三相交流调压调速系统设计与仿真设计

合集下载

基于matlab的三相交流调压电路仿真与研究

基于matlab的三相交流调压电路仿真与研究

基于matlab的三相交流调压电路仿真与研究一、引言随着电力电子技术和控制理论的不断发展,交流调压技术在许多领域得到了广泛应用。

三相交流调压电路由于其能够实现对三相交流电的独立调节,因此在电机控制、电力质量改善以及无功补偿等方面具有重要作用。

本文旨在通过Matlab仿真研究三相交流调压电路的工作原理和性能。

二、三相交流调压电路工作原理三相交流调压电路通常采用相位控制方式,通过调节开关的导通和关断时间来改变输出电压的大小。

在三相系统中,每一相都有一个独立的调压电路,通过对每一相的独立调节,可以实现三相输出电压的平衡控制。

三、Matlab仿真环境设置Matlab是一款强大的数学计算软件,可用于电力电子系统仿真。

在Matlab中,我们首先需要设置仿真参数,包括仿真时间、采样时间、仿真算法等。

然后,我们需要构建三相交流调压电路的数学模型,并转化为Simulink模型。

四、电路模型的建立与参数设置在Simulink中,我们需要根据三相交流调压电路的工作原理,建立相应的电路模型。

这个模型应该包括电源、开关、二极管、电感和电容等元件。

然后,我们需要为这些元件设置合适的参数,以模拟实际的电路行为。

五、仿真结果分析通过运行仿真,我们可以得到输出电压的波形。

通过对这些波形的分析,我们可以了解调压电路的性能。

例如,我们可以观察输出电压的幅值、相位和频率等参数的变化情况。

六、实验验证与结果对比为了验证仿真结果的准确性,我们需要进行实验验证。

在实验中,我们需要搭建实际的三相交流调压电路,并使用示波器等设备记录输出电压的波形。

然后,我们将实验结果与仿真结果进行对比,以评估仿真的准确性。

七、结论通过以上分析和对比,我们可以得出结论:基于Matlab的三相交流调压电路仿真能够准确反映实际电路的工作情况。

这为进一步研究三相交流调压电路的性能提供了有力支持。

同时,通过仿真和实验的结合,我们可以更好地理解电路的工作原理,优化电路设计,提高系统的稳定性和可靠性。

三相交流调压器设计与仿真(α=60°)

三相交流调压器设计与仿真(α=60°)

学号(电力电子技术课程设计)设计说明书三相交流调压器设计与仿真(α=60°)起止日期:年月日至年月日学生姓名班级09电气 2 班成绩指导教师(签字)电子与信息工程系2012 年 6 月15 日天津城市建设学院课程设计任务书2011 —2012学年第2 学期电子与信息工程系电气工程及其自动化专业09电气(2) 班级课程设计名称:电力电子技术课程设计设计题目:三相交流调压器设计与仿真完成期限:自2012 年 6 月10日至2012 年6 月15 日共 1 周指导教师(签字):教研室主任(签字):批准日期:年月日目录1 设计任务及设计目的 (4)1.1 电路设计任务 (4)1.2 电路设计的目的 (4)2.主电路的设计 (5)2.1 主电路的原理分析 (5)2.2 主电路器件的选择 (5)3 仿真电路图 (7)4、建模仿真 (7)5、仿真 (10)6.总结 (10)7.参考文献 (11)三相交流调压器设计与仿真(α=60°)摘要:设计三相交流调压器的电力电子电路并选取合适的器件参数,使用MATLAB 进行建模与仿真,分析波形曲线。

包括电路应用概述,参数选取,模型建立和电路仿真四部分。

关键字:三相交流调压器电阻1 设计任务及设计目的1.1 电路设计任务1 方案设计2 完成主电路的原理分析,各主要元器件的选择3 触发电路的设计4 利用MATLAB仿真软件建模并仿真,获取电压电流波形,依据控制角与负载阻抗角的关系,对结果进行分析1.2 电路设计的目的电力电子技术是我们大三下学期学的一门很重要的专业课,课本上讲了很多电路,比如各种单相可控整流电路,斩波电路,电压型逆变电路,三相整流电路,三相逆变电路,等各种电路,通过对这些电路的学习,让我们知道了如何将交流变为直流,又如何将直流变为交流。

并且通过可控整流调节输出电压的有效值,以达到我们的目的。

而本次三相交流调压电路的设计与仿真,我们需要用晶闸管的触发电路来实现调节输入电压的有效值,然后加到负载上。

双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

第1章绪论1.1 双闭环三相异步电动机调压调速系统旳原理和构成调压调速即通过调整通入异步电动机旳三相交流电压大小来调整转子转速旳措施。

理论根据来自异步电动机旳机械特性方程式:其中,p为电机旳极对数;w1为定子电源角速度;U1为定子电源相电压;R2’为折算到定子侧旳每相转子电阻;R1为每相定子电阻;L11为每相定子漏感;L12为折算到定子侧旳每相转子漏感;S为转差率。

