三角形中几种添加辅助线的方法技巧
全等三角形中常见辅助线的作法
全等三角形中常见辅助线的作法一、倍长中线法。
1. 作法。
- 当遇到三角形中线时,可将中线延长一倍,连接相应顶点,构造全等三角形。
- 例如,在△ABC中,AD是BC边上的中线。
延长AD到E,使DE = AD,然后连接BE。
2. 原因。
- 因为BD = CD(AD是中线),∠BDE = ∠CDA(对顶角相等),DE = AD(所作辅助线),根据SAS(边角边)判定定理,可以证明△BDE≌△CDA。
- 这样做的好处是可以将分散的线段和角集中到新构造的全等三角形中,从而便于解决问题,比如可以将AC边转化为BE边,进而在新的三角形△ABE中研究线段之间的关系。
二、截长补短法。
1. 截长法。
- 作法。
- 在较长的线段上截取一段等于已知的较短线段。
- 例如,在△ABC中,要证明AB = AC + CD(假设AC<AB)。
在AB上截取AE = AC,然后连接DE。
- 原因。
- 截取AE = AC后,我们可以通过证明△ADE≌△ADC(如果有合适的条件,如AD 是角平分线,则可以利用SAS判定),得到DE = CD。
这样就将AB = AC+CD的证明转化为证明BE = DE的问题,将问题简化。
2. 补短法。
- 作法。
- 延长较短的线段,使延长后的线段等于较长的线段。
- 例如,在上述△ABC中,延长AC到F,使CF = CD,然后连接DF。
- 原因。
- 延长AC到F使CF = CD后,如果能证明△ABD≌△AFD(根据具体题目中的条件,可能利用AAS、ASA等判定定理),就可以将AB = AC + CD的证明转化为证明AB = AF的问题,通过构造全等三角形,把线段之间的关系进行转化,从而达到解题目的。
三、作平行线法。
1. 作法。
- 过三角形的一个顶点作某条边的平行线。
- 例如,在△ABC中,D是AB上一点,E是AC上一点,要证明AD/AB = AE/AC。
过D作DF∥AC交BC于F。
2. 原因。
- 因为DF∥AC,根据平行线的性质,可得∠ADF = ∠A,∠AFD = ∠C,∠BDF = ∠B。
全等三角形中常见辅助线的添加方法
典例1:如图,△ABC中, ∠C =90 o,BC=10,BD=6, AD平分∠BAC,则点D到AB的距离等于 4 .
过点D作DE⊥AB
A
构造全等的 直角三角形
E
B
D
C
三.用角平分线的性质构造全等
典例2:如图,梯形中, ∠A= ∠D =90o,
BE、CE均是角平分线, 求证:BC=AB+CD.
B
A
F
过点E作EF⊥BC
E
构造全等的 直角三角形
C
还有其他的方法吗?
D
四、截长与补短
四、截长与补短
典例1、已知在△ ABC中, AD是∠BAC 的角平分线 ,
∠C=2∠B, 求证 :AB=AC+CD
A
E
12
B
D
C
在AB 上取点E使得AE=AC ,连接DE
F
在AC的延长线上取点F使得CF=CD,连接DF
A
D
B
C
1 2 3 *
一题多解
典例3:如图,已知在四边形 ABCD中,BD是∠ABC的 角平分线, AD=CD,求证:∠ BAD+∠BCD=180 °
A
D
1 2
B
34
E
C
在BC上截取BE,使BE=AB ,连结DE。
1 2 3 *
一题多解
典例3:如图,已知在四边形 ABCD中,BD是∠ABC的 角平分线, AD=CD,求证:∠ BAD+∠BCD=180 ° F
四、截长与补短
变题:已知在△ ABC中, AD是∠BAC的角平分线 ,
AB=AC+CD, 求证:∠C=2∠B
A
E
12
全等三角形辅助线添加方法
全等三角形辅助线添加方法全等三角形是指具有相同形状和大小的两个三角形。
要证明两个三角形全等,我们通常使用SAS(两边和夹角),ASA(两角和边),SSS(三边)等条件来进行证明。
为了证明这些条件,我们可以添加一些辅助线来简化问题。
以下是几种常见的全等三角形辅助线添加方法:1.中位线法中位线是连接一个三角形的一个顶点和对边中点的线段。
在证明两个三角形全等时,可以通过连接两个三角形的对应顶点及对边中点来添加中位线。
这样,原来的两个三角形就分解成了两个平行四边形,从而简化了证明过程。
2.高线法高线是从一个顶点垂直于对边的线段。
在证明两个三角形全等时,可以添加一条高线,从而将一个三角形分解成两个直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
3.角平分线法角平分线是从一个角的顶点分别平分两个相邻边的线段。
在证明两个三角形全等时,可以通过连接两个三角形的对应顶点和相邻边的角平分线来添加辅助线。
这样,原来的两个三角形就分解成了两个高度相等的直角三角形。
4.旁切线法旁切线是从一个角的顶点切线到对边的线段。
