塑胶卡扣设计

合集下载

塑胶螺柱卡扣设计

塑胶螺柱卡扣设计

3.插入面.
最大插入面角度应进可能小,以减小装配力.
合理旳角度应该为25~30度,不小于等于45度, 会使装配困难.
4.保持面
5.梁旳宽度 *大多数旳梁 从根部到保持 面旳宽度不变 *宽度带锥度, 从薄壁伸出 旳梁应用较多.
6.设计注意点
培训结束,谢谢大家!~
B. 有一种凹台,能够减小螺丝一开始时旳应力 C. 此尺寸为底壳壁厚旳2/3,能够降低成型旳缩水旳
不良
D. 火山口,道理同上. E. 有加强筋能够增强抗扭转力. F. 有利于装配时导正,一般开始锁螺丝时易锁偏,这
么能够防止.
4.总结 * 选用合适塑胶材料旳正确旳螺旋方式(螺旋挤压或螺旋切 削) * 螺旋旳深度(俗称,吃深)参照上面第二点,至少不小于 它. * 对尤其主要旳地方要进行计算旳同步,要做试验来验证, 测试。
扣位旳操作原理
2.扣位分类
2.1 以功能来区别,扣位旳设计可分为成永久型 和可拆卸型两种.
永久型扣位旳设计以便装上但不轻易拆下,
可拆卸型扣位旳设计则装上、拆下均十分以便。 其原理是可拆卸型扣位旳勾形伸出部份附有合适 旳导入角及导出角以便扣上及分离旳动作,导入 角及导出角旳大小直接影响扣上及分离时所需旳 力度,永久型旳扣位则只有导入角而没有导出角 旳设计,所以一经扣上,相接部份即形成自我锁 上旳状态,不轻易拆下。请叁考下图.
塑胶螺柱,卡扣设计
一.塑胶螺柱设计
1.塑胶柱产生螺纹方式
A).螺纹成型 当螺纹旋入塑胶柱时,是经过冷流加工(俗称挤压)来产 生螺纹旳,塑胶会产生局部变形而不是被切削,故,称之 为螺纹成型。(无碎屑产生) B).螺纹切削 当螺纹切削螺旋迈进时,它会切削部分内塑胶壁,而完毕工 作,这么就会产生螺 纹及某些碎屑。

