专升本中值定理及导数的应用

合集下载

专升本 第二章 一元函数微分学

专升本 第二章 一元函数微分学

第二章讲义2007:36分2008:21分2009:32分2010:42分2011:29分一、导数的概念1、导数的概念左右导数的概念2、可导与连续的关系二、导数的计算导函数导函数基本结果求导法则复合函数的导数隐函数的导数对数求导法参数方程表示的函数的导数高阶导数三、导数的几何意义四、导数的应用1、中值定理1-1中值定理1-2中值定理推论2、单调性、极值与最值2-1单调性及其应用2-2极值2-3最值3、凹凸性、拐点4、洛必达法则5、渐近线一、导数的概念1、导数的概念1.讨论函数()⎪⎩⎪⎨⎧=≠=.0,0,0,1sin 23x x xx x f 在0=x 处的可导性. 2.设函数()x f 可导,且()()011lim12x f f x x→--=-,则()1f '=( ) A .2 B .1- C .1 D .2-3.设()x f 在1=x 处可导,且()11='f ,则()()=+--→hh f h f h 121lim 0( ) A .1- B .2- C .3- D .4- 4.设函数()f x 在0x =处满足,()()()03f x f x x α=-+,且()lim0x x xα→=,则()0f '=( )A .1-B .1C .3-D .3 5.函数()x f 在点0x x =处可导,且()10-='x f ,则()()=+-→hh x f x f h 23lim000A .32B .32-C .23- D .236.设()1='x f ,则()()=--+→hh x f h x f h 32lim 0( ) A .4 B .5 C .2 D .17.设()x f 为奇函数,则()30='x f 时,()=-'0x f ________.左右导数的概念2、可导与连续的关系1.函数在某点处连续是其在该点处可导的A .必要条件B .充分条件C .充要条件D .无关条件二、导数的计算导函数导函数基本结果 求导法则复合函数的导数1.设函数5sin 212π--=x y ,则='yA .5cos 212π--x x B .21xx--C .212x x - D . 5cos 52122π---x x2.已知lnsin(12)y x =-,求.dy dx隐函数的导数1.设由方程22e xy e y =- 确定的函数为()x y y =,求.|0=x dx dy2.设 ()y f x =是由方程ln sin 2xy e y y x +=确定的隐函数,求dy dx. 3.由1=++xy y x ①所确定的隐函数()x y y =在1=x 处导数为________. 对数求导法1.已知y x =,求.dx dy2.若函数()()()ln 1xf x x x =>,则()f x '=( ) A . ()1ln x x - B .()()1ln ln ln(ln )x xx x x -+C .()ln ln(ln )xx x D .()ln xx x参数方程表示的函数的导数1.曲线231,21,x t y t t =+⎧⎨=-+⎩则1|t dydx ==________.1. x y sin =的三阶导数是( )A .x sinB .x sin -C .x cosD .x cos -2.设函数()x f 具有四阶导数,且()f x ''=()()4f x =( )A .B C .1 D .3214x --3.设函数()()()()()4321--++=x x x x x f ,则()()=x f 4________. 4.已知()21x f x e -=,则()()20070f =_______.5.若()()x f x f =-,在区间()+∞,0内,()()0,0>''>'x f x f ,则()x f 在 区间()0,∞-内A .()()0,0<''<'x f x fB .()()0,0>''>'x f x fC .()()0,0<''>'x f x fD .()()0,0>''<'x f x f6.设参数方程⎩⎨⎧-=+=.13,122t y t x 所确定的函数为()x y y =,则=22dx yd _______. 7.设函数()y y x =由参数方程33cos ,sin x t y t ⎧=⎨=⎩确定,则224|t d ydx π==( )A .2-B .1-C .D 三、导数的几何意义1.函数31xy x=+在(2,2)点处的切线方程为________. 2.曲线x x y ln =平行于直线01=+-y x 的切线方程是 A .1-=x y B .()1+-=x y C .1+-=x y D .()()11ln -+=x x y 3.曲线x y ln =上点)0,1(处的切线方程为________.4.曲线22y x x =+-在点M 处的切线平行于直线51y x =-,则点M 的坐标为5.过曲线arctan x y x e =+上的点()0,1处的法线方程为( ) A .210x y -+= B .220x y -+= C .210x y --= D .220x y +-=6.曲线sin 2,cos ,x t y t =⎧⎨=⎩在4t π=对应点处的切线方程为( )A .2x =B .1y =C .1y x =+D .1y x =- 四、导数的应用 1、中值定理1-1中值定理1.下列函数中,在区间[]1,1-上满足罗尔定理条件的是( )A . x y e =B .ln ||y x =C .21y x =-D .21y x =2.函数()22f x x x =--在区间[]0,2上使用拉格朗日中值定理时,结论中的ξ= _______.3.判断:()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b ≠,一定不存在(),a b ξ∈,使得()0.f ξ'=( )4.设()x f 在[],a b 上连续,且不是常数函数,若()()f a f b =,则在(),a b 内( ) A .必有最大值或最小值 B .既有最大值又有最小值C .既有极大值又有极小值D .至少存在一点ξ,使得()0.f ξ'= 5.设()f x '在[],a b 上连续,存在,m M 两个常数,且满足12a x x b ≤<≤,证明: ()()()()212121m x x f x f x M x x -≤-≤-.6.设函数()x f 在闭区间 [ 0 , 1 ] 上连续,在开区间 ( 0 , 1 )内可导,且()().21,00==f f 证明:在 ( 0 , 1 ) 内至少存在一点x ,使得().12+='ξξf1-2中值定理推论1.设[]1,1-∈x ,则=+x x arccos arcsin ( ) A .2π B .4πC .0D .1 2.已知()x xd e f x e dx -⎡⎤=⎣⎦,且()00f =,则()f x =( ) A .2x x e e + B .2x x e e - C .2x x e e -+ D .2x x e e --2、单调性、极值与最值2-1单调性及其应用1.函数()f x x =_______. 2.方程01sin =-+x x 在区间()1,0内根的个数是( ) A .0 B .1 C .2 D .32-2极值1.若函数()2f x ax bx =+在1x =处取得极值2,则a =_______,b =_______.2.下列说法正确的是( )A . 函数的极值点一定是函数的驻点B .函数的驻点一定是函数的极值点C .二阶导数非零的驻点一定是极值点D .以上说法都不对3.若函数()x f 在区间()b a ,内连续,在点0x x =处不可导,()b a x ,0∈ ,则 A .0x 是()x f 的极大值点 B .0x 是()x f 的极小值点 C .0x 不是()x f 的极值点 D .0x 可能是()x f 的极值点 4. 若()()0,000>''='x f x f ,则下述表述正确的是( )A .0x 是()x f 的极大值点B .0x 是()x f 的极小值点C .0x 不是()x f 的极值点D .无法确定0x 是否为()x f 的极值点 2-3最值1.靠一堵充分长的墙边,增加三面墙围成一矩形场地,在限定场地面积为642m 的条件下,问增加的三面墙各长多少时,其总长最小2.要做一个容积为V 的圆柱形带盖容器,问它的高与底面半径的比值是多少时 用料最省?3.求点()1,0P 到抛物线2x y =上点的距离的平方的最小值.3、凹凸性、拐点1.设()x f 在区间()b a ,内有()()0,0<''>'x f x f ,则()x f 在区间()b a ,内( ) A .单调减少且凹的 B .单调增加且凸的 C .单调减少且凸的 D .单调增加且凹的2.曲线31x y +=的拐点为( )A .()1,0B .()0,1C .()0,0D .()1,1 3.曲线352y x x =+-的拐点是( )A . 0x =B .()0,2-C .无拐点D .0,2x y ==-4.函数sin y x x =-在区间()0,2π内单调________,其曲线在区间0,2π⎛⎫⎪⎝⎭内的凸凹性为________的.5.曲线42246y x x x =-+的凸区间为( )A .()2,2-B .(),0-∞C .()0,+∞D .(),-∞+∞ 6.曲线x xe y -= 的拐点为A .1=xB .2=xC . ⎪⎭⎫⎝⎛22,2e D .⎪⎭⎫⎝⎛e 1,11,4、洛必达法则1.312cos limsin()3x x x ππ→-=-A .1B .0 CD.2.求011lim .1x x x e →⎛⎫- ⎪-⎝⎭3.计算sin 0lim x x x +→4.sin lim sin x x x x x →∞+-(洛必达法则)1cos sin limlim 11cos sin x x x xx x→∞→∞+-===--.()5、渐近线1.曲线2232xx y -=的水平渐近线为( ) A .32=y B .32-=y C .31=y D .31-=y 2.曲线1|1|y x =-( ) A .只有水平渐进线;B .既有水平渐进线,又有垂直渐近线;C .只有垂直渐近线;D .既无水平渐进线,又无垂直渐近线.3.曲线xe y x=( )A .仅有水平渐进线B .既有水平渐进线,又有垂直渐近线C .仅有垂直渐近线D .既无水平渐进线,又无垂直渐近线4.曲线35arctan 2+=xxy A .仅有水平渐近线 B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线5.方程xy 1arcsin = 所表示的曲线( )A .仅有水平渐近线B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线。

