩形(定义); ②有_____________________ 是直角的四边形...是矩形; ③对角线_________ ___的平行四边形是矩形. 二、基础训练1、在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠AOB=60°,AB=4㎝,则AC=_______㎝.2、如图所示,已知ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB ⊥BC 中,能说明ABCD 是矩形的有(填写序号).3、如图,矩形的对角线交于点O ,过点O 的直线交AD 、BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为___ _______.三、例题展示例1:在矩形ABCD 中,对角线AC 与BD 相交于点O,AE ⊥BD 于点E,ED=3BE,求AE 的长.第2题 21DCBAO ED CBAA .125B .135C .52D .22、已知:如图,在△ABC 中,AB=AC ,D 为BC 的中点,四边形ABDE 是平行四边形, 求证:四边形ADCE 是矩形.3、如图,以△ABC 的三边为边,在BC 的同侧分别作3个等边三角形,即△ABD 、△BCE 、△ACF .请回答问题并说明理由: (1)四边形ADEF 是什么四边形?(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?教学反思第一章 特殊平行四边形课题1.3正方形的性质与判定(第一课时)教师二备E D C B A 第2题图 BA CED F 第3题图第1题图第一章特殊平行四边形第一章 特殊平行四边形单元检测一、选择题一、如图,四边形ABCD 的对角线相互平分,要使它变成矩形,第1题图ODCBA需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD二、在菱形ABCD 中,对角线AC=4,∠BAD=120°,那么菱形ABCD 的周长为( ) A.20 B.18 C.16 D.15 3、(2021•广西玉林市)以下命题是假命题的是( )A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形 4、如图,两张宽度相等的纸条交叉重叠,重合部份是( ) A .平行四边形 B .菱形 C .矩形 D .正方形 五、以下条件 中,不能判定四边形ABCD 为矩形的是( ) A .AB ∥CD ,AB=CD,AC=BD B.∠A=∠B=∠D=90° C.AB=BC,AD=CD,∠C=90° D.AB=CD,AD=BC,∠A=90六、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点, 菱形ABCD 的周长为28,那么OH 的长等于( ) A3.5 B. 4 C. 7 D. 14 7、正方形具有而矩形不必然具有的性质是( ) A .四个角都是直角 B .对角线相互平分 C .对角相等 D .对角线相互垂直八、(2021•孝感)如图,正方形OABC 的两边OA 、OC 别离在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 那么旋转后,点D 的对应点D′的坐标是( ) A .(2,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)二、填空题 九、(2021•江苏苏州)已知正方形ABCD 的对角线AC=,那么正方形ABCD 的周长为 . 10、(2021•山东淄博)已知□ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使□ABCD 成为一个菱形,你添加的条件是 .1一、已知矩形ABCD 的两条对角线相交于点O,∠AOB=60°,AB=4㎝,那么矩形的对角线长为 .1二、( 2021•福建泉州)如图,Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,AB =10cm ,那么CD 的长为 cm .13、(2021•四川宜宾)菱形的周长为20cm ,两个相邻的内角的度数之比为1:2,那么较长的对角线长度是 cm .14、(2021年四川资阳)如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点, BEQ 第6题图第8题图 第12题图 第4题图1五、( 2021•福建泉州)已知:如图,在矩形ABCD 中,点E ,F 别离在AB ,CD 边上,BE =DF ,连接CE ,AF .求证:AF =CE .1六、(2021•四川巴中)如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上别离取点E ,F ,连结BE ,CF .(1)请添加一个条件,使得△BEH ≌△CFH ,你添加的条件是,并证明. (2)在问题(1)中,当BH 与EH 知足什么关系时,四边形BFCE 是矩形,请说明理由.第二章 一元二次方程课题2.1 认识一元二次方程教师二备一、问题引入:1、只含有 ,并且未知数的最高次数是2的 ,称为一元二次方程.2、一元二次方程的一般形式是 (c b a ,,为常数,第15题第16题第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程5、(2014德州)方程01222=+++k k kx x 的两个实数根足42221=+x x ,则的值为第二章 一元二次方程课题 2.6 应用一元二次方程(一)教师二备一、问题引入:1、列方程解应用题的一般步骤: (1)“审”,即审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系; (2)“设”,即设 ,设未知数的方法有直接设未知数和间接设未知数两种; (3)“列”,即根据题中的 关系列方程;(4)“解”,即求出所列方程的 ; (5)“检验”,即验证是否符合题意;(6)“答”,即回答题目中要解决的问题. 