塑料卡扣连接设计

塑料卡扣连接设计

塑料卡扣连接设计1、连接类型卡扣可以是最终连接,或者也可以是其他连接出现之前的临时连接。

临时连接时,卡扣仅将连接保持到其他连接出现。

仅要求它们是足够坚固而有效的,能够将装配件与基本件定位保持到最终连接的出现。

永久锁紧件是不打算拆开的,如图2.15所示。

没有锁紧真正是永久的,但这种锁紧一旦结合便难以分开。

如图 2.15(a)为止逆锁紧件,其中锁紧倒刺装在不带拆卸通道的结合面中。

图2.15(b)是钩爪与壁上的带状功能件的结合。

所需要的装配力很大。

非永久锁紧件是打算拆开的。

非永久锁紧用两种锁紧类型加以区别。

可拆卸锁紧件被设计成,当预定分离力施加到零件上时,允许 零件分离,如图2.16(a)所示。

非拆卸锁紧件需要人工使锁紧件偏斜,如图2.16(b)所示。

2、悬臂钩的简明设计规则以下规则总体上是正确的,但对于具体产品,材料、零件以及加工的变化都会影响其适用性。

2.1梁根部厚度)应该约如果梁是从壁面突出来的,如图6.11(a)所示,那么梁根部的厚度(Tb为壁的厚度的50%-60%。

壁厚大于60%壁厚的梁的根部可能会因厚截面而存在冷却问题,进而会导致大的残余应力、缩孔和缩痕,缩孔会削弱功能件(最大应力点),外观表面上的缩痕是不能接受的。

如果梁是壁面的延伸,如图6.11(b)所示,那么Tb应等于壁的厚度。

如果梁的厚度必须小于壁厚的话,那么梁的厚度应该从壁面到所需厚度的部位沿梁的长度方向逐渐变化(斜率1:3),这样可以避免应力集中和充模问题。

2.2 梁的长度悬臂钩的总长(Lt )由梁的长度(Lb)和保持功能件长度(Lr)构成,如图6.12所示。

梁的长度(Lb )应该至少为5倍的壁厚(5Tb)但首选为10倍的壁厚(10Tb).若梁的长度大于10倍的壁厚,可能会发生翘曲和充模问题。

长度小于5倍的壁厚(5Tb)的梁将承受很大的剪切作用以及梁根部的弯曲。

这样不仅会增大在装配过程种损坏的可能性,而且也会使分析计算变得很不准确。

塑料卡扣设计原则和方法

塑料卡扣设计原则和方法

塑料卡扣设计原则和方法嘿,塑料卡扣这东西,设计起来可有不少讲究呢。

先说设计原则吧。

得结实耐用啊,不能轻轻一弄就坏了。

就像你买个鞋子,得结实点,不能走两步就开胶了。

卡扣得能承受一定的拉力和压力,不然用不了多久就报废了。

还得方便使用。

不能设计得太复杂,让人半天都扣不上或者打不开。

就像你开门,不能弄个特别难开的锁,那多费劲啊。

卡扣要让人一按或者一拉就能轻松操作。

尺寸得合适。

不能太大也不能太小,得和要连接的东西匹配好。

就像你买帽子,得买个大小合适的,不能太大戴不住,也不能太小戴不进去。

颜色也不能随便选。

得和整体的设计搭配协调,不能太突兀。

就像你穿衣服,颜色得搭配好,不能红配绿赛狗屁。

再说说设计方法。

可以先确定要连接的东西的形状和尺寸,然后根据这个来设计卡扣的形状。

要是连接的是两个平板,那就可以设计个插扣,像拼图一样插在一起。

要是连接的是圆形的东西,那就可以设计个抱箍式的卡扣,把圆东西抱住。

材料也很重要哦。

得选质量好的塑料,不能太脆也不能太软。

太脆了容易断,太软了又扣不紧。

可以多试试不同的塑料材料,看看哪个最合适。

设计的时候还要考虑生产工艺。

不能设计得太复杂,让生产厂家做不出来。

就像你画个画,不能画得太复杂,让画家都画不出来。

我给你讲个事儿吧。

有一次我买了个塑料盒子,上面的卡扣设计得特别不好用。

要么扣不上,要么一扣就断了。

后来我自己想了个办法,用一些小零件改装了一下卡扣,这下好用多了。

从那以后,我就知道了塑料卡扣设计得好很重要。

下次你要是设计塑料卡扣,就知道该怎么做了吧。

塑胶模具中的常见的卡扣设计

塑胶模具中的常见的卡扣设计

标准类别 产品类 设计标准名称 P-5卡扣设计 文件编号:页 4 版 B因部件装配过程中,经常出现以下两种情况:1、卡扣装配后扣不紧、易松脱。

2、卡扣扣入时较紧,极端情况出现断扣。

为了解决以上问题,根据长期以来的实践经验,卡扣设计有如下注意事项:一、 卡扣常规结构1、卡扣采取 “一边卡扣而另一边采用限位卡扣”――左下图2、卡扣采取“两边都用卡扣”;――右下图图13、卡扣的导向斜面应光滑,导向斜面上不能出现分型线,且卡扣的各个尖角应用小圆弧过渡,来保证卡扣的动作平稳。

二、卡扣的角度主动卡扣(如面板)的角度小于被动卡扣(如面板体)的角度,1、 否则会出现被动卡扣受力点在卡扣斜面上的自锁情况,易压断卡扣;2、 不应出现角度相同情况,因为会出现面接触,摩擦力较大,易压断卡扣; 如:面板卡扣的角度范围为α=20°~30°(图2),面板体卡扣的角度范围为β=30°~40°(图3))(图2:面板卡扣角度示意图) (图3:面板体卡扣角度示意图)三、 卡扣尺寸要求1、卡扣最小尺寸:主动卡扣(如进风面板)前端最小尺寸L1,应小于被动卡扣(面板体)的开口最小尺寸L2,否则会出现面板体卡扣受力点在斜面上的情况,易压断卡扣;见图4和图5:(图4:面板卡扣最小尺寸示意图) (图5:面板体卡扣最小尺寸示意图)2、卡扣的扣合尺寸:主动卡扣(进风面板)和被动卡扣(面板体)的扣合面尺寸L应大于1mm;见下图6。

(图6:面板与面板体卡扣扣合尺寸示意图)3、卡扣与限位卡扣的距离:对于“一边卡扣而一边采用限位卡扣”的装配部件,主动卡扣与被动限位卡扣的距离L0应为: 0.5mm≤ L0≤0.8mm;如图7。

(图7:面板体限位与面板体卡扣距离示意图)、4、卡扣的弹性段高度:被动卡扣(如面板体)的弹性段应足够长,卡扣的弹性段高度H的范围为:10mm ≤ H≤20mm,否则被动卡扣的弹性较差;如图8(图8:面板体卡扣弹性段高度示意图)编写审批会签批准。

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣塑胶产品结构设计卡扣在塑胶产品的结构设计中,卡扣是一种常见且重要的连接方式。