专升本高数知识点汇总

专升本高数知识点汇总

专升本高数知识点汇总高等数学在专升本考试中占据着重要的地位,对于许多考生来说,掌握好高数的知识点是成功升本的关键之一。

以下是为大家汇总的专升本高数知识点,希望能对大家的学习有所帮助。

一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。

对于定义域内的每一个输入值,都有唯一的输出值与之对应。

2、函数的性质包括奇偶性、单调性、周期性和有界性。

奇函数满足 f(x) = f(x),偶函数满足 f(x) = f(x)。

单调性是指函数在某个区间内是递增或递减的。

周期性函数是指存在一个非零常数 T,使得 f(x + T) = f(x)。

有界性则是指函数的值域在某个范围内。

3、极限的定义极限是指当自变量趋近于某个值时,函数值趋近于的一个确定的值。

4、极限的计算包括利用极限的四则运算法则、两个重要极限(\(\lim_{x \to 0} \frac{\sin x}{x} = 1\),\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\))以及等价无穷小代换来计算极限。

5、无穷小与无穷大无穷小是以零为极限的变量,无穷大是绝对值无限增大的变量。

无穷小的性质在极限计算中经常用到。

二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的切线斜率。

2、导数的几何意义导数表示函数在某一点处的变化率,反映了函数图像的斜率。

3、基本导数公式包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

4、导数的四则运算法则加法法则、减法法则、乘法法则和除法法则。

5、复合函数求导通过链式法则进行求导。

6、隐函数求导通过方程两边同时对自变量求导来求解。

7、微分的定义函数的微分等于函数的导数乘以自变量的微分。

8、微分的几何意义微分表示函数在某一点处切线的增量。

三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ) = 0 。

专升本第三章中值定理及导数的应用

专升本第三章中值定理及导数的应用

理解P75-76 的例题8-11
30
例 3 求函数 f (x) 2x3 3x2 12x 在[3,4] 上的最 大值和最小值.
解 因为 在 f (x) 2x3 3x2 12x在[3,4]上连续, 所以在该区间上存在着最大值和最小值.
又因为 f (x) 6x2 6x 12 6(x 2)(x 1), 令 f (x) 0,得驻点 x1 2,x2 1,由于
30. f (x)过x0时变号。
f (x0 )是极值; x0是极值点。
25
定理2:(极值的第二充分条件) P74定理4
20
f
10 f ( x0 )
( x0 )存在; 0,f (x0)
0
f (x0)是极值; x0是极值点。
26
(4)求极值的4个步骤:P73
(1)确定函数的定义域,求出导数 f (x)
36
37
5.曲线的凹向及拐点:P78
(3)
20.
f10(.xf)过(xx0 0)时 变0,号。
x0, f (x0 )称
为f (x)的拐点。
38
求函数凹凸区间与拐点的4个步骤:P80
(1)确定函数的定义域,求出导数 f (x)和 f (x)
(2)求出二阶导数等于0和二阶导数不存在的点
(3)根据(2)中的点将定义域分成若干个区间,并确定
掌握P71 例题1-4
16
证明:(采用函数的单调性证明)
17
例3. 证明:
1 x ln(x 1 x2 ) 1 x2 , (x 0)
证明: 设
f (x) 1 x ln(x 1 x2 ) 1 x2 , (x 0)
f (x) ln( x 1 x2 ) x(x 1 x2 ) 2x

浙江专升本-高等数学复习公式

浙江专升本-高等数学复习公式

浙江专升本—高等数学复习公式导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

专升本《高等数学》备考冲刺-中值定理的应用方法与技巧

专升本《高等数学》备考冲刺-中值定理的应用方法与技巧

中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。

微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。

积分中值定理有积分第一中值定理和积分第二中值定理。

积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。

积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得⎰⎰=ba b a dx x g f dx x g x f )()()()(ξ。

