传热学热辐射基本定律和辐射特性

合集下载

传热学-热辐射基本定律和辐射特性

传热学-热辐射基本定律和辐射特性
所以,不同方向上辐射能量的强弱,还要 在相同的看得见的辐射面积的基础上才能 作合理的比较
C1 (λT
eC2 /(λT )
)−5
d −1
(
λT
)
=
f
(λT )
f(λT)称为黑体辐射函数,表示温度为T 的黑体所发射的辐射能 中在波段0~λ内的辐射能所占的百分数。
利用黑体辐射函数数值表(360页表8-1)可以很容易地用 下式计算黑体在某一温度下发射的任意波段的辐射能量:
Eb(λ1−λ2 ) = ⎡⎣ Fb(0−λ2 ) − Fb(0−λ1) ⎤⎦ Eb
∫ 显然有
Eb =
∞ 0
Ebλ
d
λ
普朗克定律解释了黑体辐射能按波长分布的规律:
Ebλ
=
c1λ−5
ec 2
(λT )
−1
式中,Ebλ—黑体光谱辐射力,W/m3
λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.7419×10-16 W⋅m2; c2 — 第二辐射常数,1.4388×10-2 W⋅K;
8.1.2 从电磁波角度描述热辐射的特性
8.1.2 从电磁波角度描述热辐射的特性
c 电磁波的数学描述: = λν
c — 电磁波传播速度, m/s ν — 频率, 单位 1/s λ — 波长, 常用μm为单位
从理论上说,物体热辐射的电磁波波长范围可以包括整个波谱,即波长从零到无穷大 然而,在工业上所遇到的温度范围内,即2000K以下,有实际意义的热辐射波长位于 0.38—100μm之间,且大部分能量位于红外线区段的0.76—20μm范围内,而在可见 光区段、即波长为0.38—0.76μm 的区段,热辐射能量的比重不大
τ =0, α + ρ =1

传热学-第七章热辐射基本定律及物体的辐射特性

传热学-第七章热辐射基本定律及物体的辐射特性
定向辐射强度L(, ): 定义:单位时间内,物体在垂直发射方向的单位面积上,
在单位立体角内发射的一切波长的能量,参见图8-10。 d( , ) L( , ) dA cos d (6) Lambert 定律(黑体辐射的第 三个基本定律)
d( , ) L cos dA d
第八章 热辐射基本定律和辐射特性 24
本节中,还有几点需要注意
1. 将不确定因素归于修正系数,这是由于热辐射非常复杂,
很难理论确定,实际上是一种权宜之计; 2. 服从Lambert定律的表面成为漫射表面。虽然实际物体的 定向发射率并不完全符合Lambert定律,但仍然近似地认 为大多数工程材料服从Lambert定律,这有许多原因;
3. 物体表面的发射率取决于物质种类、表面温度和表面状况。
这说明发射率只与发射辐射的物体本身有关,而不涉及外
界条件。
第八章 热辐射基本定律和辐射特性 25
§8-4
实际物体对辐射能的吸收与辐射的关系
上一节简单介绍了实际物体的发射情况,那么当外界 的辐射投入到物体表面上时,该物体对投入辐射吸收 的情况又是如何呢?本节将对其作出解答。
1


0
( , T1 ) b ( , T2 ) Eb (T2 )d



0
b ( , T2 ) Eb (T2 )d


0
( , T1 ) Eb (T2 )d


0
Eb (T2 )d
T24 f (T1 , T2 , 表面1的性质)
图8-19给出了一些材料对黑体辐射的吸收比与温度的关系。
第八章 热辐射基本定律和辐射特性
21
对应于黑体的辐射力Eb,光谱辐射力Eb和定向辐射强度L, 分别引入了三个修正系数,即,发射率,光谱发射率( )和定 向发射率( ),其表达式和物理意义如下 实际物体的辐射力与 黑体辐射力之比: 实际物体的光谱辐射 力与黑体的光谱辐射 力之比: 实际物体的定向辐射 强度与黑体的定向辐 射强度之比:

传热学第8章热辐射基本定律和辐射特性

传热学第8章热辐射基本定律和辐射特性

1. 立体角
A r2
sr 球面度
对整个半球:
A 2r 2 2 sr
对微元立体角:
d
dA r2
s in dd
sr
n θ
dΩ r dA1
立体角定义
dθ dA2
φ dφ
r sind
rd
dA2
2. 定向辐射强度(辐射强度) 物体单位时间单位可见辐射面积单位立体角
内发出的辐射能量。
L( ,) d
n
W /(m2 sr)
引入辐射比 Fb(1 2 )
0
1
2
黑体波段内的辐射力
F b(12 )
E d 2
1
b
0 Eb d
1
0T 4
E d 2
1
b
F F b(02 )
b(01 )
其中: Fb(0) 为黑体辐射函数(表8-1)
则波段内黑体辐射力:
Eb(1 2 ) [Fb(02 ) Fb(01 ) ]Eb
8.2.3 兰贝特定律

dAcosd
θ
dA2
对各向同性物体表面:

L( ,) L( )
dA1
dA1cosθ
3. 定向辐射力 单位时间单位面积物体表面向某个方向发射
单位立体角内的辐射能, 称为该物体表面在该 方向上的定向辐射力。Eθ,W/(m2.sr)
4. 兰贝特定律 黑体的定向辐射强度与方向无关, 即半球空间各方向上的辐射强度都相等。
热辐射投射到固体,液体表面上:
1 0
表面性
热辐射投射到气体表面上:
1 0 容积性
(3)固体表面的两种反射现象 ✓镜反射 (Specular reflection) ✓漫反射 (Diffuse reflection) 主要取决于固体表面不平整尺寸 的大小(表面粗糙度)。

传热学-第七章热辐射基本定律及物体的辐射特性

传热学-第七章热辐射基本定律及物体的辐射特性

定律 表示式 说明
韦恩位移定律 λmax = b / T 黑体辐射波长与温度的关系
理想黑体的辐射特性
理想黑体具有尽可能高的吸收率和发射率,同时它是完美的热辐射体,能够根据其温度和波长分布发射出连续 的辐射能量。
实际物体的辐射特性
实际物体的辐射特性受到其表面性质的影响。反射率与吸收率、发射率与辐射率以及雷诺茨定律帮助我们了解 和描述实际物体的辐射情况。
反射率与吸收率
实际物体吸收和反射辐射能量 的能力
发射率与辐射率
实际物体辐射能量的发出能力
雷诺茨定律
物体在达到热平衡后,各表面 温度和总发射能力一致
热辐射的应用和实例
热辐射广泛应用于热工技术、太阳能技术、计算机热管理等领域。例如,太阳能电池利用光照下的热辐射转换 为电能。
太阳能电池
利用光照下的热辐射转换为电能
传热学-第七章热辐射基 本定律及物体的辐射特性
了解热辐射的基本概念和定义,掌握热辐射的三大基本定律:斯特藩-玻尔兹 曼定律,基尔霍夫定律和韦恩位移定律。
斯特藩-玻尔兹曼定律
斯特藩-玻尔兹曼定律揭示了黑体辐射功率与温度的关系,P = εσT4,其中P为辐射功率,ε为辐射率,σ为斯特 藩-玻尔兹曼常数。
定律 表示式 说明
斯特藩-玻尔兹曼定律 P = εσT4 黑体辐射功率与温度的关系
基尔霍夫定律
基尔霍夫定律阐明了一个物体表面的吸收率和发射率相等,α = ε。
1 基尔霍夫定律
物体表面的吸收率和发射率相等
韦恩位移定律
韦恩位移定律描述了黑体辐射波长与黑体温度之间的关系,λmax = b / T,其中λmax是峰值辐射波长,b是韦恩 位移常数。
总结和要点
• 热辐射包括斯特藩-玻尔兹曼定律、基尔霍夫定律和韦恩位移定律 • 理