它不仅能够实现产品的快速装配和拆卸,还能在一定程度上保证产品的结构稳定性和密封性。

接下来,让我们深入了解一下塑胶产品结构设计中的卡扣。

一、卡扣的定义与作用卡扣,简单来说,是通过塑胶部件自身的弹性变形,实现两个或多个部件之间的连接或固定。

其作用主要体现在以下几个方面:1、装配便捷性:相较于传统的螺丝连接或胶水粘接,卡扣能够大大提高装配效率,减少装配时间和成本。

2、可拆卸性:在需要维修、更换部件或回收产品时,卡扣连接允许部件轻松分离,而不会对产品造成损坏。

3、增强结构稳定性:合理设计的卡扣可以在产品使用过程中提供一定的支撑和固定,增强整体结构的稳定性。

4、降低成本:减少了螺丝、胶水等附加连接件的使用,降低了材料和生产成本。

二、卡扣的分类根据不同的结构和工作原理,卡扣可以分为多种类型,常见的有以下几种:1、悬臂卡扣这是最常见的一种卡扣类型。

它通常由一个悬臂梁和一个卡钩组成。

在装配时,悬臂梁发生弹性变形,卡钩卡入对应的卡槽中,实现连接。

2、环形卡扣环形卡扣呈环状结构,通过自身的弹性收缩或扩张来实现与其他部件的连接。

3、扭转卡扣这种卡扣通过部件的扭转来实现连接和固定,具有较好的抗振动和抗松动性能。

4、插销式卡扣类似于插销的工作原理,通过插入和拔出动作实现连接和分离。

三、卡扣设计的要点1、材料选择塑胶材料的特性对卡扣的性能有着重要影响。

一般来说,应选择具有较高弹性模量和良好韧性的材料,如 ABS、PC 等。

同时,还需要考虑材料的耐疲劳性和耐环境性。

2、尺寸设计卡扣的尺寸包括悬臂长度、厚度、卡钩尺寸等。

这些尺寸的设计需要综合考虑材料的力学性能、装配力的大小以及连接的可靠性。

过长或过短的悬臂、过大或过小的卡钩都可能导致卡扣失效。

3、脱模斜度在模具设计中,要为卡扣设计合适的脱模斜度,以保证产品能够顺利脱模,同时不影响卡扣的功能。

塑胶件卡扣设计1

塑胶件卡扣设计1

塑胶件卡扣设计1塑胶卡扣是连接两个零件的一种非常简单、经济且快速的连接锁定方式;所有类型的卡扣接头都有一个共同的原理,即一个部件的突出部分,如卡钩、螺柱或珠,在连接操作过程中会短暂地偏转,并在配合部件的凹陷(咬边)处卡住。

在连接操作后,卡合功能应该恢复到无应力状态。

根据卡扣扣合面的形状,卡扣可以是可分离的或不可分离的;根据不同的设计,分离卡扣所需的力有很大的不同。

在设计卡扣时,特别需要考虑以下几个因素:・装配过程中的操作力・拆除过程中的拆除力卡扣设计有很大的灵活性,由于在配合过程中需要一定的弹性,故卡扣连接结构常用在塑胶零件上。

卡扣主要有如下几种基本形式:・悬臂卡扣悬臂卡扣装配时主要承受弯曲力・U型卡扣U型卡扣是由悬臂卡扣衍生的卡扣结构・扭力卡扣装配时卡扣主要承受扭力(剪切力)・环形卡扣轴对称结构,卡扣装配时承受多方向应力・球形卡扣一整圈连续的卡扣,实现两个零件的连接悬臂卡扣图1面板模块上的四个悬臂卡扣可将模块牢牢地固定在底座上,同时扣合面带有一定斜度,在需要时仍可将模块移除。

(图1)图2面板通过一侧的刚性卡扣与另一侧的弹性悬臂卡扣结合,也可以实现经济可靠的卡扣连接。

(图2)(图3)图4所示非连续环形卡扣设计,与后面所说环形卡扣近似;在环形卡扣上增加一些切口,使卡扣具有更好的弹性,同时安装时卡扣受力也变为主要承受弯曲力;所以这种卡扣我们也归类为悬臂弹性卡扣。

(图4)U型卡扣属于悬臂弹性卡扣的一种,在简单悬臂卡扣基础上,增加U型结构,进一步增加卡扣弹性。

U型卡扣可以具有很大的扣合保持力,同时,U型槽的存在,使得拆卸时可以手动拨动卡扣,方便拆卸。

这种卡扣结构常见于电池盖及一些需要多次拆卸的卡扣结构。

扭力卡扣常用于需要多次拆卸的卡扣结构,如连接器扣合。

不同于U型卡扣,扭力弹性卡扣,主要是通过一个转轴(或扭转支点)传递力矩实现卡扣的扣合与拆卸。

环形卡扣通过一整圈连续的卡扣,实现两个零件的连接。

这种卡扣常用于笔筒、灯罩等产品,由于卡扣是连续一整圈,本身不具有弹性,扣合与拆卸过程,主要通过零件材料本身变形,故卡扣扣合量一般做的比较小。

塑胶件卡扣设计1

塑胶件卡扣设计1

塑胶件卡扣设计1塑胶卡扣是连接两个零件的一种非常简单、经济且快速的连接锁定方式;所有类型的卡扣接头都有一个共同的原理,即一个部件的突出部分,如卡钩、螺柱或珠,在连接操作过程中会短暂地偏转,并在配合部件的凹陷(咬边)处卡住。

在连接操作后,卡合功能应该恢复到无应力状态。

根据卡扣扣合面的形状,卡扣可以是可分离的或不可分离的;根据不同的设计,分离卡扣所需的力有很大的不同。

在设计卡扣时,特别需要考虑以下几个因素:▪装配过程中的操作力▪拆除过程中的拆除力卡扣设计有很大的灵活性,由于在配合过程中需要一定的弹性,故卡扣连接结构常用在塑胶零件上。

卡扣主要有如下几种基本形式:▪悬臂卡扣悬臂卡扣装配时主要承受弯曲力▪U型卡扣U型卡扣是由悬臂卡扣衍生的卡扣结构▪扭力卡扣装配时卡扣主要承受扭力(剪切力)▪环形卡扣轴对称结构,卡扣装配时承受多方向应力▪球形卡扣一整圈连续的卡扣,实现两个零件的连接悬臂卡扣:图1面板模块上的四个悬臂卡扣可将模块牢牢地固定在底座上,同时扣合面带有一定斜度,在需要时仍可将模块移除。