图1-1 异步电动机在不一样电压旳机械特性由电机原理可知,当转差率s基本保持不变时,电动机旳电磁转矩与定子电压旳平方成正比。

因此,变化定子电压就可以得到不一样旳人为机械特性,从而到达调整电动机转速旳目旳1.2 双闭环三相异步电动机调压调速系统旳工作原理系统主电路采用3个双向晶闸管,具有体积小。

控制极接线简朴等长处。

A.B.C为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。

为了保护晶闸管,在晶闸管两端接有阻容器吸取装置和压敏电阻。

控制电路速度给定指令电位器BP1所给出旳电压,经运算放大器N构成旳速度调整器送入移相触发电路。

同步,N还可以得到来自测速发电机旳速度负反馈信号或来自电动机端电压旳电压反馈信号,以构成闭环系统,提高调速系统旳性能。

移相触发电路双向晶闸管有4种触发方式。

本系统采用负脉冲触发,即不管电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。

负脉冲触发所需要旳门极电压和电流较小,故轻易保证足够大旳触发功率,且触发电路简朴。

TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够旳移相范围,TS采用DY11型接法。

移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器旳一次侧第2章双闭环三相异步电动机调压调速系统旳设计方案2.1 主电路设计调压电路变化加在定子上旳电压是通过交流调压器实现旳。