在证明两个三角形全等时,可以添加一条旁切线,从而将一个三角形分解成两个全等的直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
5.等腰三角形法等腰三角形是指具有两个边相等的三角形。
在证明两个三角形全等时,如果我们发现其中一个三角形是等腰三角形,可以添加一条辅助线,将该等腰三角形分成两个全等的直角三角形。
这样,我们可以利用直角三角形的性质来进行证明。
通过添加这些辅助线,我们可以改变问题的形式,简化证明过程,并帮助我们找到更多的全等条件。
但是需要注意的是,辅助线的添加要符合几何图形的性质,不能改变原有图形的形状和大小。
总之,在证明两个三角形全等时,辅助线的添加是一个常用的方法,可以帮助我们简化证明过程,找到更多的全等条件,提高证明的效率和准确性。
需要根据具体问题来选择合适的辅助线添加方法,灵活运用几何定理和性质来进行证明。
三角形全等添加辅助线的5种常用方法
三角形全等添加辅助线的5种常用方法
三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是高频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目,不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法
当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:
二、倍长中线法
遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点.延长AD至点E,使得DE=AD,并连接BE,则△ADC≌△EDB(SAS)。
我们来看一个例题:
三、遇角平分线作双垂线法
在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!
四、作平行线法
在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
五、截长补短法
题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系。
全等三角形问题中常见的8种辅助线的作法(有答案)
全等三角形问题中常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用D C BAED F CB A的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
初中数学14种方法教会你给三角形加辅助线!
初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。
通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。
3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。
通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。
4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。
通过内切圆可以获得三个切点,进而使用切点的性质解决问题。
5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。
通过外切圆可以获得三个切点,进而使用切点的性质解决问题。
6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。
通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。
8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。
9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。
10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。
几种证明全等三角形添加辅助线的方法
几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。
以下是几种常见的证明全等三角形添加辅助线的方法。
方法一:辅助线连接两个三角形的顶点和中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。
例如,可以连接点A和B的中点M,以及连接点D和E的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法二:辅助线连接两个三角形的顶点和底边中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。