(图1)图2面板通过一侧的刚性卡扣与另一侧的弹性悬臂卡扣结合,也可以实现经济可靠的卡扣连接。

(图2)图3所示的卡扣连接方式具有很大的保持力。

同时从箭头处缺口按压弹臂卡扣,也可以实现轻松拆卸。

(图3)图4所示非连续环形卡扣设计,与后面所说环形卡扣近似;在环形卡扣上增加一些切口,使卡扣具有更好的弹性,同时安装时卡扣受力也变为主要承受弯曲力;所以这种卡扣我们也归类为悬臂弹性卡扣。

(图4)U 型卡扣属于悬臂弹性卡扣的一种,在简单悬臂卡扣基础上,增加U 型结构,进一步增加卡扣弹性。

U 型卡扣可以具有很大的扣合保持力,同时,U 型槽的存在,使得拆卸时可以手动拨动卡扣,方便拆卸。

这种卡扣结构常见于电池盖及一些需要多次拆卸的卡扣结构。

扭力卡扣常用于需要多次拆卸的卡扣结构,如连接器扣合。

不同于U 型卡扣,扭力弹性卡扣,主要是通过一个转轴(或扭转支点)传递力矩实现卡扣的扣合与拆卸。

4.塑料卡扣设计思想

4.塑料卡扣设计思想

以一经扣上,相接部份即形成自我锁上的状态,不容易拆
下。
分类
永久式及可拆卸式扣位的原理
分类
球 型
•若以扣位的

形状来区分,

则大致上可

分为环型扣、
拆 卸 式)
单边扣、球 形扣
塑料卡扣应用的优点
优点
•无需其它材料,降低产品成本 •操作简单 •有替代螺丝,螺母,华司等昂贵金属件的功能 •适应如一般塑料件的组装 •没有像焊接与点胶的复杂操作技术要求 •一些塑胶产品能重复撤装利用
不同切面形式的悬梁扣位及其变形量之比较
•当两件零件扣上时,其中 一件零件的勾形伸出部份 被相接零件的凸缘部份推 开,直至凸缘部份完结为 止; •及后,藉着塑胶的弹性, 勾形伸出部份即时复位, 其后面的凹槽亦即时被相 接零件的凸缘部份嵌入, 此倒扣位置立时形成互相 扣着的状态。
工设101-16 李丹
缺点
塑胶卡扣应用的缺点
•由如倒扣需要较高的模具费用 •易出现一些常见的的不良,如卡扣组装不到位或习惯 性的空装 •卡扣成型很难做到完全密合,组装后在重力的作用下 经常会有一些蠕动 •如果卡扣设计不合理或较弱会影响到产品的质量与销 售
•扣位的设计一般是离不开悬梁式的方法 •悬梁式的延伸就是环型扣或球型扣 •所谓悬梁式,其实是利用塑胶本身的挠曲变形 的特性,经过弹性回复返回原来的形状。 •扣位的设计是需要计算出来,如装配时之受力, 和装配後应力集中的渐变行为,是要从塑料特性 中考虑。
——
塑料卡扣设计思想
•以功能来区分:永久型和可拆卸型
分类
•区别:
永久型扣位的设计方便装上但不容易拆下
可拆卸型扣位的设计则装上、拆下均十分方便
•原理:

塑胶件的结构设计:卡扣篇(中)

塑胶件的结构设计:卡扣篇(中)

塑胶件的结构设计:卡扣篇(中)卡扣设计的原则卡扣设计的最终目标是要实现两个零件之间的成功连接固定,要达到连接固定的效果,卡扣设计时需要从以下几方面进行考虑:连接可靠性、约束完整性和装配协调性,它们是卡扣连接成功的关键要求,其他要求还应该包括制造工艺的可行性、成本的高低等。

连接可靠性,是卡扣设计中最重要的一个设计指标,一般会从以下几个方面去考虑:l 连接符合功能预期;l 连接强度;l 在用户使用过程中不发生分离、松动、破损、噪声;l 能够适应使用过程中因环境因素引起的产品变形或蠕变;l 保证维修拆卸的功能与设计预期一致。

实际上,在产品设计过程中,会根据产品的定位、部件的功能以及成本去选择需要满足的连接可靠性要求,并不是每个设计都需要完全满足以上要求,比如有些设计不需要经常拆卸或维修,那么设计符合前三点就可以,如果需要经常拆卸,那么就需要考虑拆后卡扣的功能与设计预期一致,此时卡扣设计的类型选择或具体设计参数上就会有所改变,比如下图中同样是电池盖,但是应用在充电宝和遥控器上卡扣的设计就会不同。

下面针对悬臂梁卡扣的连接强度计算进行分析介绍:一、常见的悬臂梁卡扣的主要有以下参数:1、梁根部的厚度TbTb一般为壁厚Tw的50%~60%,太小可能会存在充模和流动问题,太大可能会存在冷却问题,进而会导致大的残余应力、缩孔和缩痕。

当梁是从壁面延伸出来时,Tb可等于Tw。

2、梁的长度Lb悬臂梁卡扣的总长(Lt)由梁的长度(Lb)和保持元件长度(Lr)组成,Lb取值范围一般为5Tb~10Tb,大于10Tb时,可能会存在翘曲和充填问题,小于5Tb时,梁的柔性较差,梁的根部承受较大的弯曲,从而增大损坏的可能性。

(对于较硬或较脆的塑料,应采用较大的长度与厚度的比值)。

3、插入面角度α插入面角度会影响装配力,角度越大,装配力就越大,一般合理的角度在25°~35°之间,如果因空间问题(即α越小,保持元件的长度Lr越长),最大不要超过45°。