重点:找出相等关系的关键是审题,审题是列方程(组)的基础,找出 是列方程(组)解应用题的关键. 二、基础检测:1、(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()28121=+x x B . ()28121=-x xC .()281=+x xD .()281=-x x2、(2014丽水)如图,某小区规划在一个长m 30、宽m 20的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为278cm ,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程第2题图三、例题展示:例:如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头.小岛F位于BC中点.一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)分析:(1)图形中线段长表示的量:已知AB= = 海里,DE表示的路程,表示军舰的路程.(2)找出题目中的等量关系即:速度等量:V军舰= 时间等量:t军舰=t补给船根据分析正确设出未知数,写出解题过程.四、课堂检测:1、(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=152、一个矩形的面积是48平方厘米,它的长比宽多8厘米,则矩形的宽x(厘米),应满足方程______ ___ _.教学反思3、如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?4、(2014新疆,)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?第二章一元二次方程课题 2.6 应用一元二次方程(二)教师二备一、问题引入:常见应用题类型1、增长率问题:增长率问题分正增长率问题与负增长率问题.这类问题是在原来的量的基础上增长(或降低)多少个百分比的问题.对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义后,即可利用公式()bxa=+21求解,其中ba<,对于负的增长率问题,若经过两次相等下降后,则有公式()bxa=-21即可求解,其中1、(2014•湖南衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.2、2、(2013山东泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问:第二周每个旅游纪念品的销售价格为多少元?教学反思第二章 一元二次方程单元检测题(总分100分)一、选择题:(每题4分,共32分)一、假设方程013)2(||=+++mx x m m 是关于x 的一元二次方程,那么( )A .2±=mB .2=mC .2-=mD .2±≠m二、已知m 是方程012=--x x 的一个根,那么代数式m m -2的值等于( )A.-1B.0C.1D.2 3、方程x x 22=的解为( )A.2=xB.21-=x ,02=xC. 21=x ,02=xD. 0=x 4、解方程)15(3)15(2-=-x x 的适当方式是( )A.开平方式B.配方式C.公式法D.因式分解法 五、用配方式解以下方程时,配方有错误的选项是( )A.09922=--x x 化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--t t 化为1681)47(2=-t D.02432=--y y 化为910)32(2=-y六、若是关于x 的一元二次方程02=++q px x 的两根别离为31=x ,12=x,那么那个一元二次方程是( )A.0432=++x xB.0342=-+x xC.0342=+-x xD. 0432=-+x x7、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,那么m 等于 ( )A. 6- B. 1 C. 2 D. 6-或1八、某型号的电话持续两次降价,每一个售价由原先的1225元降到了625元,设平均每次降价的百分率为x ,列出方程正确的选项是( ) A .()122516252=+x B. ()625112252=+xC. ()122516252=-x D.()625112252=-x二、填空题:(每题4分,共20分)九、一元二次方程x x 71322=-的二次项系数为: ,一次项系数为: ____ ,常数项为: ___.10、请写出一个一元二次方程使它有一个根为-3, .1一、关于x 的一元二次方程022=+-m mx x 的一个根为1,那么方程的另一根为 . 1二、关于x 的一元二次方程0322=-+k x x 有实数根,那么k 的取值范围是 . 13、实数范围内概念一种运算“*”,其规那么为22b a b a -=*,依照那个规那么, 方程()031=*+x 的解为 . 三、解答题:14、解以下方程:(每题6分,共12分)(1) 01862=--x x (2) 752652x x x1五、已知关于的方程( 的两根之和为,两根之差为1,其中是△的三边长 (1)求方程的根;(2)试判定△的形状.(每题12分)1六、团委预备举行学生绘画展览,在长30cm 、宽为20cm 的矩形画面的周围镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等,求彩纸的宽度.