一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。

由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。

这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。

例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。

证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ成立。

证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。

任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。

专升本高等数学(二)-导数的应用、中值定理及其应用

专升本高等数学(二)-导数的应用、中值定理及其应用

专升本高等数学(二)-导数的应用、中值定理及其应用(总分:94.53,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:5,分数:5.00)1.在下列函数中,以x=0为极值点的函数是______.∙ A.y=-x3∙ B.y=cosx∙ C.y=tanx-x∙ D.y=arcsinx-x(分数:1.00)A.B. √C.D.解析:2.下列命题正确的是______.∙ A.在(a,b)内,f'(x)>0是y=f(x)在(a,b)内为增函数的充分条件∙ B.可导函数的驻点一定是极值点∙ C.连续函数在[a,b]上的极大值必大于极小值∙ D.函数y=f(x)的极值点一定是此函数的驻点(分数:1.00)A. √B.C.D.解析:3.已知y=f(x)在x0处有极大值,下列结论正确的是______.∙ A.f'(x0)=0,且f"(x0)<0∙ B.f'(x0)=0,或f'(x0)不存在∙ C.f'(x0)=0∙ D.f"(x0)<0(分数:1.00)A.B. √C.D.解析:4.下列命题正确的是______.∙ A.若(x0,f(x0))为曲线y=f(x)的拐点,则f"(x0)=0∙ B.若f"(x0)=0,则(x0,f(x0))为曲线y=f(x)的拐点∙ C.若f"(x0)=0,或f"(x0)不存在,则(x0,f(x0))可能为曲线y=f(x)的拐点∙ D.以上命题都不对(分数:1.00)A.B.C. √D.解析:5.已知(0,1)是曲线y=ax3+bx+1上的拐点,则a,b的值是______.∙ A.a=1,b=-3∙ B.a≠0,b∈R∙ C.a=1,b=0∙ D.a∈R,b∈R(分数:1.00)A.B. √C.D.解析:二、{{B}}填空题{{/B}}(总题数:2,分数:2.00)6.曲线f(x)=x3-2x在点x=1的切线方程是 1.(分数:1.00)填空项1:__________________ (正确答案:y=x-2.)解析:7.曲线y=x3-3x2-x的拐点坐标为 1.(分数:1.00)填空项1:__________________ (正确答案:(1,-1).)解析:三、{{B}}解答题{{/B}}(总题数:3,分数:87.50)证明下列等式或不等式.(分数:22.50)2.50)__________________________________________________________________________________________ 正确答案:(证明一个函数是常数函数,分为两步:第一步先证其为常数,即证其导为0;第二步,再用特殊点求常数.设y=arcsinx+arccosx,由于[*],得知函数y为常数函数.取x=0,得y=arcsin 0+arccos 0=[*],所以 arcsinx+arccosx=[*])解析:>1).(分数:2.50)正确答案:(设[*],由于[*],在x>1时恒有y'>0,所以函数[*]在x>1上是单调递增的函数.而y(1)=0,从而y(x)>y(1)=0,即lnx-[*],也即 [*])解析:(3).[0,3]上的最大值和最小值.(分数:2.50)__________________________________________________________________________________________ 正确答案:(因为[*],令y'=0,得驻点x=1,不可导点x=0,x=2.由于y(0)=0,y(2)=0,y(3)=[*],所以最大值为y(3)=[*],最小值为y(0)=0,y(2)=0.)解析:(4). 2.50)__________________________________________________________________________________________ 正确答案:(为方便求导,把函数改写成指数对数形式:[*],由于 [*] 令y'=0,得x=e.当x<e时,y'>0;当x>e时,y'<0.说明函数在x=e处取得极大值,且[*].)解析:(5).求曲线y=ax3+bx2+cx+d,使得(-2,44)为驻点,(1,-10)为拐点.(分数:2.50)__________________________________________________________________________________________ 正确答案:(求曲线y=ax3+bx2+cx+d,使得(-2,44)为驻点,(1,-10)为拐点.由y'=3ax2+2bx+C一0及已知得知:3a(-2)2+2b(-2)+c=0,44=a(-2)3+b(-2)2+c(-2)+d.由y"=6ax+2b=0及已知得知:6a+2b=0,-10=a+b+c+d.联立解得:[*])解析:(6). 2.50)__________________________________________________________________________________________ 正确答案:(描绘函数[*]的图形.(1)函数y=f(x)定义域为(-∞,-1)∪(-1,+∞).x=-1为间断点.[*](2)f'(x)=0的根为x=1;f"(x)=0的根为x=2.点x=1和x=2把定义域划分成四个区间:(-∞,-1),(-1,1],[1,2],[2,+∞).(3)在各部分区间内f'(x),f"(x)的符号、相应曲线弧的升降及凹凸,以及极值点和拐点等如下表所示.x (-∞,-1) (-1,1) 1 (1,2) 2 (2,+∞)f'(x) - + 0 - - -f"(x) - - - - 0 +f(x) [*] [*] 极大值点[*] 拐点[*](4)由于[*].所以图形有一条水平渐近线y=2和一条铅直渐近线x=-1.(5)补充几个点,如算出x=1,x=2处的函数值.[*]从而得图形上的两个点[*].又由于f(0)=2,[*],f(-2)=-4,f(-4)=[*],从而得图形上的4个点.M3(0,2),[*],M5(-2,-4),[*]函数[*]的图形如下图所示.[*])解析:(7).欲用围墙围成面积为216m2的一块巨型的地,并在正中间用一堵墙将其隔成两块.问这块土地的长和宽选取多大尺寸时,才能使所用建筑材料最省?