目前广泛采用旳交流调压器由晶闸管等器件构成。

它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角旳大小来调整加到定子绕组两端旳端电压。

三相交流调压调速系统设计与仿真

三相交流调压调速系统设计与仿真

三相交流调压调速系统设计与仿真三相交流调压调速系统是一种常见的电力系统控制技术,广泛应用于电机驱动、风力发电、太阳能发电等领域。

调压调速系统的设计和仿真是一个重要的环节,可以通过仿真分析系统的性能、稳定性和可靠性等,从而指导实际系统的设计和运行。

首先,三相交流调压调速系统主要由三相桥式整流电路、直流侧LC 滤波器、逆变器、电机负载以及控制系统组成。

为了设计一个稳定可靠的系统,首先需要确定系统的输入电压和输出电压、电流的需求。

根据需求确定整流电路和逆变器的参数。

其次,根据确定的参数,进行系统的电路设计,包括整流电路、滤波器和逆变器。

整流电路采用桥式整流电路,可以将交流电转换为直流电;滤波器用于滤除整流电路输出的直流电中的高频脉动;逆变器将直流电转换为交流电,并输出给电机负载。

然后,设计系统的控制策略。

调压调速系统的控制策略通常包括电压闭环控制和速度闭环控制。

电压闭环控制用于控制逆变器输出的交流电电压,保持其稳定在设定值附近;速度闭环控制用于控制电机负载的转速,保持其稳定在设定值附近。

最后,进行系统的仿真。

利用电力仿真软件,可以对系统进行仿真分析,评估其性能、稳定性和可靠性。

通过仿真可以观察系统的响应过程、稳态性能以及系统动态参数等,并进行相应的调整和优化。

在仿真过程中,可以分别对电压闭环控制和速度闭环控制进行仿真。

首先,电压闭环控制仿真分析逆变器输出的交流电电压是否在设定值附近稳定;其次,速度闭环控制仿真分析电机负载的转速是否在设定值附近稳定。

通过分析仿真结果,可以发现系统的问题并进行相应的改进。

综上所述,三相交流调压调速系统的设计与仿真是一个重要的环节,可以帮助工程师评估系统性能并进行优化。

通过合理的参数选择、电路设计和控制策略,可以设计出稳定可靠的调压调速系统,满足实际应用需求。

三相交交变频电路设计与仿真

三相交交变频电路设计与仿真

三相交交变频电路设计与仿真三相交交变频电路是一种将三相交流电转换为可变频率的交流电的电路。

在电力系统中,电能的供给和需求常常是不匹配的,因此需要通过变频电路来实现电能的调节和控制。

本文将详细介绍三相交交变频电路的设计原理、电路结构和仿真分析。

首先,三相交交变频电路的设计原理是利用可控电子元件对三相交流电进行调节和控制,从而改变其频率和电压。

常见的可控电子元件有晶闸管、可控硅和IGBT等。

这些元件能够根据外部信号实现开关控制,从而实现对电流和电压的调节。

三相交交变频电路的电路结构主要包括整流桥、滤波电路、逆变桥和控制电路。

首先,整流桥将三相交流电转换为直流电,并经过滤波电路进行滤波处理,以去除电流中的高频脉冲成分。

接下来,逆变桥将滤波后的直流电转换为可变频率的交流电。

控制电路主要用于实现对逆变桥的开关控制。

常见的控制方法有脉宽调制(PWM)控制和电压调制控制。

脉宽调制控制通过改变逆变桥的开关时间来控制输出电压的大小。

而电压调制控制则通过改变逆变桥的开关角来控制输出电压的幅值。

为了验证三相交交变频电路的性能和稳定性,需要进行仿真分析。

在仿真过程中,可以使用软件如PSIM、Matlab/Simulink等来实现电路的建模和仿真。

首先,通过建立电路的数学模型,确定各个元件的参数和开关控制策略。

然后,仿真软件将根据模型和控制策略进行仿真计算,得到电路的输出电压、电流波形等参数。

通过分析这些仿真结果,可以评估电路的性能和优化设计。

总结起来,三相交交变频电路是一种将三相交流电转换为可变频率的交流电的电路。

它通过控制和调节电流和电压,实现对电能的调节和控制。

设计和仿真分析是验证电路性能和稳定性的重要步骤。

只有深入了解电路的原理和结构,并进行充分的仿真分析,才能设计出高性能的三相交交变频电路。

直流调速系统设计及仿真和交流调压调速系统建模及仿真-电气工程及其自动化

直流调速系统设计及仿真和交流调压调速系统建模及仿真-电气工程及其自动化

电气与电子信息工程学院《控制系统课程设计》课程设计报告名称:直流调速系统设计及仿真和交流调压调速系统建模及仿真专业名称:电气工程及其自动化班级:级(专升本)班学号:姓名:指导教师:设计地点:课程设计任务书2014~2015学年第一学期学生姓名:专业班级:电气工程及其自动化级专升本班指导教师:工作部门:电气教研室一、课程设计题目:直流调速系统设计及仿真和交流调压调速系统建模及仿真二、设计目的:《控制系统课程设计》是继“自动控制系统”课之后开设的实践性环节课程。

由于它是一门理论深、综合性强的专业课,单是学习理论而不进行实践将不利于知识的接受及综合应用。

本课程设计将起到从理论过渡到实践的桥梁作用,通过该环节训练达到下述教学目的:1、通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决问题的能力。

2、通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,使学生熟悉设计过程,了解设计步骤,达到培养学生综合应用所学知识能力、培养学生实际查阅相关设计资料能力的目的、培养学生工程绘画和编写设计说明书的能力。

3、通过课程设计,提高学生理论联系实际,综合分析和解决实际工程问题的能力。

通过它使学生理论联系实际,以实际系统作为实例,对系统进行分析设计,掌握控制系统设计必须遵循的原则、基本内容、设计程序、设计规范、设计步骤方法及系统调试步骤。

通过设计培养学生严肃认真、一丝不苟和实事求是的工作作风。

培养学生的创新意识和创新精神,为今后走向工作岗位从事技术打下良好基础。

三、课程设计内容(含技术指标)1.直流调速系统设计及仿真题目和设计要求不可逆直流调速系统设计:设计数据:直流电机额定功率P N=10KW;额定电压UN=220V, 额定电流I N=55A,极对数2P=4,转速n N=1000r/min;电枢电感L D=7mH;电枢电阻Ra=0.5Ω ,励磁电压U L=220V, 励磁电流I L=1.6A;要求系统调速范围D=10,S≤ 5%,电流脉动系数Si≤10%。

交流调速系统仿真报告模板

交流调速系统仿真报告模板

交流调速系统仿真报告模板背景交流调速系统是一种广泛应用于工业生产中的电动机控制系统。

它通过利用交流电源的变频器来控制电机的转速,从而满足生产中对转速精度和稳定性的要求。

在实际生产中,为了调整系统的参数,需要通过仿真软件对交流调速系统进行模拟,以便得到系统的实际参数,指导生产。

系统结构交流调速系统主要由源电机、变频器、控制器、负载等几部分组成。

其中,源电机和负载是系统的输入和输出,变频器作为中介,传递控制器产生的控制信号,实现对电机的调速控制。

仿真环境本次仿真调试工作基于MATLAB软件和Simulink仿真工具实现。

具体仿真流程如下:1.仿真仿真系统图2.设定仿真参数,包括系统输入信号、控制器参数等3.进行仿真计算,得出各个部分的输出数据4.对仿真结果进行分析和评估,得出系统的性能指标仿真系统图本次仿真调试的交流调速系统由源电机、变频器、控制器和负载四个部分组成。

其中,源电机作为输入信号源,变频器实现对电机转速的调整,控制器根据控制策略生成控制信号,最终控制负载的输出。

参数调试控制器参数设定在完成仿真系统模型搭建后,需要针对控制器的参数进行设定。

在本次仿真中,控制器参数主要包括比例系数、积分时间和微分时间等几项指标。

通过调整控制器参数,可以实现对系统转速精度和稳定性的调节,从而得到满足实际生产需求的具有鲁棒性的系统控制器。

仿真结果分析仿真结果分析主要分为两个方面,第一个方面是控制器参数的评估,第二个方面是整个系统的仿真效果评估。

在评估控制器的参数时,需要针对不同的控制器参数组合进行仿真计算,得到不同参数组合下的系统响应曲线和性能参数。

在评估整个系统的效果时,需要综合考虑系统在不同环节的输出情况,并对系统性能指标进行综合评估。

总结交流调速系统仿真是一项非常重要的工作,只有通过完善的仿真工作,才能得到满足实际生产需求的控制系统。

本文基于MATLAB和Simulink等仿真工具,对交流调速系统的设计和参数调试进行了详细的介绍和总结,旨在为读者提供参考,指导实际生产。

三相异步电机交流变频调速系统设计实验

三相异步电机交流变频调速系统设计实验

三相异步电机交流变频调速系统设计实验指导书仇国庆编写重庆邮电大学自动化学院测控技术实验中心2010/11/2三相异步电机交流变频调速系统设计实验指导书一、实验目的:1. 了解三相异步电机调速的方法;2. 熟悉交流变频器的使用;3. 掌握三相异步电机交流变频调速系统设计。