(每题12分)17、果批发商场经销一种高级水果,若是每千克盈利15元,天天可售出500kg,经市场调查发觉,在进货价不变的情形下,每涨价1元,日销售量将减少30kg,现该商场要保证天天盈利8250元,同时又要使顾客取得实惠,那么每千克应涨价多少元?(每题12分)第三章概率的进一步熟悉例:.某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑. (1)写出所有的选购方案(利用树状图或列表法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?四、课堂检测:1、甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为( ) A.61 B.31 C.21 D.652、一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是( ). A.501 B.252 C.51 D.1033、三个人站成一排,通过试验可得,甲站在中间的概率为( ).A.61B.31C.21D.414、甲、乙两人赛跑,则开始起跑时都迈出左腿的概率是( ) A.1 B.21 C.31 D. 415、某校决定从两名男生和两名女生中选出两名同学作为2014年元旦联欢晚会的主持人,则恰好选出一男一女的概率是 .6、如图是某地的灌溉系统,一个漂浮物A 流到B 处的概率为 .7、小明说:“我投均匀的一枚硬币2次,会出现两次都为反、一正一反和两次都为正三种情况,所以出现一正一反这种情况的概率是31”教学反思第三章概率的进一步熟悉第三章 概率的进一步熟悉课题3.1用树状图或表格求概率(三)教师二备一、问题引入:1、同时抛掷硬币三次,一共有 种可能出现的结果?求三枚硬币全部正面朝上的概率 .2、用树状图和列表的方法求概率应注意各种结果出现的可能性 . 二、基础训练:1、(1)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,再放回,又取一粒,两粒都是白色的概率为_________.(2)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,不放回,又取一粒,两粒都是白色的概率为_________.2、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上 (如右图),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.32 3、有长度分别为2cm 、5cm 、7cm 、10cm 的四条线段,从中任取三条线段能够组成三角形的概率是( )A.14 B.12 C.23 D.34三、例题展示:例1、小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英胜,否则小丽胜,用树状图或表格说明这个游戏对双方公平吗?例2:红 黄蓝蓝红 红 黄小明准备今年五一到上海参观世博会,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次.(1)用树状图列举三次抛掷硬币的所有结果;(2)若规定:有两次或两次以上正面向上,由爸爸陪同前往上海;有两次或两次以上反面向上,则由妈妈陪同前往上海.分别求由爸爸陪同小明前往上海和由妈妈陪同小明前往上海的概率.四、课堂检测:1、一个家庭有3个小孩.这个家庭有3个男孩的概率是;2、如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),则转盘停止后指针指向的数字之和为偶数的概率是.3、一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.4、有四张不透明的卡片(如图),除正面的数字不同外,其余都相同,现将它们背面向上洗匀,从中任意抽取两张,上面的数字之和恰好为零的概率为().A.15B.14C.13D.125、随机掷一枚均匀的硬币三次,三次正面都朝上的概率是.6、利用下面的转盘做“配紫色”的游戏,用树状图求出“配紫色”的概率.7、在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,则2次摸出的球都是白色的概率为;教学反思第三章概率的进一步熟悉四、课堂检测:1、在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个2、随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是.3、从一本书中随机抽取若干页,其中“的”出现的频率为0.03,由此可估计这本书中“的”字出现的频率为.4、一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为31%,则水塘大约有鲢鱼尾.5、一箱灯泡的合格率是87.5%,小刚由箱中任意买一个,则他买到次品的概率是()A.124B.87.5%C.14D.186、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是()A.40只B.25只C.15只D.3只7、一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是_________.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图说明理由;如果x的值不可以取7,请写出一个符合要求的x值.教学反思课题第三章概率的进一步认识单元测试教师二备。