(分数:2.50)正确答案:(设s为围墙总长,长为x,宽为y.则x·y=216所以[*].因为s=2x+3y=2x+[*],所以令[*],得x=18(为x=-18舍去).且x=18是函数的唯一驻点.由结论知x=18是极小值点,也是最小值点.所以当x=18m,[*]时,所用材料最省.)解析:(8).y=x的交点处的切线方程.(分数:2.50)__________________________________________________________________________________________ 正确答案:(由[*]得交点(1,1).再由[*],得切线方程为 [*])解析:(9). 2.50)__________________________________________________________________________________________ 正确答案:(定义域为x≠-1.由[*],得x=0,x=-2.列表讨论(见下表).x (-∞,-2) (-2.-1) (-1,0) (0,+∞)f'(x) + - - +f(x) [*] [*] [*] [*]所以函数的单调递增区间为(-∞,-2)和(0,+∞);单调递减区间为(-2,-1)和(-1,0).)解析:求下列函数的极值.(分数:35.00)(1).y=e x cosx(分数:2.50)__________________________________________________________________________________________ 正确答案:(y'=e x cosx-e x sinx=e x(cosx-sinx),令y'=0得x=kπ+[*].又y"=-2e x sinx,当[*]时,[*],函数有极大值[*]当[*]时,[*],函数有极小值[*])解析:2.50)__________________________________________________________________________________________ 正确答案:([*],令f'(x)=0,得驻点x=1,不可导点x=0.列表讨论(见下表).x (-∞,0) 0 (0,1) 1 (1,+∞)f’(z)+ - 0 +l厂(z) [*] 极大值点[*] 极小值点[*]故极大值f(0)=0,极小值[*].)解析:(3).试证明:如果函数y=ax3+bx2+cx+d满足条件b2-3ac<0,那么这个函数没有极值.(分数:2.50)__________________________________________________________________________________________ 正确答案:(证明:因y'=3ax2+2bx+c,要使可导函数没有极值,必使y'=0恒不成立.即使3ax2+2bx+c=0没有实数解,从而必须使一元二次方程的判别式Δ=(26)2-4·3ac<0即b2-3ac<0.) 解析:(4).试问a为何值时,函数f(x)=asinx+sin3x?它是极大值还是极小值?并求此极值.(分数:2.50)正确答案:(f'(x)=acosx+cos3x,当[*]时,f'(x)=0,得acos[*]+cosπ=0,从而a=2.又f"(x)=-asinx-3sin3x,[*],所以有极大值[*][*])解析:(5).问函数y=x2<0)在何处取得最小值?并求出最小值.(分数:2.50)__________________________________________________________________________________________正确答案:([*],令y'=0得x=-3.又[*].所以在x=-3时y有最小值,其值为27.)解析:(6).求函数-3,3]的最大值和最小值.(分数:2.50)__________________________________________________________________________________________正确答案:(由[*]得驻点x=-2,不可导点x=-5,x=1.而f(-3)=4,f(-2)=[*],f(1)=0,f(3)=[*].所以最大值是f(3)=[*],最小值是f(1)=0.)解析:(7).求函数y=x2e-x的凹凸区间和拐点.(分数:2.50)__________________________________________________________________________________________正确答案:(因为y'=2xe-x-x2e-x=e-x(2x-x2)y"=e-x(2x-x2)+e-x(2-2x)=e-x(x2-4x+2)令y"=0解得[*].易判定[*]都是拐点.凹区间是(-∞,2-[*])∪(2+[*],+∞),凸区间是(2-[*],2+[*]).)解析:(8).描绘函数y=e-x2的图形.(分数:2.50)__________________________________________________________________________________________正确答案:(对于[*](1)定义域为R.(2)易知其为偶函数,图像关于y轴对称,且有y'=-2xe-x2,y"=(4x2-2)e-x2令y'=0,得x1=0;令y"=0,得[*].因此没有使y',y"不存在的点.(3)讨论函数的性质,如下表所示.x [*] [*] [*] 0 [*] [*] [*]f'(x) + + + 0 - - -f"(x) + 0 - - - 0 +f(x) [*] 拐点[*] 极大值点[*] 拐点[*]可见,有两个拐点[*]≈(-0.7,0.6),[*]≈(0.7,0.6).一个极大值点(0,1).(4)因[*],所以有水平渐近线y=0.)解析:(9). 2.50)__________________________________________________________________________________________正确答案:([*])解析:(10).某工厂每天生产x支产品的总成本为元).该产品独家经营,市场需求规律为x=75-3P,其中P为每支售价,问每天生产多少支时获利润最大?此时的每支售价为多少?(分数:2.50)正确答案:(设利润为L(x),[*],则L(x)=px-C(x)=[*]x2+32x-75求导得L'(x)=[*]+32,令L'(x)=0,得[*]+32=0,x=36,从而[*].又L"(x)=[*]<0,所以当每天生产36支时,获利润最大,此时每支售价为13元.)解析:(11).设计一个容积为Vm3的圆柱形无盖容器,已知每平方米侧面材料的价格是底面材料价格的1.5倍,问容器的底半径r与高h为多少时,材料总造价y最小?(分数:2.50)__________________________________________________________________________________________正确答案:(在不影响问题解答的前提下,不妨设底面材料价格为1个单位.则y=πr2+2πrh·1.5由于V=πr2h,得[*],代入上式得y=πr2+[*].求导得y'=2πr-[*],令y'=0,解得3V=2πr3.联立V=πr2h。