第八章-热辐射基本定律和辐射基本特性分解

第八章-热辐射基本定律和辐射基本特性分解

8-3 灰体和基尔霍夫定律
一、实际物体的辐射特性和发射率
▲光谱辐射力随波长呈现不规则的变化;
实际物体 辐射特性:
▲辐射力并不严格地同热力学温度四次方成正比;
▲定向辐射强度在不同方向上有变化谱发射率( )
—修正光谱辐射力Eb
定向发射率( )
—修正定向辐射强度I
★发射率(黑度)ε—— 实际物体的辐射力与同温度下黑体的辐射力的比值。
固体和液体对辐射能的吸收和反射基本上属于表面效应: 金属的表面层厚度小于1m;绝大多数非金属的表面层厚度小 于1mm。
二、黑体模型
能吸收投入到其表面上的所有热辐射能的物体,是 一种科学假想的物体,现实中并不存在。
黑体: 白体或镜体:
1
1
透明体:
1
煤烟、炭黑、粗糙的钢板 0.9以上
黑体吸收和发射辐射能的能力最强
热辐射是热量传递的 基本方式之一,以热辐 射方式进行的热量交换 称为辐射换热。
传热学
第八章 热辐射基本定律和辐射特性
§8-1 热辐射现象的基本概念
1. 热辐射特点
(1) 定义:由热运动产生的,以电磁波形式传递的能量;
(2) 特点:a 任何物体,只要温度高于0K,就会不停地向周
围空间发出热辐射;b 可以在真空中传播;c 伴随能量形
可见光波段的辐射能量比例为 0.545 8-0.099 32 = 0.446 5
0.76 m ~ 40 m红外波段的辐射能量比例
1.0-0.545 8 = 0.454 2
计算表明: (1) 大气层外太阳辐射中可见光的能量比例接近45%,而
40 m以内的红外辐射也占大约45%。 (2) 太阳辐射温度下,40m以上的红外辐射能量几乎为零。

第八章热辐射的基本定律_传热学

第八章热辐射的基本定律_传热学
发射的一切波长的能量
d () I () dA cos d
单位:W/m2· sr
2) Lambert定律:
黑体表面具有漫辐射性质,在半球空间各个方向辐射强度相等
I 1 I 2 ...... I n
E I cos I n cos En cos
如果已知黑体温度,则可以求得最大单色辐射力 Eb, max 所对应的波长 max
25
讨论:黑体温度在3800K以下时,其峰值波长处在红外线区域。 因此,在一般工程中所遇到的辐射换热,基本上属于红外辐射。
思考:金属在加热过程中,随 着温度的升高,金属颜色呈暗 红、红、黄、白,请解释这一 现象。
Fb 0-T
T E c1 b d T d T f T 5 0 T C2 5 b b T exp 1 T
30
根据黑体辐射函数,可以计算出给定温度下λ1-λ2波段内的 黑体辐射力为:
Eb 1- 2 Eb Fb 0- 2T Fb 0-1T
f (T )
23
三、维恩位移定律
黑体的峰值波长 max 与热力学温度T之间的函数关系
Eb
c15 ec
2
( T )
1
根据普朗克定律,将Eb 对 波长求极值,可得: maxT 2897.6m.K
随着温度T的升高,最大单色辐射 力 Eb, 所对应的峰值波长 max max 逐渐向短波方向移动
• 实际物体的辐射力并不严格遵从四次方定律,怎么办? 认为E∝T4 由此引起的误差修正归入用实验方法确定的中 因此除了与物性有关,还与物体本身的温度有关
39
2 实际物体的光谱辐射力E
E Eb

新大《传热学》复习题及解答第8章 热辐射基本定律和辐射特性

新大《传热学》复习题及解答第8章 热辐射基本定律和辐射特性

第8章热辐射基本定律和辐射特性(复习题解答)【复习题8-1】什么叫黑体?在热辐射理论中为什么要引入这一概念?答:吸收比α=l的物体叫做黑体。

黑体完全吸收投入辐射,从黑体表面发出的辐射都为自身辐射,没有反射,因而黑体辐射的特性反映了物体辐射的规律,这为研究实际物体的辐射提供了理论依据和简化分析的基础。

【复习题8-2]温度均匀的空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射?答:空腔内部壁面不一定是黑体辐射。

小孔之所以呈现黑体特性,是因为辐射在空腔内经历了多次的吸收和反射,辐射能基本基本都被内壁面吸收,从小孔射出的辐射能基本为零。

【复习题8-3]试说明,为什么在定义物体的辐射力时要加上“半球空间”及“全部波长”的说明?答:因为辐射表面会向半球空间各个方向辐射能量,且辐射能中包含各种波长的电磁波,而辐射力必须包括辐射面辐射出去的所有能量,所以要加上“半球空间”和“全部波长”的说明。

【复习题8-4】黑体的辐射能按波长是怎样分布的?光谱辐射力E根的单位中分母的“n?”代表什么意义?答:黑体辐射能按波长的分布服从普朗克定律。

光谱辐射力单位中的分母“n?”代表了单位辐射面积“n?”和辐射的电磁波单位波长范围“m”的意思。

【复习题8-5]黑体的辐射能按空间方向是怎样分布的?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的?答:黑体辐射能按空间方向分布服从拦贝特定律。