4. 交流异步电动机机械特性及变频调速特性测试二、控制系统设计要求系统设计要求能够实现三相异步电动机的如下状态的控制:正转;反转;停止;点动;加速;减速。

图1 控制系统硬件结构图三、基本知识:1.异步电动机调速系统种类很多,常见的有:(1)降电压调速;(2)电磁转差离合器调速(3)绕线转子异步电机转子串电阻调速(4)绕线转子异步电机串级调速(5)变极对数调速(6)变频调速等等。

2.三相交流异步电动机2.1 异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。

n转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑴磁场以⑵通电的转子绕组相对磁场运动,产生电磁力⑶ 电磁力使转子绕组以转速n 旋转,方向与磁场旋转方向相同2.2 旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。

这三个交变磁场应满足:⑴ 空间位置上互差rad 3/2π电度角。

由定子三相绕组的布置来保证⑵ 在时间上互差rad 3/2π相位角(或1/3周期)。

由通入的三相交变电流来保证。

2.3 电动机转速产生转子电流的必要条件:是转子绕组切割定子磁场的磁力线。

因此,转子的转速n 必须低于定子磁场的转速0n 。

两者之差称为转差:n n n -=∆0转差与定子磁场转速(常称为同步转速)之比,称为转差率:0/n n s ∆=同步转速0n 由下式决定:p f n /600=上式中,f 为输入电流的频率,p 为旋转磁场的极对数。

由此可得转子的转速:p s f n /)1(60-=3.异步电动机调速由转速p s f n /)1(60-=可知异步电动机调速有以下几方法:(1) 改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。

三相交流电动机变频调速系统的设计与仿真文献综述

三相交流电动机变频调速系统的设计与仿真文献综述

学校代码:11517学号:201250712207HENAN INSTITUTE OF ENGINEERING文献综述题目三相交流电动机变频调速系统的设计及仿真学生姓名专业班级学号系(部)指导教师(职称)完成时间 2014年3月25 日三相交流电动机变频调速系统的设计与仿真摘要电动机系统在工业生产活动中应用十分广泛。

2013年我国电动机年产量约为45000万千瓦,平均效率比发到国家低2-3个百分点,其拖动系统效率比发达国家低10-30个百分点。

我国采用电动机变频调速系统普遍较低,中小电动机基本是通用常规类型,还没有形成变频调速电动机系列,变频器电动机集成、智能电动机、机电一体化技术还不太成熟,与发达国家相比还有一定的差距。

随着电力电子器件的发展,以及控制理论的进步,变频调速以其调速精度高、调速控制范围广、回路保护功能完善、响应速度快、节能显著等优点,已经广泛应用于电力、制造等经济领域,交流变频调速技术以其优越的性能得到迅速发展。

1.掌握51系列单片机在三相电机控制中的特点、实现方式。

2.电机控制系统核心是选用89C51单片机(专用芯片)。

3.预期目标要具备单片机主控电路、测量电路、IPM接口电路、人机对话、显示电路等。

4.确定本设计的具体方案及步骤,完成硬件系统原理图及方框图、软件流程图、软件编程。

5.系统软件的设计,通过实验仿真,使整个系统能够基本实现电机的平滑调速。

关键词:单片机/Matlab/Simulink /SPWM /变频调速1 绪论交流变频调速技术自发展以来,以其优越的性能得到迅速发展,进入21世纪伴随着电力电子器件的发展,以及控制理论进步,变频调速以其调速精度高、调速控制范围广、回路保护功能完善,响应速度快、节能显著等优点,已经广泛的用于电力、制造、运输等国民经济领域。

电力电子器件的发展是交流变频调速技术发展的物质基础,现在,电力电子器件正在向大功率化、高频化、模块化、智能化发展,目前已广泛用于交流调速的功率模块采用IGBT。

三相电压型PWM整流器双闭环系统设计与仿真(精)