中值定理及导数应用笔记

中值定理及导数应用笔记

中值定理及导数应用笔记中值定理是数学中的一个重要定理,它是求函数在某一区间内的最大值或最小值的一种方法。

中值定理:设f(x)在[a, b]内可导,且f’(x)在(a,b)内存在,则存在c∈(a, b),使得f’(c)=0。

中值定理的应用:1.求函数在某一区间内的极值:由中值定理可知,如果函数f(x)在[a, b]内可导,且f’(x)在(a, b)内存在,则存在c∈(a,b)使得f’(c)=0。

因此,我们可以通过求解f’(x)=0的方程来求出函数在[a, b]内的极值。

2.求函数的泰勒公式:利用中值定理可以得出泰勒公式,即对于函数f(x)在x0处的泰勒展开式:f(x)=f(x0)+f’(x0)(x-x0)+O((x-x0)^2)。

导数是数学中的一个概念,它表示函数在某一点处的斜率。

导数的应用:1.求函数的单调性:如果函数f(x)在点x处的导数大于0,则函数在点x处单调递增;如果函数f(x)在点x处的导数小于0,则函数在点x处单调递减。

2.求函数的极值:如果函数f(x)在点x处的导数等于0,则函数可能在点x处取得极值。

通过对函数的二阶导数进行分析,可以判断函数在点x处的极值是最大值还是最小值。

1.求函数在某一点的切线:切线是函数在某一点的切线的图像。

切线的斜率等于函数在这个点的导数。

因此,我们可以通过求解函数在某一点的导数来求出函数在这个点的切线。

2.求函数在某一区间内的最小值和最大值:当函数在某一区间内单调递增或单调递减时,可以通过求解函数在区间端点处的导数来求出函数在该区间内的最小值和最大值。

以上是中值定理和导数的应用笔记。

通过对中值定理和导数的学习,可以帮助我们更好地理解函数的性质,并运用到数学和其他领域中。

需要注意的是,中值定理和导数的应用是有一定条件的,在使用这些工具时要注意满足这些条件。

此外,中值定理和导数是高等数学中的基础概念,在深入学习数学和其他科学领域之前,要先扎实地掌握这些概念。

专升本高等数学 第三章微分中值定理与导数的应用

专升本高等数学 第三章微分中值定理与导数的应用

第三章 微分中值定理与导数的应用【考试要求】1.掌握罗尔中值定理、拉格朗日中值定理并了解它们的几何意义.2.熟练掌握洛必达法则求“0/0”、“/∞∞”、“0⋅∞”、“∞-∞”、“1∞”、“00”和“0∞”型未定式极限的方法.3.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式.4.理解函数极值的概念,掌握求函数的极值和最值(最大值和最小值)的方法,并且会解简单的应用问题.5.会判定曲线的凹凸性,会求曲线的拐点. 6.会求曲线的水平渐近线与垂直渐近线.【考试内容】一、微分中值定理1.罗尔定理如果函数()yf x =满足下述的三个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)在区间端点处的函数值相等,即()()f a f b =,那么在(,)a b 内至少有一点ξ(ab ξ<<),使得()0f ξ'=.说明:通常称导数等于零的点为函数的驻点(或稳定点,临界点),即若0()0f x '=,则称点0x 为函数()f x 的驻点.2.拉格朗日中值定理如果函数()y f x =满足下述的两个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导, 那么在(,)a b 内至少有一点ξ(ab ξ<<),使得下式(拉格朗日中值公式)成立:()()()()f b f a f b a ξ'-=-.说明:当()()f b f a =时,上式的左端为零,右端式()b a -不为零,则只能()0f ξ'=,这就说明罗尔定理是拉格朗日中值定理的特殊情形.此外,由于拉格朗日中值定理在微分学中占有重要的地位,因此有时也称这定理为微分中值定理.3.两个重要推论(1)如果函数()f x 在区间I 上的导数恒为零,那么()f x 在区间I 上是一个常数.证:在区间I 上任取两点1x 、2x (假定12x x <,12x x >同样可证),应用拉格朗日中值公式可得 2121()()()()f x f x f x x ξ'-=- (12x x ξ<<). 由假定,()0f ξ'=,所以 21()()0f x f x -=,即 21()()f x f x =.因为1x 、2x 是I 上任意两点,所以上式表明()f x 在区间I 上的函数值总是相等的,即()f x 在区间I 上是一个常数.(2)如果函数()f x 与()g x 在区间(,)a b 内的导数恒有()()f x g x ''=,则这两个函数在(,)a b 内至多相差一个常数,即()()f x g x C -=(C 为常数).证:设()()()F x f x g x =-,则()[()()]()()0F x f x g x f x g x ''''=-=-=,根据上面的推论(1)可得,()F x C =,即()()f x g x C -=,故()()f x g x C -=.二、洛必达法则1.x a →时“”型未定式的洛必达法则如果函数()f x 及()F x 满足下述的三个条件:(1)当x a →时,函数()f x 及()F x 都趋于零;(2)在点a 的某个去心邻域内()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x a f x F x →''存在(或为无穷大),那么 ()()lim lim()()x a x a f x f x F x F x →→'='. 说明:这就是说,当()lim ()x a f x F x →''存在时,()lim ()x a f x F x →也存在且等于()lim ()x a f x F x →'';当()lim()x a f x F x →''为无穷大时,()lim ()x a f x F x →也是无穷大. 2.x →∞时“”型未定式的洛必达法则 如果函数()f x 及()F x 满足下述的三个条件:(1)当x →∞时,函数()f x 及()F x 都趋于零;(2)当x X >时()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x f x F x →∞''存在(或为无穷大),那么 ()()lim lim ()()x x f x f x F x F x →∞→∞'='.说明:我们指出,对于x a →或x →∞时的未定式“∞∞”,也有相应的洛必达法则. 3.使用洛必达法则求“00”型或“∞∞”型极限时的注意事项(1)使用洛必达法则之前要先判断所求极限是不是“00”型或“∞∞”型,如果不是则不能使用洛必达法则.例如:2sin lim x xx π→就不能运用洛必达法则,直接代入求极限即可,故2sin sin 22lim 2x x x ππππ→==. (2)洛必达法则可多次连续使用,也就是说,如果使用一次洛必达法则后算式仍然是“0”型或“∞∞”型,则可再次使用洛必达法则,依此类推. (3)洛必达法则是求“00”型或“∞∞”型未定式极限的一种有效方法,但最好能与其他求极限的方法结合使用,例如能化简时应尽可能先化简,可以应用等价无穷小替代或重要极限时,应尽可能应用,这样可以使运算简便.例如:求2tan limtan x x xx x→-时,可先用~tan x x 进行无穷小的等价替换,然后再用洛必达法则,故2223220000tan tan sec 1tan 1lim lim lim lim tan 333x x x x x x x x x x x x x x x →→→→---====. (4)如果求极限的式子中含有非零因子,则可以对该非零因子单独求极限(即可以先求出这部分的极限),然后再利用洛必达法则,以便简化运算.例如:求0lnsin 2limlnsin3x xx+→时,0000lnsin 2sin3cos222sin323lim lim lim lim 1lnsin3sin 2cos333sin 232x x x x x x x x x x x x x x++++→→→→⋅⋅⋅====⋅⋅⋅,从第二步到第三步的过程中,分子上的因子cos2x 和分母上的因子cos3x 当0x +→时极限均为1,故可先求出这两部分的极限以便化简运算.