塑胶产品结构设计卡扣

塑胶产品结构设计卡扣

2.4,扣位2.4.1,扣位也称卡扣,是塑胶件连接固定的常用结构,在强度要求不高的情况下可以用于代替螺丝固定.扣位设计在于“扣”,需要结合紧密,保证测试强度,达到安装目的即可.卡扣常做在装饰件固定,面底壳组装,屏固定,按键限位,盖体扣合,方向球等结构处.2.4.2,卡扣分公扣,母扣,公扣为凸,母扣为凹.卡扣原理:扣合前:有导向斜角引导扣合方向,公母扣均做导入角,一般取60°,45°.扣合中:公扣弹性臂变形压入,弹性臂要保证变形,强度要足够,一般变形量≧扣合量.扣合后:公扣凸与母扣凹贴合,分离方向不易取出,要求扣合面或扣合角小于导向斜角.2.4.3,卡扣常见形式及尺寸a.装饰件扣合,一般为一端插入,另一端扣合,扣合量0.3-0.7mm,插入0.6-1.5mm,如装饰片,电池盖,屏固定及充电器面底壳扣合等,也有全扣位结构,扣位较多,还会增加辅助导向骨.如手机盖,在此不做介绍.图2.4.3ab.下图结构常见内部隐藏扣,不易拆卸,死扣结构;在公扣部件上做插穿结构,可通过插穿孔方便拆卸.如路由器将公扣结构作在面壳壁厚内侧,母扣做在底壳内部,很难拆卸.液晶显示屏外壳也做类似死扣.图2.4.3bc.下图结构常见面底壳组装,第一组图在组合后常会在公扣端加管位骨限制错开,第二组则可以不用特别要求.母扣与公止口组合,公扣与母止口组合;和母扣与母止口组合,公扣与公止口组合的两种情况可以按下面两组图结构进行相应修改即可,安装方式类似.图2.4.3cd.强脱扣位,由材质,韧性决定,材质越软可以强脱越多.一般单边强脱ABS:0.3mm,PC:0.5,PP:0.8, TPE:1.5等,强脱同所承载的壁厚韧性有关,韧性足可以稍微加大强脱深度.具体依结构实际情况定.图2.4.3de.手感扣,通常作在滑动结构上,如电池盖,旋转环等结构.一端为弹扣状,另一端为齿或圆柱.另一种不作弹扣,直接强扣强出,扣合量一般在0.3-0.8之间.F.其他常见扣:2.4.4,卡扣设计考虑要素卡扣需要考虑布局数量位置,安装形式,安装强度,注意事项:a.规则外形,布局按右图方形圆形卡扣分布,方形壳体宽度≤20,宽度不做扣位;20<壳体宽度≤50,作1至2个扣位;圆形壳体一般扣位会均布,如做防呆,可以将扣位稍微移动,保证扣位分布均匀.b.不规则外形,按装配方向选择安装形式,曲线边凸凹处易出现翘曲,受力错位脱开问题,常做扣位+管位骨结构;c.扣位位置尽量靠近转角,防止翘曲,并与螺钉配合组装;卡扣一般在保证强度情况下尽量作少.d.卡扣安装形式与正反扣,要考虑组装,拆卸的方便,考虑模具的制作;e.卡扣处注意防止缩水与熔接痕;f.卡扣斜顶运动空间不小于5,一般取值8,退位不能有干涉,最好为平面,;g.在卡扣上非安装边做R角,不要干涉扣合过程.h.扣位导正,特征:止口,管位骨等,止口,管位骨在上述有说明.。

塑胶件的结构设计:卡扣篇(下)

塑胶件的结构设计:卡扣篇(下)

塑胶件的结构设计:卡扣篇(下)接上篇:塑胶件的结构设计:卡扣篇(上);塑胶件的结构设计:卡扣篇(中)卡扣设计的原则卡扣设计的最终目标是要实现两个零件之间的成功连接固定,要达到连接固定的效果,卡扣设计时需要从以下几方面进行考虑:连接可靠性、约束完整性和装配协调性,它们是卡扣连接成功的关键要求,其他要求还应该包括制造工艺的可行性、成本的高低等。

1. 连接可靠性连接可靠性最核心的一点就是卡扣需要保证有足够的保持强度,以下为悬臂梁卡扣保持力的一般公式:由以上公式可知,保持力Fr 跟Wb、E、Tb、Lb、μs、βe有关;其中Wb:卡扣的宽度;E:卡扣的弹性模量;Tb:卡扣的厚度;Lb:卡扣的长度;Y:卡扣保持面的深度;μs:卡扣的摩擦系数;βe:卡扣的保持面角度。

上面参数,除了弹性模量E、摩擦系数μs跟卡扣所用的材料有关外,其他参数跟卡扣的结构设计相关;通过增大Wb、Tb/Lb的比值、Y、βe都可以增强卡扣的保持强度。

1)增大Wb增大卡扣的宽度Wb,可以增大梁的刚度以及卡扣保持面与配合件的面积,理论上卡扣宽度越大,卡扣的保持强度就越大,但是实际设计中,考虑到制造与装配,常常通过设计多个小卡扣代替一个大卡扣。