三相电压型PWM整流器双闭环系统设计与仿真(精)
Kv=2C
ev(9)Tv=4Tev
4三相VSR控制系统分析与仿真
运用MATLAB/SIMULINK仿真软件对系统进行仿真分析,
并且验证上述双闭环系统调节器整定方法的可行性。
根据上述双闭环系统调节器的整定方法可分别算出电流内环以及电压外环调节器参数,并由此可对系统进行仿真分析。
图6中的响应曲线为“模最佳”电压外环整定曲线与典型Ⅱ系统整定曲线的对比。由图中可看出,由“模最佳”整定法设计调节系统不仅具有良好的抗扰动性能,而且较快的动态响应速度。
[3]GregHoglund,JamesButler.Rootkits:SubvertingtheWindowskernel[M].AddisonWesleyProfessional,2005
[4]JeffreyR.ProgrammingapplicationforMicrosoftWindows[M].MicrosoftPress,1999.
通过仿真试验可看出三相电压型pwm整流器电压内环采用典型i型系统调节方式进行的调节器参数整定对系统电模最佳整定法得流具有较快的跟踪能力而电压外环通过到的系统响应不仅能够满足系统设计要求而且相比采用典型i阶系统整定法得到的调节系统具有更良好的抗扰动性能动态响应速度也得到了明显的改善
科技信息
博士・专家论坛
式中,Kip、——电流内环比例调节增益和积分调节增益KiI—
1引言
由于全控器件的不连续性以及系统模型的电流耦合性,
给系统设计带来了困难。因此,本文根据文献[1]中所提到的前馈解耦控制策略,首先对三相电压型PWM整流器(VSR)进行解耦,得到dq旋转坐标系中的电流解耦模型。
其次,三相VSR系统的控制有多种方式,其中双闭环控制系统由于控制结构简单、控制性能优良等优点被广泛采用。因此,本文根据三相VSR系统设计要求,提出了较为可行的双闭环系统设计方案并进行仿真验证。