例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法三:辅助线连接两个三角形的对应角的角平分线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形对应角的角平分线来添加辅助线。
通过连接辅助线,我们可以得到一些相似的三角形。
根据相似三角形的性质,我们可以得到一些相等的边和角。
通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。
方法四:辅助线连接两个三角形的中垂线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。
全等三角形六种辅助线方法及例题
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
全等三角形的辅助线的常见添法
全等三角形的辅助线的常见添法一、前言全等三角形是初中数学中一个重要的概念,其性质和应用十分广泛。
在解决全等三角形相关问题时,辅助线的运用是非常常见的方法之一。
本文将介绍几种常见的全等三角形辅助线添法。
二、中线中线是连接三角形一个顶点和对边中点的线段。
在全等三角形的证明中,经常使用到中线。
1. 作平移假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上取一点N,连接MN,并作平移使得BC重合于EF,即可证明ABC和DEF完全重合。
2. 作垂线假设有两个全等三角形ABC和DEF,需要证明它们完全重合。
可以在BC上取一点M,在EF上作MN垂直于EF,并延长至交于P,则BP=FP,CP=EP,因此可以通过SAS(边-角-边)准则证明ABC和DEF完全重合。
三、高线高线是从一个顶点向对边所在直线作垂线所得到的线段。
在证明两个直角三角形相似时常用到高线。
1. 作垂心假设有两个直角三角形ABC和DEF,需要证明它们相似。
可以在ABC 中作垂心H,连接AH、BH、CH,并在DEF中作DH垂直于EF,延长至交于K,则AK=DK,因此可以通过AA(角-角)准则证明ABC 和DEF相似。
2. 作中线假设有两个三角形ABC和DEF,其中BC=EF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,连接MN,并作垂线PH 垂直于MN且交于O,则PO为MN的中线。
由于BM=FN,BO=EO(因为PH平分MN),因此可以通过SAS准则证明ABC和DEF相似。
四、角平分线角平分线是从一个顶点出发将角分成两个相等的角所得到的线段。
在证明两个三角形相似时常用到角平分线。
1. 作等腰三角形假设有两个三角形ABC和DEF,其中∠BAC=∠EDF且AC=DF,需要证明它们相似。
可以在BC上取一点M,在EF上取一点N,并连接AN、BM以及CN与AM的交点为P,则AP=PN(因为AP是∠BAC 的平分线),BP=PM(因为BP是∠ABM的平分线),因此可以通过SAS准则证明ABC和DEF相似。
初中数学等腰三角形,7种常用辅助线的添加方法,技巧归纳专题
初中数学等腰三角形,7种常用辅助线的添加方法,技巧归纳专
题
初中数学:等腰三角形,7种常用辅助线的添加方法,技巧归纳专题 -
八年级数学,等腰三角形和等边三角形是几何试题中最常见的考查要素之一。
时间过得真快,转眼又到周末。
这个周末,和大家一起分享,这套《技巧专题,等腰三角形,7种常用辅助线添加方法》,一起讲一些简单的技巧招式归纳在一起,助力练就解题神功。
前面有9个例子,有详细的分析步骤。
课后练习10个,暂时没有打和分析过程。
这些问题并不难。
你可以把它们打印下来,适当地研究一下。
方法一。
三线融合法。
三条线的组合是等腰三角形的一个非常重要的性质,也是一个非常基本的性质定理。
方法二。
用一条腰的平行线构成一个等腰三角形。
方法三,取长补短,构造等腰三角形。
截取互补,三角形解题技巧中很常见的一种添加辅助线的方法。
方法四。
在证明存在与底部相关的线段时,通常是与底部平行的直线。
这个例子不是一个好主意。
当然,用切掉长点的方法更容易互补。
方法五。
双倍长度中线法。
在三角题型中,当我们遇到中线时,要经常思考是否可以用中线翻倍的方法。
方法六。
以底边或腰为边做一个等边三角形,这样会有三角形的全等。
这种方法在解决某些求角问题时非常实用。
这个例子后面有一个类比,可以试试。
方法七,旋转。
说到等腰三角形,就必须提到旋转的方法。
换句话说,任何与旋转有关的东西都应该有一个等腰元素。
完整版)全等三角形常用辅助线做法
完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