(5)当洛必达法则的条件不满足时,所求极限不一定不存在,也即是说,当()lim ()f x F x ''不存在时(等于无穷大的情况除外),()lim ()f x F x 仍可能存在.例如:极限sin lim x x xx→∞+,(sin )1cos lim lim lim(1cos )1x x x x x x x x →∞→∞→∞'++==+' 极限是不存在的,但是原极限是存在的,sin sin sin lim lim(1)1lim 101x x x x x x x x x x→∞→∞→∞+=+=+=+=.4.其他类型的未定式除了“00”型或“∞∞”型未定式之外,还有其他类型的未定式,如“0⋅∞”、“∞-∞”、“1∞”、“00”及“0∞”型等.对于“0⋅∞”和“∞-∞”型的未定式,处理方法为将它们直接转化成“00”或“∞∞”型;对于“1∞”、“00”及“0∞”型的未定式,处理方法为先取对数将它们转化成“0⋅∞”型,然后再转化成“00”型或“∞∞”型未定式.三、函数单调性的判定法1.单调性判定法设函数()yf x =在[,]a b 上连续,在(,)a b 内可导,(1)如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; (2)如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.说明:① 如果把这个判定法中的闭区间改为其他各种区间(包括无穷区间),结论也成立; ② 若判定法中()f x '在(,)a b 内只有有限个点上()0f x '=,而在其余点上恒有()0f x '>(或()0f x '<),则函数()f x 在区间[,]a b 上仍然是单调增加(或单调减少)的.2.单调区间的求法设函数()f x 在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,则求函数()f x 的单调性的步骤如下:(1)求出函数()f x 的定义域;(2)求出函数()f x 的导数()f x ',并令()0f x '=求出函数的驻点;此外,再找出导数不存在的点(一般是使得()f x '分母为零的点);(3)用函数()f x 的所有驻点和导数不存在的点来划分函数的定义区间,然后用单调性判定定理逐个判定各个部分区间的单调性.3.用单调性证明不等式函数()f x 的单调性还可以用来证明不等式,步骤如下:(1)将不等式的一边变为零,不等于零的一边设为()f x ,根据要证明的式子找出不等式成立的x 的范围I ; (2)求()f x 的导数()f x ',判断()f x '在上述I 范围内的符号(即正负);(3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.例如:试证明当1x>时,13x>-.证明:原不等式即为 13x -+ ,故令1()3f x x=-+,0x >,则2211()(1)f x xx '=-=- ,()f x 在[1,)+∞上连续,在(1,)+∞内()0f x '>,因此在[1,)+∞上()f x 单调增加,从而当1x >时,()(1)f x f >,又由于(1)0f =,故()0f x >,即 130x -+>,亦即 13x>-. 四、函数的凹凸性与拐点1.函数凹凸性的定义设函数()f x 在区间I 上连续,如果对I 上任意两点1x 、2x ,恒有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凹的(或凹弧);如果恒有1212()()22x xf x f x f ++⎛⎫>⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凸的(或凸弧).如果函数()f x 在I 内具有二阶导数,那么可以利用二阶导数的符号来判定曲线的凹凸性,如下所示.2.函数凹凸性的判定法设函数()f x 在区间[,]a b 上连续,在(,)a b 内具有一阶和二阶导数,那么(1)若在(,)a b 内()0f x ''>,则()f x 在[,]a b 上的图形是凹的; (2)若在(,)a b 内()0f x ''<,则()f x 在[,]a b 上的图形是凸的.说明:若在(,)a b 内除有限个点上()0f x ''=外,其它点上均有()0f x ''>(或()0f x ''<),则同样可以判定曲线()y f x =在[,]a b 上为凹曲线(或凸曲线).3.曲线的拐点的求法一般地,设()y f x =在区间I 上连续,0x 是I 的内点(除端点外I 内的点).如果曲线()y f x =在经过点00(,())x f x 时,曲线的凹凸性改变了,那么就称点00(,())x f x 为这曲线的拐点.我们可以按照下述步骤求区间I 上的连续函数()y f x =的拐点:(1)求()f x '';(2)令()0f x ''=,解出这方程在区间I 内的实根,并求出在区间I 内()f x ''不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点0x ,检查()f x ''在0x 左、右两侧邻近的符号,当两侧的符号相反时,点00(,())x f x 是拐点,当两侧的符号相同时,点00(,())x f x 不是拐点.在[,]a b 上单3.基本初等函数的微分公式说明:若要求函数()yf x =的凹凸区间,则用(2)中求出的每一个实根或二阶导数不存在的点把区间I 分成若干部分区间,然后在这些部分区间上判定()f x ''的符号,若()0f x ''>,则该部分区间为凹区间,若()0f x ''<,则该部分区间为凸区间.五、函数的极值与最值1.函数极值的定义设函数()f x 在点0x 的某邻域0()U x 内有定义,如果对于去心邻域0()U x 内任一x ,有0()()f x f x <(或0()()f x f x >),那么就称0()f x 是函数()f x 的一个极大值(或极小值).函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点. 说明:函数的极大值与极小值概念是局部性的,如果0()f x 是函数()f x 的一个极大值,那只是就0x 附近的一个局部范围来说,0()f x 是()f x 的一个最大值,如果就()f x 的整个定义域来说,0()f x 不见得是最大值.关于极小值也类似.2.函数取得极值的必要条件设函数()f x 在0x 处可导,且在0x 处取得极值,那么0()0f x '=.说明:这也就是说,可导函数()f x 的极值点必定是它的驻点.但反过来,函数的驻点却不一定是极值点.例如,3()f x x =的导数2()3f x x '=,(0)0f '=,因此0x =是这函数的驻点,但0x=却不是这函数的极值点,所以,函数的驻点只是可能的极值点.此外,函数在它的导数不存在的点处也可能取得极值.例如,函数()f x x =在点0x =处不可导,但函数在该点取得极小值.3.判定极值的第一充分条件设函数()f x 在0x 处连续,且在0x 的某去心邻域0()U x 内可导.(1)若00(,)x x x δ∈-时,()0f x '>,而00(,)x x x δ∈+时,()0f x '<,则()f x 在0x 处取得极大值;(2)若00(,)x x x δ∈-时,()0f x '<,而00(,)x x x δ∈+时,()0f x '>,则()f x 在0x 处取得极小值;(3)若0(,)x U x δ∈时,()f x '的符号保持不变,则()f x 在0x 处没有极值.4.用第一充分条件求极值点和极值的步骤设函数()f x 在所讨论的区间内连续,除个别点外处处可导,则用第一充分条件求极值点和相应的极值的步骤如下: (1)求出导数()f x ';(2)求出()f x 的全部驻点与不可导点;(3)考查()f x '的符号在每个驻点或不可导点的左右邻近的情形,以确定该点是否为极值点;如果是极值点,进一步确定是极大值点还是极小值点; (4)求出各极值点的函数值,就得函数()f x 的全部极值.5.判定极值的第二充分条件设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,那么(1)当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2)当0()0f x ''>时,函数()f x 在0x 处取得极小值.