卡扣的排布:卡扣应均匀设置在零件的四周,以均匀承受载荷,对于容易变形的地方(如零件的角落),可以考虑尽量让卡扣靠近这些地方。

整圈卡扣一般用在卡合量不大的零件或设计在较软材料上的零件上,常常采用强脱出模,比如常见的一些日化产品的瓶盖。

对于一些宽度较大的卡扣,为了提高母扣的强度,可以在大卡扣中设计两个小卡扣,如下图。

2)增大Tb/Lb的比值增大Tb或减小Lb都可以增大Tb/Lb的比值,实际上也是增大梁的刚度,但是Tb不宜过大,否则会引起外观不良,合理的方式是通过增加加强筋或者局部淘胶,如下图。

Lb也不宜过小,否则难于装配(虽然保持强度增大了),如果因空间限制,Lb过小的情况下,需适当减小Tb,但为了兼顾卡扣的强度,可以考虑在卡扣根部添加加强筋,如下图。

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣塑胶产品结构设计卡扣在塑胶产品的结构设计中,卡扣是一种常见且重要的连接方式。

它不仅能够实现部件的快速装配和拆卸,还能在一定程度上节省成本、提高生产效率。

接下来,让我们深入了解一下塑胶产品结构设计中的卡扣。

卡扣设计的基本原理是利用塑胶材料的弹性变形来实现连接和固定。

通常,卡扣由卡勾和卡槽两部分组成。

当卡勾插入卡槽时,塑胶材料发生弹性变形,产生一定的扣合力,从而将两个部件牢固地连接在一起。

在设计卡扣时,首先要考虑的是材料的选择。

常用的塑胶材料如聚丙烯(PP)、聚乙烯(PE)、丙烯腈丁二烯苯乙烯共聚物(ABS)等都具有一定的弹性和强度,适合用于卡扣设计。

但不同材料的性能差异较大,例如 PP 的柔韧性较好,但强度相对较低;ABS 的强度较高,但成本也相对较高。

因此,需要根据产品的具体要求和使用环境来选择合适的材料。

卡扣的形状和尺寸设计也至关重要。

卡勾的形状可以是直勾、斜勾或者弯勾等,不同的形状会影响扣合力的大小和稳定性。

卡槽的形状和深度则需要与卡勾相匹配,以确保良好的连接效果。

同时,卡扣的尺寸要合理设计,过大可能导致装配困难,过小则扣合力不足,容易松脱。

在设计过程中,还需要考虑卡扣的装配方向和拆卸方向。

一般来说,装配方向应该尽量简单、直接,避免复杂的操作。

拆卸方向则要考虑是否需要特殊的工具或者操作方式,以防止在使用过程中意外松脱。

另外,卡扣的分布位置也需要精心规划。

如果卡扣分布不均匀,可能会导致部件受力不均,影响连接的稳定性和产品的整体性能。

通常,在受力较大的部位应该适当增加卡扣的数量和密度,以增强连接强度。

为了确保卡扣的可靠性,还需要进行力学分析和测试。

通过有限元分析等方法,可以模拟卡扣在装配和使用过程中的受力情况,预测可能出现的问题,并进行优化设计。

在实际生产中,还需要进行样品测试,验证卡扣的扣合力、耐久性等性能是否满足要求。

在塑胶产品结构设计中,卡扣的设计还需要考虑模具制造的可行性。

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣1,扣位扣位也称卡扣是塑胶件连接固定的常用结构,在强度要求不高的情况下可以用于代替螺丝固定.扣位设计在于“扣”,需要结合紧密,保证测试强度,达到安装目的即可.卡扣常做在装饰件固定,面底壳组装,屏固定,按键限位,盖体扣合,方向球等结构处.2,卡扣分公扣,母扣,公扣为凸,母扣为凹.卡扣原理:扣合前:有导向斜角引导扣合方向,公母扣均做导入角,一般取60°,45°.扣合中:公扣弹性臂变形压入,弹性臂要保证变形,强度要足够,一般变形量≧扣合量.扣合后:公扣凸与母扣凹贴合,分离方向不易取出,要求扣合面或扣合角小于导向斜角.3,卡扣常见形式及尺寸a.装饰件扣合,一般为一端插入,另一端扣合,扣合量0.3-0.7mm,插入0.6-1.5mm,如装饰片,电池盖,屏固定及充电器面底壳扣合等,也有全扣位结构,扣位较多,还会增加辅助导向骨.如手机盖,在此不做介绍.b.下图结构常见内部隐藏扣,不易拆卸,死扣结构;在公扣部件上做插穿结构,可通过插穿孔方便拆卸.如路由器将公扣结构作在面壳壁厚内侧,母扣做在底壳内部,很难拆卸.液晶显示屏外壳也做类似死扣.c.下图结构常见面底壳组装,第一组图在组合后常会在公扣端加管位骨限制错开,第二组则可以不用特别要求.母扣与公止口组合,公扣与母止口组合;和母扣与母止口组合,公扣与公止口组合的两种情况可以按下面两组图结构进行相应修改即可,安装方式类似.d.强脱扣位,由材质,韧性决定,材质越软可以强脱越多.一般单边强脱ABS:0.3mm,PC:0.5,PP:0.8,TPE:1.5等,强脱同所承载的壁厚韧性有关,韧性足可以稍微加大强脱深度.具体依结构实际情况定.e.手感扣,通常作在滑动结构上,如电池盖,旋转环等结构.一端为弹扣状,另一端为齿或圆柱.另一种不作弹扣,直接强扣强出,扣合量一般在0.3-0.8之间.F.其他常见扣:4,卡扣设计考虑要素卡扣需要考虑布局数量位置,安装形式,安装强度,注意事项:a.规则外形,布局按下图方形圆形卡扣分布,方形壳体宽度≤20,宽度不做扣位;20<壳体宽度≤50,作1至2个扣位;圆形壳体一般扣位会均布,如做防呆,可以将扣位稍微移动,保证扣位分布均匀.b.不规则外形,按装配方向选择安装形式,曲线边凸凹处易出现翘曲,受力错位脱开问题,常做扣位+管位骨结构;c.扣位位置尽量靠近转角,防止翘曲,并与螺钉配合组装;卡扣一般在保证强度情况下尽量作少.d.卡扣安装形式与正反扣,要考虑组装,拆卸的方便,考虑模具的制作;e.卡扣处注意防止缩水与熔接痕;f.卡扣斜顶运动空间不小于5,一般取值8,退位不能有干涉,最好为平面,;g.在卡扣上非安装边做R角,不要干涉扣合过程.h.扣位导正,特征:止口,管位骨等,止口,管位骨在上述有说明.。