三相交流调压调速系统设计与仿真

三相交流调压调速系统设计与仿真

三相交流调压调速系统设计与仿真首先,三相交流调压调速系统由三个主要组件组成:电源、调压模块和调速模块。

其中,电源提供三相交流电,调压模块控制电源输出电压,调速模块控制电机的转速。

在设计三相交流调压调速系统时,首先需要确定系统的功率需求和电源参数。

根据功率需求选择合适的三相交流电源,并确定其额定电压、频率和容量。

然后,设计调压模块,可以采用调压变压器、稳压器或变频器等来实现电源输出电压的调节。

调压模块需要具备过载保护、过压保护和短路保护等功能,以确保电源的稳定和安全运行。

接下来,设计调速模块。

调速模块根据输入的控制信号,控制电机的转速。

调速模块可以采用PID控制、开环控制或闭环控制等方式,根据具体应用需求选择合适的控制算法。

同时,还需要考虑电机的额定功率、额定转速和最大转矩等参数,以确保电机正常工作和安全运行。

在系统设计完成后,需要进行系统的仿真和验证。

通过使用仿真软件,如Matlab/Simulink、PSCAD或Proteus等,建立系统模型,模拟不同的工作条件和故障状况,评估系统的性能和稳定性。

同时,还可以使用实际硬件进行系统的验证和测试,对系统进行实时运行和实际负载测试。

在仿真和实验过程中,需要注意系统的工作温度、功率损耗和效率等参数。

同时,还需要进行系统的保护设计和故障排除,确保系统在故障情况下的安全运行和快速恢复。

总之,三相交流调压调速系统的设计与仿真是一个复杂而关键的过程。

通过合理选择电源、调压模块和调速模块,并进行细致的仿真和验证,可以确保系统的性能和稳定性,满足实际应用的需求。

三相晶闸管交流调压电路的设计与仿真

三相晶闸管交流调压电路的设计与仿真

三相晶闸管交流调压电路的设计与仿真晶闸管交流调压电路是一种常见的电力电子器件应用,广泛应用于工业控制和电力调节领域。

本文将介绍一个三相晶闸管交流调压电路的设计和仿真。

设计思路:三相晶闸管交流调压电路是通过控制晶闸管的导通角度来改变电路中的功率流动,从而实现调压功能。

其基本原理是将交流电源输入通过滤波电路滤波后接入晶闸管电路,通过调节晶闸管的触发角度来改变输出电压。

在设计过程中需要确定晶闸管的触发脉冲信号和滤波电路的参数。

第一步:确定晶闸管的触发脉冲信号晶闸管的触发脉冲信号可以通过计算或仿真得到。

在本设计中,我们使用三角波脉冲宽度调制(PWM)技术生成触发信号。

具体步骤如下:1.根据所需调压范围和输出电流要求,确定晶闸管的导通角度范围。

2.根据导通角度范围,计算得到对应的触发脉冲信号的周期和占空比。

3.利用MATLAB等工具生成符合条件的三角波脉冲信号。

4.调节触发脉冲信号的频率和幅值,以满足电路要求。

第二步:确定滤波电路的参数滤波电路的设计目的是使输入的交流电信号转化为稳定的直流电压。

在三相晶闸管交流调压电路中,常用的滤波电路是基于三相全控整流桥电路的三电感三电容滤波电路。

具体步骤如下:1.确定输出电压的波形要求,如稳定性要求、纹波要求等。

2.根据电路输入电压的峰值确定滤波电容的容值。

3.根据输出电流和输出电压的纹波要求确定滤波电感的参数。

4.根据晶闸管的最大导通角度和电源频率确定滤波电容的电压等级。

第三步:进行电路仿真电路设计完成后,可以利用电路仿真软件进行仿真。

常用的电路仿真软件有PSpice、Multisim等。

通过仿真可以验证电路的性能,并对电路进行优化。

在仿真中,可以进行以下几个方面的验证:1.电路的输入和输出波形是否满足要求。

2.输出电压的稳定度和纹波值是否满足要求。

3.晶闸管的导通角度是否可控。

根据仿真结果,可以进行电路参数的调整和优化,直至满足设计要求。

总结:通过以上设计和仿真步骤,可以得到一个稳定可靠的三相晶闸管交流调压电路。

三相交流调压电路仿真设计matlab

三相交流调压电路仿真设计matlab

三相交流调压电路仿真设计
一、实验目的
熟悉三相交流调压电路的特性。

二、实验设备
Simulink
三、实验设计
根据任一时刻导通晶闸管个数及半个周波内电流是否连续,可将0°-150°的移相范围分为如下三段:
(1)0°≤ a < 60°:电路处于三管导通与两管导通交替,每管导通180°-a 。


a =0°时是一种特殊情况,一直是三管导通。

(2)60°≤ a < 90°:任一时刻都是两管导通,每管的导通角都是120°。

(3)90°≤ a < 150°:电路处于两管导通与无晶闸管导通交替状态,每个晶闸管导通角为300°-2a。

而且这个导通角被分割为不连续的两部分,在半周波内形成两个断续的波头,各占150°-a。

四、实验内容
1.实验原理图(MATLAB)
2.实验结果仿真图
利用晶闸管设计三相交流调压电路,这种电路性能优越,很好的实现一种交流电到交流电的变换。

随着控制角α的不同,结果也不同。

由于电感有储能作用,电阻负载和阻感负载相比较,结果不同,且电感大时,谐波电流的含量要小一些。

因此,三相交流调压电路是通过控制一个周期内的导通角来实现调压功能的,它与交流调功电路不同,调功电路是通过改变通态周期数和断态周期数的比,可以方便的调节输出功率的平均值。

五、实验心得
本次实验是通过matlab对三相交流调压电路的仿真,本此实验与前面基本一样,都是通过基本的画图与器件的参数调节已达到预期的结果;通过本次试验我熟悉了三相交流调压电路的特性。

三相异步电动机变频调速系统设计及仿真.

三相异步电动机变频调速系统设计及仿真.

天津职业技术师范大学课程设计说明书题目:三相异步电动机变频调速系统设计及仿真指导老师:班级:机检1112班组员天津工程师范学院课程设计任务书机械工程学院机检1112 班学生课程设计课题:三相异步电动机变频调速系统设计及仿真一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日二、同组学生:三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资料等):1、目的和意义交流调速是一门重要的专业必修课,它具有很强的实践性。

为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。

2、具体内容写出设计说明书,内容包括:(1)各主要环节的工作原理;(2)整个系统的工作原理(包括启动、制动以及逻辑切换过程);(3)调节器参数的计算过程。

2.画出一张详细的电气原理图;3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节器参数进行校正,验证设计结果的正确性。

将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。

4、考核方式1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。

其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容);2.每天上午8:30--11:30在综合楼226房间答疑。

五、参考文献1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003指导教师签字:教研室主任签字:目录第一章绪论 (2)第二章系统总体设计方案 (4)2.1 概述 (4)2.2系统组成结构及工作原理 (4)2.2.1恒压频比控制下的机械特性 (4)2.2.2变频器 (6)2.2.3变频器主电路工作原理 (6)2.2.4整流电路 (7)2.2.5逆变电路 (7)2.2.6调节器 (9)2.2.7启动制动 (10)第三章硬件设计及选型 (11)3.1主电路的设计 (11)3.2整流电路设计 (11)3.3逆变电路的设计 (12)第四章simulink仿真 (13)4.1建立模型 (13)4.2 未变频时仿真结果 (14)4.3变频时仿真结果(基频以下调速) (15)4.4变频时仿真结果(基频以上调速) (17)关于变频调速的总结 (18)附电气图 (19)参考文献 (19)第一章绪论在交流调速中,交流电动机的调速方法有三种:变极调速、改变转差率调速和变频调速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理工大学华夏学院课程设计报告课程名称运动控制系统题目三相交流调压调速系统设计与仿真专业自动化班级1122学号姓名成绩________________________年_______ 月_______日目录课程设计任务书 (3)《运动控制系统》课程设计指导书 (5)摘要 (8)题目4: 三相交流调压调速系统设计与仿真 (8)1概述 (9)1.1电机发展概述 (9)1.2 交流调速系统的应用领域主要有三个方面: (9)1.3交流调速系统的分类 (9)2、异步电动机的机械特性 (10)2.1、异步电机固有机械特性 (10)2.2、异步电机调压调速的机械特性 (11)3、调压调速系统 (12)3.1调压电路 (12)3.2速度闭环控制的调压调速系统 (12)3.3 缺相保护 (13)4、Matlab仿真 (14)4.1调压电路仿真模型 (14)4.2参数设置 (15)4.3仿真总电路图 (16)4.4 仿真结果 (16)4.5结果分析 (17)5、小结 (18)参考文献 (18)理工大学华夏学院信息工程系课程设计任务书课程名称:运动控制系统指导教师:文彦班级名称:自动化1122 开课系、教研室:自动控制一、课程的性质、目的与任务课程设计是学习专业技术课所必需教学实践环节。