全等三角形添加辅助线的方法
全等三角形添加辅助线的方法全等三角形是指具有相等边长和相等内角的两个三角形。
在解决几何问题中,我们经常需要证明或利用全等三角形的性质。
为了更方便地使用全等三角形,我们可以使用辅助线来帮助我们找到全等三角形。
接下来,我将详细介绍几种添加辅助线的方法。
1.中点连线法:在一个三角形中,我们可以通过连接两个边的中点来构造一个平行边。
如果两个三角形的对应边都是平行的,并且两个三角形的第三边相等,那么这两个三角形是全等的。
因此,通过画出中点连线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过连接边AB和AC的中点D和E来构造一个平行四边形DCBE。
然后,我们可以继续连接BE和CD,并连接AD和CE,这样就构成了两个全等三角形ADE和CDE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
2.高度法:对于一个三角形ABC,我们可以通过作其高来构造两个全等的三角形。
三角形ABC的高是指从顶点到对边的垂直线段。
如果两个三角形的高相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的高,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作高AD和高BE来构造两个全等的三角形ABD和ACE。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
3.角平分线法:对于一个三角形ABC,我们可以通过作角平分线来构造两个全等的三角形。
三角形ABC的角平分线是指从角的顶点到对边的线段,将角分为两个相等的角。
如果两个三角形的相应角相等,并且它们的底边相等,那么这两个三角形是全等的。
因此,通过作两个三角形的角平分线,我们可以找到两个全等的三角形。
例如,在一个三角形ABC中,我们可以通过作角平分线AD和角平分线BE来构造两个全等的三角形ADC和BEC。
通过使用这种方法,我们可以更方便地证明或利用全等三角形的性质。
4.相似三角形法:对于两个相似的三角形ABC和DEF,如果它们的对应边比例相等,那么它们是全等的。
三角形中点常用辅助线添加方法
三角形中点常用辅助线添加方法一.倍长中线法例1.如图①,在△ABC 中,AB=10, AC=6, AD 是BC 边上的中线,求AD 的取值范围. 解:如图②,延长AD,使得ED=AD,连接BE在△BDE 和△CDA 中:BD=CD,∠BDE=∠CDA, ED=AD∴△BDE ≌△CDA∴BE=AC=6∴AB -BE < KAE< <AB+BE∴ 10-6<AE<10+6又 ∵AD=21AE ∴2<AD<8二.倍长类中线法例2.如图①,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE 交AC 于点F.求证: AF=EF.证明:如图②,延长DE 至点G ,使得DE=DG,连接CG在△BDE 和△CDG 中:BD=CD,∠BDE=∠CDG, DE=DG∴ △BDE ≌△CDG (SAS)∴∠BED=∠DGC, BE=CG又∵ BE=AC∴ AC=GC∴∠EAC=∠DGC,又∵∠BED=AEF∴∠AEF= ∠FAE∴AF=EF例3:如图,在△ABC 中,AD 为∠A 的角平分线,M 为BC 的中点,AD//ME. 求证: BE=CF=3 证明:延长FM 至点G,使得FM=MG,连接BG在△BMG 和△CMF 中: BM=CM ,∠BMG=∠CMF, FM=GM∴△BMG ≌△CMF(SAS)∴∠G= ∠CFM ,BG=CF又∵AD//EM,∴∠BAD=∠E,∠DAF=∠EFA又∵∠BAD=∠DAF,∴∠E=∠EFA ∴ AE=AF又∵∠AFE=∠CFM ∴∠E=∠CFM ∴∠G=∠E∴ BE=BG=CF,∴AB+AC=AB+AF+FC=AB+AE+BE=BE+BE =2BE∴BE=CF=21(AB+AC)三.直角三角形斜边上的中线例4:如图,已知△ABC 中,BD 和CE 均为高线,点M 是BC 的中点,点N 是DE 的中点. 求证: MN ⊥DE.证明:连接EM 、DM∵点M 是BC 的中点∴在Rt △BEC 中,EM=21 BC, 在Rt △BDC 中,DM=21 BC ∴ EM=DM,又∵ EN=ND, ∴MN ⊥DE (三线合一 )四.构造三角形中位线例5:如图①,在四边形ABCD 中,E.F 分别是BC. AD 的中点,连接EF 并延长,分别与BA, CD 的延长线交于点M ,N,则∠BMF=∠CNE,求证: AB=CD.证明:如图②.连接BD,取DB 的中点G,连接EG.FG.