说明:该极值判定条件表明,如果函数()f x 在驻点0x 处的二阶导数0()0f x ''≠,那么该驻点0x 一定是极值点,并且可按二阶导数0()f x ''的符号来判定0()f x 是极大值还是极小值.但如果0()0f x ''=,则该判定条件失效.事实上,当0()0f x '=,0()0f x ''=时,()fx 在0x 处可能有极大值,可能有极小值,也可能没有极值.例如,41()f x x =-,42()f x x =,33()f x x =这三个函数在0x =处就分别属于上述三种情况.因此,如果函数在驻点处的二阶导数为零,那么还得用一阶导数在驻点左右邻近的符号来判定.6.求()f x 在区间[,]a b 上的最值的步骤设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内除有限个点外可导,且至多有有限个驻点,则求()f x 在闭区间[,]a b 上的最值的步骤如下:(1)求出()f x 在(,)a b 内的驻点1x ,2x ,,m x 及不可导点1x ',2x ',,n x ';(2)计算()i f x (1,2,,i m =),()j f x '(1,2,,j n =)及 ()f a ,()f b ;(3)比较(2)中诸值的大小,其中最大的便是()f x 在[,]a b 上的最大值,最小的便是()f x 在[,]a b 上的最小值.说明:在实际问题中,往往根据问题的性质就可以断定可导函数()f x 确有最大值或最小值,而且一定在定义区间内部取得.这时如果()f x 在定义区间内部只有一个驻点0x ,那么不必讨论0()f x 是不是极值,就可以断定0()f x 是最大值或最小值.六、函数的渐近线的求法1.水平渐近线若lim()x f x a →∞=(包括lim ()x f x a →-∞=或lim ()x f x a →+∞=),则直线y a =就是函数()f x 的水平渐近线.2.垂直渐近线(或称铅直渐近线)若0lim()x x f x →=∞(包括0lim ()x x f x -→=∞或0lim ()x x f x +→=∞),则直线0x x =就是函数()f x 的垂直(铅直)渐近线.【典型例题】【例3-1】验证罗尔定理对函数()ln sin f x x =在区间5[,]66ππ上的正确性.解:显然函数()ln sin f x x =在闭区间5[,]66ππ上连续,在开区间5(,)66ππ上可导,1()(lnsin )cos cot sin f x x x x x ''==⋅=,且5()()ln 266f f ππ==-,故满足罗尔定理的条件,由定理可得至少存在一点5(,)66ππξ∈,使得()0f ξ'=,即cot 0ξ=,2πξ=即为满足条件的点.【例3-2】验证拉格朗日中值定理对函数2()482f x x x =--在区间[0,1]上的正确性.解:显然函数2()482f x x x =--在闭区间[0,1]上连续,在开区间(0,1)内可导,()88f x x '=-,根据拉格朗日中值定理可得至少存在一点(0,1)ξ∈,使得(1)(0)()(10)f f f ξ'-=-,即6(2)88ξ---=-,可得1(0,1)2ξ=∈,12ξ=即为满足条件的点.【例3-3】不求导数,判断函数()(1)(2)(3)(4)f x x x x x =----的导数有几个零点,这些零点分别在什么范围. 解:显然()f x 是连续可导的函数,且(1)(2)(3)(4)0f f f f ====,故()f x 在区间[1,2],[2,3],[3,4]上满足罗尔定理的条件,所以在区间(1,2)内至少存在一点1ξ,使得1()0f ξ'=,即1ξ是()f x '的一个零点;在区间(2,3)内至少存在一点2ξ,使得2()0f ξ'=,即2ξ是()f x '的一个零点;又在区间(3,4)内至少存在一点3ξ,使得3()0f ξ'=,即3ξ也是()f x '的一个零点.又因为()f x '是三次多项式,最多只能有三个零点,故()f x '恰好有三个零点,分别在区间(1,2),(2,3)和(3,4)内.【例3-4】证明arcsin arccos 2x x π+=,其中11x -≤≤.证明:设()arcsin arccos f x x x =+,[1,1]x ∈-,因为()(0f x '=+=,所以()f x C =,[1,1]x ∈-.又因为(0)arcsin 0arccos0022f ππ=+=+=,即2C π=,故arcsin arccos 2x x π+=.说明:同理可证,arctan arccot 2x x π+=,(,)x ∈-∞+∞.【例3-5】求下列函数的极限.1.求 332132lim 1x x x x x x →-+--+.解:该极限为1x →时的“00”型未定式,由洛必达法则可得原式22113363lim lim 321622x x x x x x x →→-===---. 2.求arctan 2lim 1x x xπ→+∞-.解:本题为x →+∞时的“00”型未定式,由洛必达法则可得原式222211limlim 111x x x x x x→+∞→+∞-+===+-. 3.求0lnsin 2limlnsin3x xx+→. 解:该极限为0x+→时的“∞∞”型未定式,由洛必达法则可得原式0001cos 222sin 323sin 2lim lim lim 113sin 232cos33sin 3x x x x x x x x xx x+++→→→⋅⋅⋅====⋅⋅⋅. 4.求 2tan lim tan3x xx π→.解:本题为2x π→时的“∞∞”型未定式,由洛必达法则可得原式2222222sec cos 32cos3(sin3)3lim lim lim 3sec 33cos 6cos (sin )x x x x x x x x x x x πππ→→→⋅-⋅===⋅- 22cos33sin3lim lim 3cos sin x x x x x x ππ→→-===-.5.求2tan limtan x x xx x→-. 解:该极限为0x →时的“00”型未定式,结合等价无穷小的替换,运用洛必达法则可得原式22320000tan sec 12sec tan 21lim lim lim lim 3663x x x x x x x x x x x x x x →→→→--⋅=====. 说明:此题也可这样求解(运用公式22sec1tan x x =+和等价无穷小替换来简化运算):原式22232220000tan sec 1tan 1lim lim lim lim 3333x x x x x x x x x x x x x →→→→--=====. 6.求11lim()sin x x x→-. 解:该极限为0x →时的“∞-∞”型未定式,解决方法为先化为“1100-”型,然后通分化为“”型,故 原式20000sin sin 1cos sin lim lim lim lim 0sin 22x x x x x x x x x xx x x x →→→→---=====.7.求lim x x x +→. 解:该极限为0x +→时的“00”型未定式,解决方法为取对数化为“0ln 0⋅”型,进而化为“”型,故 原式020001lim ln 1lim ln limlim ()ln 00lim 1x x x x xx x xx x x xx x e ee e e e +→+++→→→+--→=======.8.求cos limx x xx→∞+.解:原式1sin lim lim(1sin )1x x x x →∞→∞-==-,最后的极限不存在,不满足洛必达法则的条件,实际上,原式cos cos lim(1)1lim 101x x x xx x→∞→∞=+=+=+=.【例3-6】求下列函数的单调区间. 1.32()29123f x x x x =-+-.解:因2()618126(1)(2)f x x x x x '=-+=--, 令()0f x '=,得11x =,22x =.用1x ,2x 将函数的定义域(,)-∞+∞分成三个区间(,1)-∞,(1,2),(2,)+∞,其讨论结果如下表所示:由上表可得,函数的单调递增区间为(,1]-∞和[2,)+∞,单调递减区间为[1,2].2.