通过课程设计的教学实践,使学生所学的基础理论和专业知识得到巩固,并使学生得到运用所学理论知识解决实际问题的初步训练。

通过课程设计使学生利用所学理论知识和设计方法完成某种运动控制系统设计。

通过课程设计使学生掌握系统设计的步骤和一般方法,学会电路的设计,电器元件参数的计算、选型以及系统特性分析和评价标准。

掌握从收集资料、方案比较论证到电路设计、计算的整个设计过程,获得初步的实践锻炼,进一步提高学生的分析、综合能力。

二、课程设计容及基本要求指导教师负责学生的分组与课题选题,下达课程设计任务书,指导、督促、检查学生课程设计的进行情况,并结合答辩情况负责课程设计完成后学生的成绩考核。

1.完成交直流调速系统电路(主电路、控制电路、保护电路等)的设计2.完成电路主要元件参数的计算及电气元件的选择3.进行系统特性分析和评价4.绘制电路图,编制程序5.完成课程设计说明书三、课程设计选题课程设计题目一般由指导教师提供,也可以经老师审查后自主选题;课程设计分组进行,每组完成的容不能雷同。

设计参考题目如下:1.双闭环直流调速系统设计2.直流双极式可逆PWM调速系统设计3.直流双闭环有环流可逆调速系统设计4.三相交流调压调速系统设计5.异步电动机变压变频调速系统设计与仿真6. 配合控制直流双闭环自然环流系统设计7.双闭环逻辑无环流直流可逆调速系统设计8.直流单极式PWM调速系统设计四、课程设计步骤与方法1.根据课程设计任务书,在查阅文献的基础上,完成方案的分析和比较。

2.在确定方案后,根据设计要求及指标,完成主电路,控制电路和保护电路的设计。

(1)主电路:要确定电路形式,电力电子元件选择,保证可靠合理。

(2)控制电路:选择驱动单元(模块),满足控制特性。

(3)保护电路:选择合理的保护单元,确定系统运行安全。

3.进行主要元器件的参数计算,在计算基础上完成元器件的选择。

4.根据设计结果,对系统特性分析,并作客观评价。

5.绘制电路图或编制仿真程序。

6.编制课程设计说明书。

六、其它教学环节及考核方式1.设计说明书要求课程设计说明书应容充实,层次清楚,文理通顺,字数不少于6000字。

撰写总体方案设计说明书。

对方案的先进性、实用性和可行性进行论证,说明系统工作原理;撰写单元电路设计说明书。

画出单元电路图,说明工作原理,给出元件计算书,列出元件清单。

2.图纸要求画出整体电路原理图,图纸、元器件符号及文字符号应符合国家标准,可采用计算机辅助设计。

3.评分标准备注:成绩等级:优(90分—100分)、良(80分—89分)、中(70分—79分)、及格(60分—69分)、60分以下为不及格。

《运动控制系统》课程设计指导书课程名称:运动控制系统/Motion Control System课程类别:专业课学时/学分:10/2开课单位:信息工程系电子工程教研室开课对象:测控专业选定教材:《电力拖动自动控制系统》(第3版)伯时机械工业 2007.3参考书:运动控制系统,尔桂花,清华大学,2002.10一、目的和要求1.课程设计是学习专业技术课所必需教学实践环节。

通过课程设计的教学实践,使学生所学的基础理论和专业知识得到巩固,并使学生得到运用所学理论知识解决实际问题的初步训练。

2.通过课程设计,使学生利用所学理论知识和设计方法完成某种运动控制系统设计。

3.通过课程设计使学生掌握系统设计的步骤和一般方法,学会电路的设计,电器元件参数的计算、选型以及系统特性分析和评价标准。

4.掌握从收集资料、方案比较论证到电路设计、计算的整个设计过程,获得初步的实践锻炼,进一步提高学生的分析、综合能力。

二、课程设计容指导教师负责学生的分组与课题选题,下达课程设计任务书,指导、督促、检查学生课程设计的进行情况,并结合答辩情况负责课程设计完成后学生的成绩考核。

6.完成交直流调速系统电路(主电路、控制电路、保护电路等)的设计7.完成电路主要元件参数的计算及电气元件的选择8.进行系统特性分析和评价9.绘制电路图,编制程序10.完成课程设计说明书三、课程设计进度要求四、课程设计步骤与方法1.根据课程设计任务书,在查阅文献的基础上,完成方案的分析和比较。