数学九年级上册《特殊的平行四边形-复习课》教案

数学九年级上册《特殊的平行四边形-复习课》教案

五、教学过程教学过程教师活动学生活动应对措施预测用时设计意图及资源准备程序1:导入提问:判断四边形的形状?猜想、交流回答老师问题:哪个是平行四边形? 哪个是矩形 ? 哪个是长方形?哪个是正方形?面对开放式的问题思考、交流、讨论引领思考教师对课堂生成问题采取相应措施3分钟从生活中简单的图形出发,激发学生学习兴趣。

改变问题的呈现方式,调动学生的思维。

激发学生思考讨论、交流,培养逆向思维程序2:自主学习主题1 从图形识别开始,怎样的四边形是平行四边形?它的性质和判别是什么?并结合图形用几何语言表述.观看屏幕明确学习内容积极回忆学生代表发言在学案上用几何语言写出平行四边形的性质和判定,交流点成绩中等学生发言,有鼓励+督促意图配合学生回答,点击投影,与学生交流3分钟导入课题,板书:《特殊的平行四边形》复习课用几何语言表述平行四边形的性质和判定,有利于学生更好的理解定理,并且提高熟练运用的能力(这是我在长期教学一线,得出的辅助几何定理学习的方法,对学困生帮助作用是很明显的)(1)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?不一定!(2) 有一组对边平行,并且另外一组对边相等的四边形一定是平行四边形吗?不一定!等腰梯形平行四边形❖平行四边形性质平行四边形对边相等且平行、对角相等、对角线互相平分❖平行四边形判别一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形对角线互相平分的四边形是平行四边形AB CDO平行四边形❖平行四边形性质∵□ABCD∴AB=DC AD=BCAB∥DC AD∥BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD❖平行四边形判别∵AB=DC且AB∥DC ∴□ABCD∵AB∥DC AD∥BC ∴□ABCD∵AB=DC AD=BC ∴□ABCD∵OA=OC OB=OD ∴□ABCDAB CDO、观察图形怎样的四边形是矩形?它的性质和判别是什么?并结合图形用几何语言表述.菱形❖菱形性质菱形对边平行且四边相等、对角相等、对角线互相垂直平分且每一条对角线平分一组对角❖菱形判别一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形A BCD O 菱形❖菱形性质∵菱形ABCD∴AB ∥DC AD ∥BC 且AB =DC =AD =BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD 且AC ⊥BD , ∠DAO=∠BAO 等❖菱形判别∵在□ABCD 中AB=AD ∴菱形ABCD ∵在□ABCD 中AC ⊥BD ∴菱形ABCD ∵四边形ABCD 中AB =DC =AD =BC ∴菱形ABCDA BCD O 矩形❖矩形性质∵矩形ABCD∴AB=DC AD=BC 且AB ∥DC AD ∥BC∠BAD=∠BCD=∠ABC=∠ADC= 90°AC=BD 且OA=OC OB=OD❖矩形判别∵在□ABCD 中∠ABC= 90°∴矩形ABCD ∵在□ABCD 中AC=BD ∴矩形ABCD在四边形ABCD 中∠BAD=∠BCD=∠ABC= 90°∴矩形ABCDADCBO矩形❖矩形性质矩形对边相等且平行、四个角相等且等于90度、对角线相等且互相平分❖矩形判别有一个角是直角的平行四边形是矩形对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形A DCBO正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形你能用恰当的方式表示平行四边形,菱形,矩形,正方形之间的关系吗?正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形ADCB O平行四边形要继续探索的问题?四边形两组对边分别平行平行四边形菱形矩形正方形11.如图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE=CF.(1)AE 与BF 相等吗?为什么?(2)AE 与BF 是否垂直?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二阶段教学案精讲点拨:1、如图, 已知菱形ABCD的周长为20cm,∠A:∠ABC=1:2,求∠ABD的度数与BD长。

2、已知菱形的两条对角线长分别为6和8,则它的边长为多少?3、菱形ABCD的周长为16厘米,∠ABC=120°,求对角线BD与AC 的长。

4、如图,四边形ABCD是边长为13 cm的菱形,其中对角线BD长10 cm,求:(1)对角线AC的长度;(2)菱形ABCD的面积第二阶段教学案预习反馈:预习诊断独立完成课后练习1、2题。

合作探究:学习任务四:阅读课本18页,自己在下面独立证明菱形的判定定理(1):四条边都相等的四边形是菱形已知:求证:证明:学习任务五:阅读课本18页,合上课本在下面独立证明菱形的判定定理(2):对角线互相垂直的平行四边形是菱形已知:求证:证明:第二阶段教学案精讲点拨:如图,在菱形ABCD中,E、F分别为BC、CD的中点,求证:AE=AF.思路点拨:证法1:利用菱形性质证得∠B=∠D,AB=AD,BE=DF,再运用△ABE≌△ADF(SAS)可以证出AE=AF,证法2:连线AC,证△AEC≌△AFC(SAS).第三阶段检测案能力提高:【当堂达标】1.下列命题中是真命题的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形。

小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是()A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误3.在菱形ABCD中,∠BAD=80°,AB的垂直平分线交AC于F,交AB于E,则∠CDF=()A.80°B.70°C.65°D.60°4.棱形的周长为8.4cm,相邻两角之比为5:1,那么菱形一组对边之间的距离为()A.1.05cmB.0.525cmC.4.2cmD.2.1cm5.菱形ABCD中∠A=120°,周长为14.4,则较短对角线的长度为。