定向辐射强度与空间方向无关并不意味着黑体的辐射能在半球空间是均匀分布的。

因为定向辐射强度是指单位可见辐射面积,而在空间不同方向可见辐射面积是不同的,辐射能在各个方向也不同。

【复习题8-6】什么叫光谱吸收比?在不同光源的照耀下,物体常呈现不同的颜色,如何解释?答:光谱吸收比是指物体对某一特定波长的投入辐射所吸收的百分比。

在光源照射下,物体会吸收一部分辐射,并反射一部分辐射,物体呈现的是反射光的颜色,因而光源不同,反射光也会不同,物体也会呈现不同的颜色。

传热学第九章辐射基本定律

传热学第九章辐射基本定律

绝对黑体(黑体) 吸收比 α=1 → 绝对黑体(黑体) 镜体(对于漫反射称为白体) 反射比 ρ=1 → 镜体(对于漫反射称为白体) 穿透比 τ=1 绝对透明体(透明体) → 绝对透明体(透明体)
10
2、黑体辐射 、
黑体的基本概念 辐射力和 辐射力和光谱辐射力 普朗克定律 维恩位移定律 斯蒂芬斯蒂芬-波尔兹曼定律 黑体辐射函数 兰贝特定律 小结
物体的黑度:ε=f(物质种类,表面温度,表面状况) 物体的黑度:ε=f(物质种类,表面温度,表面状况)
28
2)吸收热辐射的性质 2)吸收热辐射的性质

E λ (T2 )
αλ
T1
λ
投入辐射与吸收辐射的关系
λ
29
光谱吸收比:物体对某一特定波长投入辐射能的吸收份额 份额。 光谱吸收比:物体对某一特定波长投入辐射能的吸收份额。 吸收比:物体对投入辐射在全波长范围内的吸收份额 吸收比: α=f(自身表面性质与温度T 辐射源性质与温度T α=f(自身表面性质与温度T1,辐射源性质与温度T2)
24
黑度: ① 黑度:
实际物体的辐射力与同温 度下黑体辐射力的比值 称为实际物体的黑度, 称为实际物体的黑度, 又称发射率 记为ε。 发射率, 又称发射率,记为 。
E ∫0 Eλ dλ ∫0 ελ Ebλ dλ ε= = = 4 Eb σT σT 4
∞ ∞
⇒ E = εEb = εσT 4
对于实际物体来说,黑度仍是温度的函数, 对于实际物体来说,黑度仍是温度的函数,即实 际物体的辐射力不满足四次方关系。 际物体的辐射力不满足四次方关系。
8
t>0K 内 的物体 能
热辐射传播速度c、波长 和频率 之间的关系c=f·λ 和频率f之间的关系 热辐射传播速度 、波长λ和频率 之间的关系 热辐射的主要波谱: 热辐射的主要波谱:

传热学 第7章-热辐射的基本定律

传热学 第7章-热辐射的基本定律

第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。

太阳对大地的照射是最常见的辐射现象。

高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。

特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。

本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。

第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。

比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。

人们根据电磁波不同效应把电磁波分成若干波段。

波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。

可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。

因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。

一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。

当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。

《传热学》第8章-热辐射基本定律及物体的辐射特性

《传热学》第8章-热辐射基本定律及物体的辐射特性

2. 斯忒藩—玻耳兹曼定律
v 斯忒藩(J. Stefan)—玻耳兹曼(D. Boltzmann)定律确 定了黑体的辐射力Eb与热力学温度T之间的关系
v 斯忒藩在1879年从实验中得出,后来玻耳兹曼于1884年运
用热力学理论进行了证明。
斯忒藩—玻耳兹曼 常数,又称为黑体
辐射常数
Eb = σT 4
σ= 5.67×10-8
光谱辐射力: 只对某一波长辐射能的辐射力, Eλ ,单位为W/m3。

∫ E =
E
0
λ

定向辐射力: 单位时间内,单位面积物体表面向某个方向发射 的单位立体角内的辐射能 , Eθ,单位是W/(m2⋅Sr)。
∫ E = Ω=2π Eθ dΩ
∫ E = L(θ) cosθdΩ Ω =2π
2
8-2 黑体辐射的基本定律
∫ ∫ Fb(λ1−λ2 ) =
Eb(λ1 −λ2 ) Eb
=
λ2 0
Ebλ dλ