2.在确定方案后,根据设计要求及指标,完成主电路,控制电路和保护电路的设计。

(1)主电路:要确定电路形式,电力电子元件选择,保证可靠合理。

(2)控制电路:选择驱动单元(模块),满足控制特性。

(3)保护电路:选择合理的保护单元,确定系统运行安全。

3.进行主要元器件的参数计算,在计算基础上完成元器件的选择。

4.根据设计结果,对系统特性分析,并作客观评价。

5.绘制电路图或编制仿真程序。

6.编制课程设计说明书。

五、课程设计说明书与图纸要求1.撰写总体方案设计说明书。

对方案的先进性、实用性和可行性进行论证,说明系统工作原理。

2. 撰写单元电路设计说明书。

画出单元电路图,说明工作原理,给出元件计算书,列出元件清单。

3. 画出整体电路原理图,图纸、元器件符号及文字符号符合国家标准4.课程设计说明书应容充实,层次清楚,文理通顺,字数不少于6000字。

5.设计图纸应齐全,应按GB4728要求绘制,可采用计算机辅助设计。

6.设计不得抄袭或与他人类同,不得在网上下载整段容作设计容。

六、课程设计评分标准备注:成绩等级:优(90分—100分)、良(80分—89分)、中(70分—79分)、及格(60分—69分)、60分以下为不及格。

运动控制系统课设指导及答辩时间安排自动化1122(指导老师:文彦)执笔:向明审核:审定:日期:2015.11摘要本课程设计介绍了异步电动机调压调速系统的几大组成部分,并着重讲述了三相异步电动机(M)、测速发电机(TG)、晶闸管交流调压器(TVC)的简单的工作原理。

在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。

还将调压调速与其他的调速方法相比,所具有的优点以及不足之处。

以转速单闭环调压调速系统为例,基于Matlab语言开发仿真软件,并进行仿真实验。

关键词:调压调速;MATLAB;三相异步电动机题目4: 三相交流调压调速系统设计与仿真初始条件:1.三相异步电机参数:P N=5.5KW,f=50Hz,U AB=380V ,n N=1470r/min,定子电流I S=18A,电流过载倍数λ=1.52.交流电源:三相380V,频率50Hz3.性能指标:调速围5:1,转速稳态精度在10%以,电网电压波动10%时,输出电压波动不大于5%。

要求完成的主要任务:1.主电路设计(可使用双向晶闸管调压电路)2.控制电路设计(电压或转速闭环,触发电路)3.保护电路设计(如缺相保护)4.其它电路设计(如电源、变压器等)课程设计说明书应严格按统一格式打印,资料齐全,杜绝抄袭,雷同现象。

满足如下要求:1.对系统设计方案的先进性、实用性和可行性进行论证,说明系统工作原理。

2. 画出单元电路图,说明工作原理,给出系统参数计算过程。

3. 画出整体电路原理图,图纸、元器件符号及文字符号符合国家标准。

1概述1.1电机发展概述直流电力拖动和交流电力拖动在19世纪先后诞生。

在20世纪上半叶的年代里,鉴于直流拖动具有优越的调速性能,高性能可调速拖动都采用直流电机,而约占电力拖动总容量80%以上的不变速拖动系统则采用交流电机,这种分工在一段时期已成为一种举世公认的格局。

交流调速系统的多种方案虽然早已问世,并已获得实际应用,但其性能却始终无法与直流调速系统相匹敌。

直到20世纪60-70年代,随着电力电子技术的发展,使得采用电力电子变换器的交流拖动系统得以实现,特别是大规模集成电路和计算机控制的出现,高性能交流调速系统便应运而生,一直被认为是天经地义的交直流拖动按调速性能分工的格局终于被打破了。

1.2 交流调速系统的应用领域主要有三个方面:1.2.1 一般性能的节能调速在过去大量的所谓“不变速交流拖动”中,风机、水泵等通用机械的容量几乎占工业电力拖动总容量的一半以上,其中有不少场合并不是不需要调速,只是因为过去的交流拖动本身不能调速,不得不依赖挡板和阀门来调节送风和供水的流量,因而把许多电能白白地浪费了。

如果换成交流调速系统,把消耗在挡板和阀门上的能量节省下来,每台风机、水泵平均都可以节约20-30% 以上的电能,效果是很可观的。

1.2.2 高性能的交流调速系统和伺服系统许多在工艺上需要调速的生产机械过去多用直流拖动,鉴于交流电机比直流电机结构简单、成本低廉、工作可靠、维护方便、惯量小、效率高,如果改成交流拖动,显然能够带来不少的效益。

但是,由于交流电机原理上的原因,其电磁转矩难以像直流电机那样通过电枢电流施行灵活的实时控制。

1.2.3 特大容量、极高转速的交流调速直流电机的换向能力限制了它的容量转速积不超过106 kwr/min,超过这一数值时,其设计与制造就非常困难了。

交流电机没有换向器,不受这种限制,因此,特大容量的电力拖动设备,以及极高转速的拖动,如高速磨头、离心机等,都以采用交流调速为宜。

1.3交流调速系统的分类1.3.1 转差功率消耗型这种类型的全部转差功率都转换成热能消耗在转子回路中。

在三类异步电动机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。

可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。

1.3.2 转差功率馈送型在这类系统中,一部分转差功率被消耗掉,大部分则通过变流装置回馈给电网或转化成机械能予以利用,转速越低,能回收的功率越多,这类系统的效率是比较高的,但要增加一些设备。

相关文档
最新文档