6.菱形的面积为50平方厘米,一个角为30°,则它的周长为。

7. 菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m2).课后反思北滩中学九年级数学(上)导学案课题1特殊的平行四边形(第3课时)授课时间主备人授课人班级审核人第一阶段预学案目标导航学习目标1.理解菱形的定义,掌握菱形的性质和判定;2.能运用菱形的性质和判定进行简单的计算与证明学习重点掌握矩形及直角三角形斜边上中线的性质定理,会用定理进行有关的计算与证明。

题图第二阶段教学案合作探究:(1)由于矩形是特殊的平行四边形,因此它具有平行四边形的所有性质,还具有平行四边形不具有的特殊性质....。

.如图,同学们研究矩形的性质,填写下表:(2)你能证明以下性质的正确性⑴矩形的四个角都是直角⑵矩形的对角线相等矩形的性质边角对角线对称性具有平行四边形的所有性质具有平行四边形不具有的特殊性质第三阶段检测案【当堂达标】1.工人师傅做铝合金窗框分下面三个步骤进行:⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB =CD ,EF=GH ;⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是:2.△ABC 中,点O 是AC 边上一动点,过O 点作直线MN//BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F , (1)试说明EO=OF 的理由。

(2)当点O 运动到何处时,四边形AECF 是矩形?并说明你的结论。

课后反思北滩中学 九 年级 数学(上) 导学案课题 1特殊的平行四边形(第6课时)授课时间 主备人授课人班级审核人EF ABCONMD第一阶段预学案一、1.矩形的定义:叫做矩形。

由此可见,矩形是特殊的,它具有平行四边形的所有性质。

2、矩形是图形,有条对称轴二、矩形的性质:1.2.2、知识应用例:已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB。

求证:△AOB是等边三角形。

拓展与延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?OAB CD第二阶段教学案训练提高(1)已知ABCD 的对角线AC ,BD 相交于O ,△AOB 是等边三角形,AB=4厘米,求这个四边形的面积。

二、矩形的判定 1、矩形的定义:2、矩形的其他判定方法。

矩形的判定定理(1): 矩形的判定定理(2):3、典例学习(1)如图,ABCD 中,∠1=∠2.求证:四边形ABCD 是矩形。

第三阶段检测案三、课堂检测1、能够判断一个四边形是矩形的条件是()A 对角线相等B 对角线垂直C对角线互相平分且相等 D对角线垂直且相等2、如图,直线EF∥MN,P Q交EF、MN于A、C两点,AB、CB、CD、AD 分别是∠ EAC、∠ MCA、∠ ACN、∠ CAF的角平分线,则四边形ABCD是()A 菱形B 平行四边形C 矩形D 不能确定3、(训练2变式训练)已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,求证:四边形EFGH为矩形3、已知:如图,E为矩形ABCD一点,且EB=EC。

求证:EA=ED.课后反思北滩中学九年级数学(上)导学案课题1特殊的平行四边形(第7课时)授课时间主备人授课人班级审核人第一阶段预学案目标导学习目标1.掌握正方形的概念、性质,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区E FM NPQACDBB CDEF GHOA导航学习难点合理恰当地利用特殊平行四边形之间的判定进行有关的论证和计算,进一步提高观察、分析、解决问题的能力,享受合作学习的快乐。

一、课前自主学习1、矩形的判定方法是2、菱形的判定方法是二、探索正方形的判定什么样的图形称为正方形?1、叫正方形。

2、有的矩形是正方形。

3、对角线的矩形叫正方形4、有的菱形是正方形。

4、对角线的菱形叫正方形5、有,有的平行四边形是正方形6、对角线的平行四边形是正方形7、对角线的四边形是正方形5、完成图形关系第二阶段教学案精讲点拨1、如图所示,在RtΔABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于E,DF⊥AC于F,试说明四边形CEDF为正方形。

2、如图,已知在ABC△中,AB AC=,D为BC边的中点,过点D 作DE AB DF AC⊥,⊥,垂足分别为E F,.(1)求证:BED CFD△≌△;(2)若90A∠=°,求证:四边形DFAE是正方形.ACD BF E第三阶段检测案1、E、F、G、H分别是正方形ABCD各边上的点,且AE=BF=CG=DH,求证EFGH是正方形(自己画图)2、已知:如图,E、F、G、H分别是正方形ABCD各边的中点,AF、BG、CH、DE分别相交于点A′、B′、C′、D′,求证:四边形A′B′C′D′是正方形。