∴点E 是BC 中点,∵ EG 是△BCD 的中位线∴ EG//CD, EG=21 CD, 同理,点F 是AD 的中点,∴FG// AB, FG=21AB, ∴∠BMF=∠GFE,∴∠CNE=∠GEF.又∵∠BMF= ∠CNE,∴∠GFE=∠GEF.∴ EG=FG. ∴ AB=CD.例6:如图①,△ABC 中, 点F 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,连接FE 并延长,交BA 的延长线于点G.若AB=DC=10,∠FEC=60° ,求EF 的长度解:连接BD,取DB 的中点H ,连接EH, FH.∵点E 是AD 的中点,H 是BD 的中点∴ EH 是△ABD 的中位线 ∴ EH=21 AB 同理FH 是△BCD 的中位线∴FH=21 CD 又∵ AB=CD, ∴ EH=FH ∴∠HEF=∠HFE又∵ FH 是△BCD 的中位线∴ FH// CD ∴∠HFE=∠FEC=60° ,∴△EFH 是等边三角形. ∴EF=EH=21 AB=21 X10=5课后巩固练习15题1.如图,四边形ABCD 中,∠DAB=90°,∠DCB=90°,E. F 分别是BD, AC 的中点,AC=8, BD=10, 求EF 的长.2.如图,已知D 为BC 中点,点A 在DE 上,且AB=CE,求证:∠BAD= ∠CED.3.如图,△ABC 中上,AC>AB,M 为BC 的中点,AD 是∠BAC 的平分线,若CF ⊥AD 交AD 的延长线于F. 求证: MF=21(AC -AB).4.在梯形ABCD 中,AD//BC, AB=AD+BC, E 为CD 的中点,求证: AE ⊥BE.5.如图,在△ABC 中,∠A=90°,D 是BC 的中点,DE ⊥DF.求证: BE 2 +CF 2 =EF 2.6.如图,在正方形ABCD 中,F 是AB 的中点,连接CF,作DE ⊥CF 于点M ,交BC 于点E.求证: AM=AD.7.如图,在四边形ABCD 中,AB=CD, E.F 分别是BC. CD 的中点,BA. CD 的延长线分别交EF 的延长线于点G. H.求证:∠BGE= ∠CHE.8.已知,△ABD 和△ACE 都是直角三角形,点C 在AB .上,且∠ABD=∠ACE=90°,连接DE,设M 为DE 的中点,连接MB, MC.求证: MB=MC.9.如图,在△ABC 中,N 是AC 上的一点,D 是BC 的中点,DM ⊥DN ,如果BM 2 +CN 2 =DM 2 +DN 2.求证: AD 2=41(AB 2 +AC 2 )10.如图,在△ABC 中,AB=AC=5, BC=6, M 为BC 的中点,MN ⊥AC 于点N,求MN 的长度。
等腰三角形中做辅助线的七种常用方法典中典数学
等腰三角形中做辅助线的七种常用方法典中典数学
等腰三角形中做辅助线的七种常用方法如下:
1.作腰的平行线:根据“平行线分线段成比例”定理,得出线段之间的关系,然后利用等腰三角形的性质可得出结论。
2.作底边上的高:利用“面积法”或“全等法”进行证明,利用等腰三角形的“三线合一”性质可得出线段之间的关系。
3.作腰的延长线:根据等腰三角形的性质,利用“三角形中位线”定理或“全等”得出线段之间的关系。
4.作底边的中线:根据“等腰三角形底边上的中线与顶角的平分线重合”的性质,利用“全等法”或“面积法”进行证明。
5.过顶点作底边的平行线:根据“平行线分线段成比例”定理和“等腰三角形底边上的中线与顶角的平分线重合”的性质,可得出线段之间的关系。
6.过一腰上的某一点作另一腰的平行线:根据“平行线分线段成比例”定理和等腰三角形的性质,可得出线段之间的关系。
7.作一角平分线:利用角平分线的性质,可得出线段和角度之间的关系,然后利用等腰三角形的性质可得出结论。
全等三角形六种常用辅助线的添加方法和技巧
全等三角形六种常用辅助线的添加方法和技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!全等三角形是初中数学中的重要概念,对于解决与三角形相关的问题具有重要作用。
三角形全等添加辅助线的技巧和方法
三角形全等添加辅助线的技巧和方法嘿,朋友们!今天咱就来聊聊三角形全等添加辅助线的那些超棒技巧和方法。
比如说,当遇到两个看起来不太好直接证明全等的三角形时,咱就可以巧妙地加条辅助线呀!就好像走在迷宫里突然找到了一条捷径一样。
比如在一个三角形里,有一条边特别长,而另一个三角形里对应的边较短,这时候怎么办呢?咱就在长边上截取一段,让它和短边一样长,这不就多了个等量关系嘛!
还有哦,要是两个三角形有共同的边或者角,那辅助线简直就是开启全等大门的钥匙呀!像有两个三角形,它们有一条公共边,但是其他条件不好用,这时候把公共边延长或者作垂线,哇塞,全等的条件可能一下子就冒出来啦!比如说小明和小红一起做数学题,小明就被一道题难住了,后来小红提醒他加个辅助线,结果一下子就豁然开朗了,这不就像是在黑暗中找到了明灯嘛!