Eb
λ1 0
Ebλ dλ
Eb
=
Fb (0−λ2 ) −
Fb (0−λ1 )
[ ] E = b(λ1 −λ2 ) Fb(0−λ2T ) − Fb (0−λ1T ) Eb
例题
v 试计算太阳辐射中可见光所占的比例。
解:太阳可认为是表面温度为T = 5762 K的黑体,可见光的 波长范围是0.38~0.76µm ,即λ1 = 0.38 µm , λ2 = 0.76 µm , 于是

2 Ebλ dλ Eb
Fb(0−2) =0.02 .6341
= 0.45Fb(0−2) + 0.1(1− Fb(0−2) )
0.1

传热学8-10章总结问答题及答案

传热学8-10章总结问答题及答案

第八章 热辐射基本定律和辐射特性一、名词解释黑体:指能吸收投入到其表面上的所有热辐射能量的物体。

其吸收比1=α灰体:在热辐射分析中,把光谱吸收比与波长无关的物体称为灰体漫射体:辐射能按空间分布满足兰贝特定律的物体投入辐射:单位时间内投入到单位表面积上的总辐射能吸收比:投入辐射中被吸收能量的百分比。

穿透比:投入辐射中穿透过物体能量的百分比。

反射比:投入辐射中被反射能量的百分比。

发射率: 物体的辐射力与同温度下黑体辐射力之比,为ε辐射力:单位辐射面积向半球空间辐射出去的各种波长能量的总和,E ,单位是2/m W 。

光谱辐射力:单位辐射面积向半球空间辐射出去的包括波长λ在内的单位波长间隔内的辐射能λE 定向辐射强度:单位可见辐射面积向半球空间θ方向的单位立体角中辐射出去的各种波长能量的总和。

二、解答题和分析题1、四次方定律、普朗克定律、兰贝特定律及维恩位移定律和基尔霍夫定律分别描述了什么内容? 答案: 看书362页公式8-16下面有详细的总结。

2、影响实际物体吸收比和发射率的因素各有哪些?答:实际物体的吸收比取决于两方面的因素:1)吸收物体本身的情况。

系指物质的种类、物体的温度以及表面状况。

2)投入辐射的特性。

实际物体表面的发射率取决于物质的种类、表面温度和表面状况。

只与发射辐射的物体本身有关,而不涉及外界条件第九章 辐射传热的计算一、名词解释角系数:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为2,1X 。

有效辐射:是指单位时间内离开表面单位面积的总辐射能。

二、解答题和分析题1、简述角系数的定义及其性质。

答:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为X。

2,11)角系数的相对性 2)角系数的完整性 3)角系数的可加性2、分析气体辐射的基本特点?(1) 气体辐射对波长具有选择性。

它只在某些波长区段内具有发射和吸收辐射的本领,而对于其他光带则呈现透明状态。

《传热学》教学课件—第8章 热辐射的基本概念

《传热学》教学课件—第8章 热辐射的基本概念

0
x5
c1 / b
exp 2 x
dx 1
f
T
即 Fb0~T f T
13
[辐射函数的应用举例]:某太阳能集热器透光玻璃 λ<0.35μm或λ>2.7μm, =0;1 0.35μm<λ<2.7μm, =02.85
计算总透射率,设太阳为黑体,T=5762K [解]
1T 0.3557622017mK ,查辐射函数表8-1得 Fb01T 6.96% 2T 2.7576215557mK ,查表得 Fb02T 97.17% 1 2 波长范围内的太阳辐射能占总太阳辐射能的百分比为 97.17%-6.96%=90.21% 总透射率τ=90.21%×0.85=76.68%
第八章 热辐射的基本概念
热辐射的基本概念与基本定律
1
第一节 基 本 概 念
1. 热辐射的本质和特点 本质:电磁波,由物质微观粒子的热运动激发出来的电磁波,
投射到物体表面可以产生热效应;
电磁波谱图
热射线
射线、伦琴射线、紫外线
太阳辐射
可 见 光
红外线
无线电波
103
102
101
1
0.38 0.76
10
5
3. 辐射强度和辐射力 1). 辐射强度
a). 立体角 定义:锥形区域所张 开的空间角度。 量度:以立体角的角 端为中心作一半径为 r的球面,球面上被 立体角所切割的面积 除以半径r的平方即 得立体角的量度。即
rsin d
dA1
d
dA2 r
d
d
dA2 r2
r
sind
r2
rd
sindd
sr
6
b). 可见发射面积:发射面在 垂直于发射方向的平面上的 投影面积