3、用两个全等的直角三角形拼成下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.其中一定能拼成的图形是().A.①④⑤ B.②⑤⑥ C.①②③ D.①②⑤4、能使平行四边形ABCD为正方形的两个条件是 _______ _。

课后反思北滩中学九年级数学(上)导学案课题 1特殊的平行四边形(第9课时) 授课时间 主备人授课人班级审核人第一章检测题(一)一、选择题(每小题3分,共30分)1.(2009)下列图形中既是轴对称图形又是中心对称图形的是( )2.以三角形的三个顶点及三边中点为顶点的平行四边形共有( ) A.1个 B.2个 C.3个 D.4个3.顺次连接等腰梯形四边中点所得四边形是( )A .菱形B .正方形C .矩形D .等腰梯形4.如图1-1,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A . 32B . 33C . 34D . 3图1-1 图1-2 图1-3图1-45.(2009茂名)图1-2伯家小院子的四棵小树E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是( )A .平行四边形B .矩形C .正方形D .菱形 6.如图1-3,下列条件之一能使ABCD Y是菱形的为( )①AC BD ⊥ ②90BAD ∠=o③AB BC = ④AC BD = A .①③B .②③C .③④D .①②③7.(2009)如图图1-4,在长为8cm 、宽为4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A .22cmB .24cmC .28cmD .216cm8. 将矩形纸片ABCD 按如图1-5所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2C .2D .3图1-5 图1-69. 如图1-6,在Y ABCD 中,E 是BC 的中点,且∠AEC=∠DCE,则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠10.(2009大兴安岭)如图1-7在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的 ( )图1-7A .②③B .③④C .①②④D .②③④ 二、填空题(每小题3分,共18分)11.(2009)如图1-8,梯形ABCD 的两条对角线交于点E ,图中面积相等的三角形共有 对.图1-8 图1-9 图1-10北滩中学九年级数学(上)导学案课题1特殊的平行四边形(第10课时)授课时间主备人授课人班级审核人第一章检测题(二)一、选择题(每小题5分,共60分)1、下列说法中,不正确的是().(A)有三个角是直角的四边形是矩形;(B)对角线相等的四边形是矩形(C)对角线互相垂直的矩形是正方形;(D)对角线互相垂直的平行四边形是菱形2、用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是().(A)①②③(B)①④⑤(C)①②⑤(D)②⑤⑥3、观察下列四个平面图形,其中中心对称图形有()(A)2个(B)1个(C)4个(D)3个图14、在Rt△ABC中,∠C=90°,AC=33,BC=1,则AB上的中线长为()(A)3 (B)1.5 (C)7(D)95、如图1,下列条件之一能使平行四边形ABCD是菱形的为()①AC BD⊥②90BAD∠=o③AB BC=④AC BD=(A)①③(B)②③(C)③④(D)①②③6、如图2,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC.如果这个梯形的周长为30,则AB的长为().(A)4 (B)5 (C)6 (D)7AB CD图2 图3 图47、如图3,矩形ABCD沿AE折叠,使点D落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于().(A)15°(B)30°(C)45°(D)60°8、如图4,在菱形ABCD中,∠ADC=120°,则BD:AC等于().(A)3:2 (B)3:3 (C)1:2 (D)3:19、如图5,四边形ABCD是正方形,延长BC至点E,使CE=CA,连结AE交CD•于点F,•则∠AFC的度数是().(A)150°(B)125°(C)135°(D)112.5°10、如图6,在等腰梯形ABCD中,AD∥BC,AC,BD相交于点O.•有下列四个结论:•①AC=BD;②梯形ABCD是轴对称图形;③∠ADB=∠DAC;④△AOD≌△ABO.其中正确的是().(A)①③④(B)①②④(C)①②③(D)②③④图5 图611、矩形的边长为10 cm和15 cm,其中一角平分线分长边为两部分,这两部分的长为()(A)6 cm和9 cm (B)5 cm和10 cm(C)4 cm和11 cm (D)7 cm和8 cm12、菱形周长为20 cm,它的一条对角线长6 cm,则菱形的面积为…………………()(A)6 (B)12 (C)18 (D)24。

相关文档
最新文档