总之呀,三角形全等添加辅助线真的太神奇啦,只要你掌握了这些技巧和方法,那些原本难搞的题目就会变得轻而易举啦!。
等腰三角形中做辅助线的八种常用方法
等腰三角形中做辅助线的八种常用方法以等腰三角形中做辅助线的八种常用方法为标题,写一篇文章。
一、连接底边中点和顶点的直线在等腰三角形中,连接底边中点和顶点的直线是最常见的辅助线之一。
通过连接底边中点和顶点的直线,可以将等腰三角形分为两个等边三角形,从而为解决问题提供了更多可能性。
二、平分底角另一种常见的辅助线是平分底角。
通过连接底边两个顶点与底角的平分线,可以将等腰三角形分成两个相等的小三角形,从而使得问题的解决更加简单明了。
三、平分顶角平分顶角也是一种常用的辅助线方法。
通过连接顶点与底边中点的直线,可以将等腰三角形分为两个相等的小三角形,从而使得问题的解决更加方便。
四、连接底边两个顶点与三角形顶点的直线通过连接底边两个顶点与三角形顶点的直线,可以形成一个内切等边三角形。
这个内切等边三角形可以为解决问题提供更多线索。
五、连接底边两个顶点与顶角平分线的交点通过连接底边两个顶点与顶角平分线的交点,可以形成一个四边形。
这个四边形可以为解决问题提供更多线索。
六、连接底边两个顶点与底边中点的连线通过连接底边两个顶点与底边中点的连线,可以形成一个等腰梯形。
这个等腰梯形可以为解决问题提供更多线索。
七、连接底边两个顶点与对边中点的连线通过连接底边两个顶点与对边中点的连线,可以形成一个平行四边形。
这个平行四边形可以为解决问题提供更多线索。
八、连接对边中点的连线通过连接对边中点的连线,可以形成一个等腰三角形的中线。
这个中线可以为解决问题提供更多线索。
在解决等腰三角形相关问题时,可以灵活运用以上八种常用的辅助线方法。
通过合理选择辅助线,可以使问题的解决更加简单明了。
当然,在运用辅助线的过程中,需要注意辅助线与等腰三角形的关系,确保辅助线的引入能够帮助解决问题,而不会导致问题的复杂化。
总结起来,通过连接底边中点和顶点的直线、平分底角、平分顶角、连接底边两个顶点与三角形顶点的直线、连接底边两个顶点与顶角平分线的交点、连接底边两个顶点与底边中点的连线、连接底边两个顶点与对边中点的连线以及连接对边中点的连线这八种常用的辅助线方法,我们可以更加灵活地解决等腰三角形相关问题。
全等三角形六种辅助线方法
全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
三角形中14种辅助线添加方法
三角形中14种辅助线添加方法三角形是几何学中的基本图形之一,是由三条边和三个内角组成的闭合图形。
在解决三角形相关问题时,为了更好地理解和分析三角形的性质,可以通过添加辅助线来辅助我们的思考。
添加辅助线的方法有很多种,下面将介绍三角形中的14种常见的辅助线添加方法。
1.中垂线:通过三角形的三个顶点与对边的中点相连的线段。
中垂线可以相互垂直且交于同一点,称为三角形的垂心。
2.角平分线:从三角形的一个内角的顶点出发,将这个内角平分成两个相等的角的直线。
三角形的三条角平分线交于一点,称为三角形的内心。
3.高线:从三角形的顶点到对边的垂线,与对边垂足构成的线段。
三角形的三条高线交于一点,称为三角形的垂心。
4.中线:三角形两个顶点的中点连线。
三角形的三条中线交于一点,称为三角形的重心。
5.对角线:连接三角形两个不相邻的顶点的线段。
6.垂直平分线:连接三角形一边的中点与该边上的顶点的直线,且与相对边垂直。
7.旁切线:从三角形的一个顶点开始,与对边相切于三角形外接圆的线段。
8.中辅线:连接三角形两个边的中点的直线。
9.内外角平分线:从三角形顶点开始,将相邻内角或外角平分成两个相等的角的直线。
10.黄金分割线:三角形的一条内角平分线与对边上适当位置的点相连接形成的线段,使得线段的两侧比例相等。
11.斜边中线:从三角形两个锐角的顶点开始,与斜边的中点相连的直线。
12.顶点角平分线:连接三角形一个顶点与另外两个相邻顶点的内角平分线。
13.倍长边线:将三角形中两个边的一部分向外延伸,与第三条边相交的直线。
14.平行线:与三角形的其中一边平行的线段。
以上是三角形中的14种常见的辅助线添加方法,通过添加辅助线可以帮助我们更好地理解和分析三角形的性质,解决三角形相关的问题。
在实际运用中,我们可以根据具体情况选择适合的辅助线添加方法,以便更好地解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中几种添加辅助线的方法技巧
分宜中学游小敏
摘要:人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
关键词:三角形辅助线解题方法
每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
技巧一:有关三角形中线的题目,常将中线加倍。
例:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF
解:延长FD到G,使得DG=DF,连接BG、EG.