传热学七(PDF)

传热学七(PDF)
穿透现象。根据能量守恒有
Q = Qα + Qρ + Qτ Qα + Qρ + Qτ = 1 Q QQ
α + ρ + τ = 1
α-吸收率,-ρ 反射率,-τ穿透率(透射率)
在一般情况下,对于固体和液体(强吸收性介质)而言τ很小 可以忽略不计, ρ+α=1
原因:因分子间排列非常紧密,当热辐射能投射到固体表 表面时,马上被相邻的分子所吸收
[例]:教材P244例7-1 解:……由此例可见,黑体或实际物体当T升高时λm减小, 可见光及可见光中短波增加。
3.斯蒂芬-玻尔兹曼(Stefan-Boltzmann)定律
∫ = Eb

= 0 Ebλ d λ
σbT 4
σ b = 5.67 ×10−8 斯蒂芬-波尔兹曼常数,W (m2 ⋅ K4 )
∆Eb
=λ2 λ1
Ebλ

定义:
F = b(λ1 −λ2 )
∆= Eb Eb
∫ λ2 λ1
Ebλ d λ
=

∫0 Ebλ d λ
∫ 1
σT 4
λ E d λ2
λ1

(∫ ∫ ) =1 σT 4
λ λ λ2
0
Ebλ d

λ1 0
Ebλ
d
= F − F b(0−λ2 )
b(0−λ1 )
Fb(0-λ)为能量份额,意即波长从0至λ的黑体辐射占同温度下黑 体辐射力的百分数。而且:
L(θ ) = dφ (θ ) dA cosθ d Ω
n θ dΩ
dAcosθ dA
3). Lambert定律 表述为:黑体的定向辐射强度与方向无关。 即:

传热学-第八章 热辐射特性

传热学-第八章 热辐射特性

§ 8-3 固体和液体的辐射特性
发射率 前面定义了黑体的发射特性:同温度下,黑体发射热辐 射的能力最强,包括所有方向和所有波长;
真实物体表面的发射能力低于同温度下的黑体;
因此,定义了发射率 (也称为黑度) :相同温度下,实际 物体的半球总辐射力与黑体半球总辐射力之比:
E E 4 Eb T
c2 T
5
0
1
d T
0
内所发射的辐射力:
Eb 1 2 Fb 0 2 Fb 0 1 Eb
图8-7 特定波长区段内的黑体辐射力
11


立体角
定义:球面面积除以球半径的平方称为立体角,单位:sr(球面度)
dAc rd r sin d d 2 sin d d 2 r r
0.76 0.38
Eb dλ=0.45Fb0.380.76 Eb

E 0.380.76 E
§8-4
实际物体对辐射能的吸收与辐射的关系
上一节简单介绍了实际物体的发射情况,那么当外界 的辐射投入到物体表面上时,该物体对投入辐射吸收 的情况又是如何呢?
Semi-transparent medium
吸收比为
吸收的总能量 1 投入的总能量