u型塑料卡扣设计标准

u型塑料卡扣设计标准

u型塑料卡扣设计标准
U型塑料卡扣是一种常见的连接零件,常用于固定或连接不同材料的构件。

它的设计标准主要包括以下几个方面:
1. 尺寸标准:U型塑料卡扣的尺寸应符合国家标准或行业标准规定。

尺寸包括长度、宽度、高度等多个方面的参数,这些参数应根据具体应用情况确定,一般应与需要连接的构件相匹配。

2. 材料标准:U型塑料卡扣应采用符合相关标准的塑料材料制造。

塑料材料应具有一定的强度和韧性,能够承受一定的拉力和压力。

常用的塑料材料包括聚丙烯、聚乙烯等,具体选择应根据使用环境和负荷条件确定。

3. 结构标准:U型塑料卡扣的结构设计应合理,确保其连接或固定的牢固性。

一般来说,它应具有适当的弯曲强度和回弹力,以便更好地固定构件。

此外,其表面应光滑,不得存在明显的毛刺或凹凸,以免损伤其它构件或用户。

4. 表面处理:根据具体用途和环境,U型塑料卡扣的表面可以进行一定的处理。

例如,可以进行光滑处理、防腐处理等,以提高其耐用性和防水性能。

5. 辅助标志:在U型塑料卡扣上可以标注一些辅助信息,如
生产厂家、型号、承载能力等。

这些信息有助于使用者了解并正确使用该卡扣,并能及时进行相关维护和更换。

总的来说,U型塑料卡扣的设计要符合额定参数要求,材料符
合标准,结构设计合理,表面处理光滑,辅助标志清晰,以确保其在连接或固定构件时能够安全、牢固地发挥作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23
卡勾的設計對成品結構的影響
因為斜頂退位的原因,挨近角落的卡勾孔不可能都挨近拐角,但盡 可能把其中一處卡扣靠近拐角處,另一邊卡勾孔避開斜頂孔退位即 可,這樣才能避免組裝間隙和落摔不過等問題
斜頂的退位 斜頂的退位
24Leabharlann 卡勾的設計對成品結構的影響
卡槽避空的位置盡量不要做在兩個電池相 接的地方,這樣容易造成直邊凸起
縣臂式不規則恆截面塑膠卡勾結構的基本原理
其它各式截面的臂
以下公式是適應於臂為不規則截面(但為不變化的)的懸臂式卡勾的計算方式 Es=相交系數 L=臂的長度 I=當前截面的慣性 e=中心到外形的距離 ε=是材料充許最大的變形度
10
縣臂式不規則恆截面塑膠卡勾結構的基本原理
11
縣臂式變截面塑膠卡勾結構的基本原理
塑膠卡扣設計
1
塑膠卡扣的一般性問題
◆ 塑膠卡扣現在被廣泛的應用在玩具及汽車配件和家電等各個領域
◆ 一般卡扣都有一個共同的特點,由鎖緊件與定位件組合而成。卡扣的形 狀各式各樣不管是縣臂式還是圓環形,它們的功能都是相同的,約束與 分離功能
◆ 卡扣設計的好壞直截影響產品的裝配和功能,如裝配難,功能件失效, 零件有吱吱的響聲零件扭曲或松動等.
2
塑膠卡扣應用的優點
◆ 無需其它材料,降低產品成本 ◆ 操作簡單 ◆ 有替代螺絲,螺母,華司等昂貴金屬件的功能
◆ 適應如一般塑膠件的組裝
◆ 沒有像焊接與點膠的復雜操作技術要求 ◆ 一些塑膠產品能重復撤裝利用
塑膠卡扣應用的缺點
◆ 由如倒扣需要較高的模具費用 ◆ 易出現一些常見的的不良,如卡扣組裝不到位或習慣性的空裝 ◆ 卡扣成型很難做到完全密合,組裝後在重力的作用下經常會有一些蠕動 ◆ 如果卡扣設計不合理或較弱會影響到產品的質量與銷售
我司電池產品
27
我們公司卡勾設計的變更與統一 U-CASE 雙卡鉤變更為單卡鉤設計. L-CASE 雙卡槽變更為單卡槽設計. Before 4
After
6
U-CASE
L-CASE
28
我們公司塑膠卡勾統一設計要求
Gap:0.05mm
Gap: 0.1mm
保持觸面的深度為 0.5~0.6mm 29
Thanks!
ε=是材料充許最大的變形度
Es 交叉系數圖
以下四個參數是可以自由控制的:
h 卡勾扣住部份的高度; 此高度影響卡勾的保護性,防止卡勾脫落 t 卡勾的厚度; 此厚度影響卡勾的強度及壓力的傳播,其中最省力的臂是錐形臂 L 卡勾臂的長度; 臂的長度以次方的形式影響臂的變形度 w 卡勾的寬度; 它是與變形阻力成正比的 ,增強卡勾的強度 9
A
B
D hub = 卡槽體的內徑
Y = 整周圓的變形量
ε=材料的變形量
D
shaft = 凸起勾體的外徑
16
圓筒形塑膠卡勾結構的基本原理
圓筒形卡勾的壓力只能粗略計算的,因為在組裝過程中hub的A部份,(見下圖)會產生變形,這種變 形很難預測,它主要受hub的壁厚與長度A的影響.
17
圓筒形塑膠卡勾結構的基本原理
25
卡勾的設計與空間的關系
上下蓋的夾角較小,卡勾需在較高的 位置上長出來,這樣卡扣後面要長一
個檔牆將卡勾檔住,防止受力或做落
摔測試時上下蓋裂開
26
卡勾的設計對成品外觀的影響
右邊的卡槽膠的 流動性較好,而 左邊的較差成T字 型所以,右邊的 卡槽應力痕較左 邊的會小些
應力痕強
應力痕弱
另一家電池廠產品
卡勾的設計對成型的影響
此種卡扣是在上一種卡扣的基礎上演變而來,它的優點是強度很大,充型較上面容易 它的不足點是,厚度增厚,容易縮水導致外觀不良。 21
卡勾的設計對成型的影響
此種卡扣較上面一種,可解決上面結構縮水問題,但強度與充膠問題沒有上面卡扣結構好
22
卡勾的設計對結構的影響
此種卡扣的改良方式是在卡勾位加了兩條肋,這樣卡勾的抗疲勞強度大大的增加
3
塑膠扣形狀的設計多樣性
卡扣形狀千變萬化,具體如何設計處決於很多復雜的因素 ◆ 從產品對卡扣要求的機械強度上考慮
◆ 從產品內部的有效空間上考慮
◆ 從模具與成型上考慮
4
塑膠扣形狀的設計多樣性
5
塑膠扣形狀的設計多樣性
6
塑膠扣的種類 在生活中常用的塑膠卡扣大致上可分為三大類 縣臂式卡勾 圓環形卡勾
以下是寬度為變截面的卡勾的示意圖,它的截面由w1向w2 變化.
14
縣臂式變截面塑膠卡勾結構的基本原理
Es=相交系數 L=臂的長度 w1=臂的根部寬度 c=增值率
t=臂的高度
ε=是材料充許最大的變形度
此公式裡面包含一個變量c,c是w2/w1的比率,見下表
15
圓環形塑膠卡勾結構的基本原理
圓環形卡勾是由外击勾體的圓筒與內凹勾體的圓筒組合而成,見下圖,一般我們把击體A部份假設 成不變形體,而B部份考慮成變形體,當施加壓力做卡合動作的時候,卡勾將會發生變形量Y
要粗步計算圓筒形卡勾的組裝壓力,我們首先需要計算出幾何參數K,(見如下公式)它是假設shaft 是不變的,所有的變形由hub產生.
組裝壓力 p可以用以下公式計算出
由組裝壓力 p可以計算出拔出力
18
球形塑膠卡勾結構的基本原理
球形卡勾的配合方式可以考慮為圓環形卡勾的一種特殊結構,圓環形卡勾的公式適應於球形卡勾 所以這裡不做特別的介紹
以下是厚度為變截面的卡勾的示意圖,它的截面由t1向t2 變化.
12
縣臂式變截面塑膠卡勾結構的基本原理
Es=相交系數 L=臂的長度 w=臂的寬度 c=增值率 t1=臂截面根部的高度 ε=是材料充許最大的變形度
此公式裡面包含一個變量c,c是t2/t1的比率,見下表
13
縣臂式變截面塑膠卡勾結構的基本原理
30
球形卡勾
7
縣臂式塑膠卡勾又可分為兩大類,恆截面與變截面卡勾
以下是第一種恆截面的卡勾的示意圖,它的截面是無變化的規則矩形。
如果在此卡勾的材料物理特性知道的情況下,最大允許變形量 y 和被迫變形力Fb 可 以用以下公式計算出來的。
8
縣臂式恆截面塑膠卡勾結構的基本原理
Es=相交系數
L=臂的長度 t=臂的高度 W=臂的寬度
卡勾的設計對模具制造的成本有很大的影響
A
B
卡勾B的設計要比卡勾A的設計節約模具制造的費用,因為A需要制做滑塊而B不需要,只要做一個
鑲針即可。
19
卡勾的設計對成型的影響
此種卡扣設計一般在空間較充足的情況下使用,因為此種卡扣的尺寸做得較大才能達到強度要求 這種卡扣的不足點是,要求成型的注射壓力大才能充膠充滿。 20
相关文档
最新文档