(或把△CFD绕点D逆时针旋转180°得到△BGD),
∴CF=BG=DF=DG,
∵DE⊥DF,
∴EF=EG.
在△BEG中,BE+BG>EG,即BE+CF>EF.
技巧二:含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
例:已知:如图,△ABC是锐角三角形。
分别以AB,AC为边向外侧作等边三角形ABM和等边三角形CAN。
D,E,F分别是MB,BC,CN的中点,连结DE,EF。
求证:DE=EF
证明:连结CM 、BN
∵△ABM 、△ACN 为等边三角形
∴AM=AB ,AC=AN ,∠MAB=∠CAN=60°
∴∠MAB+∠BAC=∠CAN+∠BAC
即∠MAC=∠BAN
在△MAC 与△BAN 中
MA=BA (已证)
∠MAC=∠BAN (已证)
AC=AN (已证)
∴△MAC ≌△BAN (SAS )
∴CM=BN (全等三角形对应边相等)
又∵D 、E 、F 为中点
∴DE=1/2CM ,EF=1/2BN
∴DE=FE
技巧三:含有角平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
例:如图2.已知∠A =90°,AB =AC ,∠1=∠2,CE ⊥BD ,求证:BD =2CE
证明:延长CE 、BA ,相交于点F 。
(∠1和∠2分别是∠ABD 和∠CBD ) 在△BCE 和△BFE 中,
∠BEC = 90°= ∠BEF ,BE 为公共边,∠CBE = ∠FBE ,
所以,△BCE ≌ △BFE ,
可得:CE = EF ,即有:CF = 2CE ;
在△CAF 和△BAD 中,
A
B C D
E F N M
∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,
所以,△CAF ≌△BAD ,
可得:CF = BD ,则有:BD = 2CE 。
技巧四:结论是两线段相等的题目常画辅助线构成全等三角形。
例:如图,△ABC是等边三角形,延长BC至D,延长BA至E,使AE=BD,连结CE、ED。
证明:EC=ED
证明:延长CD到F,使DF=BC,连结EF
∵AE=BD
∴AE=CF
∵△ABC为正三角形
∴BE=BF ∠B=60°
∴△EBF为等边三角形
∴∠F=60°EF=EB
在△EBC和△EFD中
EB=EF(已证)
∠B=∠F(已证)
BC=DF(已作)
∴△EBC≌△EFD (SAS)
∴EC=ED (全等三角形对应边相等)
技巧五:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
例:如图,在△ABC中,∠B=2∠C,AD平分∠BAC。
求证:AB+BD=AC。
证明:在AC上截取AE=AB,连接DE。
∵AD平分∠BAC
∴∠1=∠2
在△ABD和△AED中:AB=AE∠1=∠2
AD=AD∴△ABD≌△AED(SAS)
∴BD=DE,∠B=∠3
又∵∠B=2∠C
∴∠3=2∠C
∵∠3=∠4+∠C
∴2∠C=∠4+∠C
∴∠C=∠4
∴DE=CE
∴BD=CE
∵AE+EC=AC
∴AB+BD=AC
一些几何题的证明或求解,由原图形分析探究,有时显得十分繁难,若通过适当的“补形”来进行,即添置适当的辅助线,将原图形填补成一个完整的、特殊的、简单的新图形,则能使原问题的本质得到充分的显示,通过对新图形的分析,使原问题顺利获解。
这种方法,我们称之为补形法,它能培养思维能力和解题技巧。
很多人都说几何很难,特别是不知道应该怎样添加辅助线。
那么我们首先一定要把握定理和概念,其次要刻苦钻研,多动脑筋,经常总结方法经验,最后才能找出规律。
添加辅助线时千万不能盲目乱添线,方法应该灵活多变,先分析图形,找到切入点,再选择相应方法,从而减少做题时的困难。
保持虚心勤学的态度,刻苦训练,成绩才能稳步上升。
参考文献:
《义务教育课程标准实验教材教科书数学教师教学用书》七年级下册课程教材研究所中学数学课程教材研究开发中心编著
《义务教育课程标准实验教科书数学》八年级下册课程教材研究所中学数学课程教材研究开发中心编著
《常用辅助线做法》作者:邵欢2011—12—28
《全等三角形中做辅助线技巧要点大汇总》百度文库初中教育。