0
( , T1 ) ( , T2 ) Eb (T2 )d


0
( , T2 ) Eb (T2 )d
f (T1 , T2 , 表面1的性质, 表面2的性质)
32
如果投入辐射来自黑体,由于 b ( , T2 ) 1 ,则上式可为
第八章 热辐射基本定律 和辐射特性
1
§8-1 热辐射的基本概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑色油漆对可见光吸收比约0.9 。
4.温室效应
暖房: 玻璃和塑料薄膜对λ< 3μm太阳辐射的穿透率很高 对内部的物体热辐射 λ> 3μm常温辐射的穿透率很低
•温室气体:CO2、CFC制冷剂(R12等)对≥3μm的 红外波段吸收率高,而对于太阳辐射穿透率高
光谱辐射力特征: 光谱辐射力随温度升高而增加;
光谱辐射力随波长增加先增后减,具有最大Ebλ 光谱辐射力最大处的波长随温度不同而不同,随温度增加,λmax减小
(2) 维恩位移定律
光谱辐射力最大处的波长λmax与绝对温度T 的乘积为常数。 λmaxT = 2.898×10-3m·K≈ 2.9×10-3m·K =2900μm·K
E
d( )
dA d
E 2 E d
d():面积dA的微元面积,向空间纬度角方向的微 元立体角d内辐射的能量
兰贝特定律—— 黑体按空间方向的分布规律
表述1:黑体辐射的定向辐射强度与方向无关,即半球空间的各方向上的定 向辐射强度相等:
d( ) dAcos d
=I b
const
表述2:黑体单位辐射面积,单位立体角的定向辐射力
说明: (1)工程上遇到温度范围,热射线集中在红外范 围内( 0.76~20μm ) (2)太阳辐射可见光占44.8%,红外线占45.1%, 紫外线占10.1% (3)常温20℃以下物体辐射几乎在3μm以上的红 外。
➢ 物体表面对热辐射的作用
(1)物体对热辐射的吸收、反射与穿透
根据能量守恒,有以下平衡方程:
微元立体角
d
dAc r2
➢ 黑体的定向辐射强度和定向辐射力:
E
d( )
dA d
实验测定 黑体
Eb,
=
d( )
dA d
Ib
cos
I ( ) d( ) dAcos d
Ib ( )
d( ) dA d cos
=Ib
定向辐射强度的定义图
• 定向辐射力E :
在给定辐射方向(纬度角)上,单位时间内,物体单位辐 射面积、单位立体角内的辐射能量,单位:W/(m2 ·sr)
• 半球空间示意图
半球空间
dA
1、相关的物理量
(2)辐射力E:物体在单位时间内,单位表面积向半球空间所有方向发射
的全部波长的辐射能的总量,单位:W/m2 物理意义:表征物体发射辐射能本领的大小
(3)辐射力E和光谱辐射力Eλ的关系
E 0E d
黑体: E b 0E b d
2、黑体辐射的基本定律
(1)普朗克定律
揭示黑体辐射能按照波长分布的规律,即黑体光谱辐射力Ebλ与波长λ和
温度T 的关系:
Ebλ=f(λ,T)
数学表达式为:
E b
C15
eC2 /( T ) 1
W/m3
λ- 波长(μm);T - 黑体绝对温度(K) C1 - 常数,3.742 10-16 (W m2) C2 - 常数,1.439 10-2 (m K)
(4)兰贝特定律—黑体辐射能空间方向的分布规律 黑体辐射力定义为半球空间的总能量,
如何描述半球空间不同方向的辐射能量分布?
兰贝特定律: 揭示了黑体辐射能的空间分布特性
(4)兰贝特定律—黑体辐射能空间方向的分布规律 立体角定义:球面面积除以球半径的平方称为立体 角,单位:sr(球面度)
立体角
Ac r2
理想物体。在相同温度的物体中,黑体的辐射能力最大。
辐射换热的基本研究方法:研究
黑体的辐射规律,将真实物体的辐 射与黑体进行比较和修正,通过实 验获得修正系数,从而获得真实物 体的热辐射规律。
黑体模型
1、相关的物理量
(1)光谱(单色)辐射力Eλ: 物体在单位时间内,单位表面
积向半球空间所有方向发射的波 长λ到λ+dλ区间发射能量,单位: W/(m2·m)或W/(m2·m)
0 Eb d
0
e
C15
C2 /( T )
d
1
积分可得: Eb=σ T4 = C0(T/100)4 (W/ m2)
σ :黑体辐射常数,σ=5.67×10-8 W /(m2·K4)
C0 :黑体辐射系数, C0 =5.67 W/(m2·K4)
黑体的辐射力与绝对温度的四次方成正比
温度提高一倍,辐射力增加16倍
8.4 实际物体的吸收特性 1. 实际物体的吸收比
➢ 投入辐射G:单位时间内投射到物体表面的单位面积
上的总辐射能(W/m2)
➢ 吸收比α:物体对投入辐射全波长辐射能所吸收的
百分数
吸收的能量
投入的能量(投入辐射)
吸收比α影响因素: (1)吸收物体的自身性质 (2)投入辐射的特性
1. 实际物体的吸收比
基尔霍夫定律:
漫射灰体无条件满足基尔霍夫定律(全波段,半球空间)
工业温度下物体可简化为漫射灰体
4.温室效应
因为大多数的物体对于太阳辐射的可见光的吸收 具有较强的选择性(选择性吸收) 研究物体表面对太阳辐射的吸收时不能视为灰体
如:
常温下白色油漆的发射率约0.9,吸收比约0.9,
白色油漆对可见光吸收比约0.1,
对于大部分工程材料可视为漫射表面
实际物体简化为漫射灰体
3. 基尔霍夫定律——吸收比与发射率的关系
两块平行平板,其距离很近,板1为黑度T1;板2为任意物体
表面,辐射力为E,吸收比α,表面温度T2;板2净辐射
换热热流密度q21:
板2辐射热流: E
T2
T1 黑体
板2吸收热流:αEb
物体表面法向发射率εn的比较:
物体 黄铜 (无光泽) 严重氧化 的铝 镀锌铁皮
玻璃 木材
各种颜色 油漆
εn
0.22
0.2~ 0.3 0.23
0.94 0.8 ~ 0.92 0.92~ 0.96
温度℃
物体
38 黄铜(磨光)
50~500 磨光的铝
38 有光滑氧化层 表皮的钢板
38
抹灰的墙
20
耐火砖
100
随天顶角(纬度角)呈余弦规律变化,也称为余弦定律。
Eb,
=
d( )
dA d
Ib
cos
定向辐射强度I和辐射力E关系:
半球空间所有波长辐射能量的总和(半球辐射力E),
即黑体辐射力Eb
E b
d( )
dA d
Ib
cos
2
/2
E b I b
cos sin dd Ib 0
d 0
cos sin d
电磁波谱
➢ 热辐射的波长范围:
计及太阳辐射(5800K)的热射线: λ=0.1~100μm ,包括部分紫外线,全部可见光和红 外线,
工业领域温度范围(<2000K)的热射线(红外线) : λ=0.76~20μm
太阳辐射能量集中在λ= 0.2 ~ 2μm
电磁波谱
可见光(λ=0.38~0.76μm) 红外线(λ=0.76~1000μm ) 微波(λ=1mm~1m )
表面的状况影响大
• 对于不含颗粒的气体: 0, 1
表面的状况影响小 容器的内部影响大
大多数固体和液体吸收和反射发生在物体表面, 气体的透射和吸收在气体容积中进行
注:对于一定的波长范围
➢分析与说明:
❖ 漫发射表面: 能向半球空间各方向发出均匀辐射强度的 物体表面
❖ 漫反射表面: 能向半球空间各方向均匀反射来自各方向 的投射辐射的物体表面

εn
0.05
0.04~ 0.06 0.82
0.94 0.8~ 0.9 0.8
温度℃ 38
50~500
20
20 500 ~ 1000
0
➢ 影响实际物体表面发射率的因素: (1)物质的种类 (2)表面状况:如粗糙度、氧化程度等 (3)表面温度
注意: 物体表面发射率取决于物体自身性质,与外界
条件无关,是一个物性参数。
实际物体
I ( )
( ) I( ) const 1 Ib
工程材料一般忽略空间分布 的差异,视为漫射表面。
漫射体
( ) 1 半球空间平均定向发射率ε =法向发射率εn (高度磨光表面除外)
实际物体表面: 金属表面: ε/ εn≈1.0~1.3(高度磨光的表面取上限) 非金属表面:ε / εn≈ 0.95~1.0(粗糙表面取上限)
➢ 问题
(1)2000K和5800K的黑体最大单色辐射力所对应的波长 λm 是多少?
T=2000K, λm = 1.45μm
(红外区段)
T=5800K, λm = 0.5μm (可见光区段)
(2)为什么加热铁块的时候,铁块表面随温度增加 由暗红变为黄白?
(3) 斯蒂芬—玻尔兹曼定律
黑体的辐射力: Eb
λm 向波长短的方向移动,服从维恩位移定律。
(3)黑体辐射能量按波长的分布服从普朗克定律 ,按空间方向分布服从兰贝特定律。
8.3 固体和液体的辐射特性
1. 实际物体的辐射力
➢ 实际物体的辐射能力小于同温度下的黑体
实际物体引入发射率(黑度)ε
➢发射率(黑度)ε:相同温度下,
实际物体的半球总辐射力与黑体半 E 球总辐射力之比:
∴ q21 =E - αEb
E
Eb
Eb
系统T1=T2,处于热平衡状态时:q21 =0
(1-)Eb
∴ E-αEb =0 即 E/α=Eb
E(T )
Eb (T )
建立了实际物体辐射力与吸收比的关联
结论: (1)在同温度条件下,物体的辐射力越大,其吸收 比也越大,即善于辐射也善于吸收; (2)实际物体的吸收比α<1,同温度条件下黑体的 辐射力最大 (3)对于漫射灰体,全波段半球空间:ε(T)=α(T)
相关文档
最新文档