()f x = .解:函数的定义域为(,)-∞+∞,()f x '=(0x ≠),当0x =时导数不存在.将函数定义域分成两个区间(,0)-∞和(0,)+∞,讨论结果如下表所示:所以函数的单调递增区间为[0,)+∞,单调递减区间为(,0]-∞. 【例3-7】利用函数的单调性证明不等式. 1.试证当0x>时,ln(1)x x >+成立.证明:设()ln(1)f x x x =-+,则1()111x f x x x'=-=++, 因()f x 在区间[0,)+∞上连续,在(0,)+∞内可导,且 ()0f x '>, 故()f x 在区间[0,)+∞上单调增加,又因为(0)0f =,所以当0x >时,()0f x >,即ln(1)0x x -+>,也即 ln(1)x x >+成立.2.试证当1x >时,13x>-.证明:令1()(3)f x x =--,则2211()(1)f x xx '=-=-, 因()f x 在区间[1,)+∞上连续,在(1,)+∞内可导且()0f x '>, 故()f x 在区间[1,)+∞上单调增加,又因为(1)0f =,所以当1x >时,()0f x >,即1(3)0x -->,也即13x>- 成立.【例3-8】证明方程510x x ++=在区间(1,0)-内有且仅有一个实根.证明:令5()1f x x x =++,因为()f x 在闭区间[1,0]-上连续,且(1)10f -=-<,(0)10f =>,根据零点定理,()f x 在区间(0,1)内至少有一个零点.另一方面,对于任意实数x ,有4()510f x x '=+>,所以()f x 在(,)-∞+∞内单调增加,因此曲线5()1f x x x =++与x 轴至多有一个交点.综上所述,方程510xx ++=在区间(1,0)-内有且仅有一个实根.【例3-9】求下列函数的极值. 1.32()395f x x x x =--+.解:函数的定义域为(,)-∞+∞,且有2()3693(1)(3)f x x x x x '=--=+-,令()0f x '=,得驻点11x =-,23x =,列表讨论如下:由上表可得,函数的极大值为(1)10f -=,极小值为(3)22f =-.2.233()2f x x x =-.解:函数的定义域为(,)-∞+∞,且有13()1f x x-'=-=,令()0f x '=,得驻点1x =,当0x =时()f x '不存在,驻点1x =以及不可导点0x =将定义域分成三个区间,列表讨论如下:由上表可得,函数的极大值为(0)0f =,极小值为1(1)2f =-. 【例3-10】求函数32()231214f x x x x =+-+在区间[3,4]-上的最值.解:因为2()66126(2)(1)f x x x x x '=+-=+-,令()0f x '=,得 12x =-,21x =,计算(3)23f -=,(2)34f -=,(1)7f =,(4)142f =,比较上述结果可知,最大值为(4)142f =,最小值为(1)7f =.【例3-11】求下列曲线的凹凸区间和拐点. 1.43()341f x x x =-+.解:函数的定义域为(,)-∞+∞,且有32()1212f x x x '=-,2()36()3f x x x ''=-,令()0f x ''=,得10x =,223x =, 列表讨论如下:由上表可得,曲线()f x 的凹区间为(,0]-∞和2[,)3+∞,凸区间为2[0,]3,拐点为(0,1)和211(,)327.2.()f x =解:函数的定义域为(,)-∞+∞,当0x ≠时有231()3f x x -'=,532()9f x x -''=-,当0x =时,()f x '和()f x ''均不存在,但在区间(,0)-∞内,()0f x ''>,故曲线在(,0]-∞上是凹的;在区间(0,)+∞内,()0fx ''<,故曲线在[0,)+∞上是凸的.所以曲线的凹区间为(,0]-∞,凸区间为[0,)+∞,拐点为(0,0).【历年真题】一、选择题1.(2009年,1分)若函数()y f x =满足0()0f x '=,则0x x =必为()f x 的( )(A )极大值点 (B )极小值点 (C )驻点 (D )拐点 解:若0()0f x '=,则0x x =必为()f x 的驻点,选(C ). 23 x()f x2(,)3+∞ 0 (,0)-∞2(0,)3+-+对应拐点对应拐点凹凸凹()f x ''2.(2009年,1分)当0x >时,曲线1siny x x=( ) (A )没有水平渐近线 (B )仅有水平渐近线(C )仅有铅直渐近线 (D )既有水平渐近线,又有铅直渐近线解:由1sin1lim sinlim 11x x x x x x→∞→∞==可知,1y =为曲线的水平渐近线; 01lim sin 0x x x+→=,故曲线无铅直渐近线.选项(B )正确.3.(2008年,3分)函数()ln f x x =在区间[1,2]上满足拉格朗日公式中的ξ等于( )(A )ln 2 (B )ln1 (C )ln e (D )1ln 2解:对函数()ln f x x =在区间[1,2]上应用拉格朗日中值定理,(2)(1)()(21)f f f ξ'-=-,即 1ln 20ξ-=,故 1ln 2ξ=.选(D ). 4.(2007年,3分)曲线33yx x =-上切线平行于x 轴的点为( )(A )(1,4)-- (B )(2,2) (C )(0,0) (D )(1,2)- 解:切线平行于x 轴的点即为一阶导数等于零的点.由2330y x'=-=可得,1x =±;1x =时,2y =-,1x =-时,2y =,故曲线33y x x =-上切线平行于x 轴的点为(1,2)-和(1,2)-.选项(D )正确. 5.(2007年,3分)若在区间(,)a b 内,导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在该区间内( )(A )单调增加,曲线为凸的 (B )单调增加,曲线为凹的 (C )单调减少,曲线为凸的 (D )单调减少,曲线为凹的 解:()0f x '>可得()f x 单调增加,()0f x ''<可得曲线为凸的,故选(A ).二、填空题1.(2010年,2分)函数32()2912f x x x x =-+的单调减区间是 .解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =;当1x<时,()0f x '>,当12x <<时,()0f x '<,当2x >时,()0f x '>,故函数的单调递减区间为[1,2].2.(2009年,2分)当62x ππ≤≤时,sin ()x f x x=是 函数(填“单调递增”、“单调递减”).解:当6x π=时,sin36()66f ππππ==;当2x π=时,sin22()22f ππππ==;故当62x ππ≤≤时,sin ()xf x x=是单调递减函数. 3.(2009年,2分)函数32()29121f x x x x =-++在区间[0,2]上的最大值点是 . 解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =.比较函数值(1)6f =,(2)5f =,(0)1f =,可知,函数的最大值为(1)6f =,故函数的最大值点为1x =.4.(2007年,4分)曲线24x t y t ⎧=⎨=⎩在1t =处的切线方程为 .解:将1t =代入参数方程可得切点为(1,4),切线斜率11422t t t t y k tx =='===',故切线方程为42(1)y x -=-,即 22y x =+.5.(2005年,3分)x y xe -=的凸区间是 .解:()(1)x x x x y xe e xe x e ----''==-=-,(1)(2)x x x y e x e x e ---''=---=-. 令 (2)0x y x e -''=-=可得,2x =,且当2x>时,0y ''>,当2x <时,0y ''<,故函数x y xe -=的凸区间是(,2]-∞.6.(2005年,3分)曲线x y x =通过(1,1)点的切线方程为 .解:因ln ln ()()(ln 1)(ln 1)x x x x x x y x e e x x x '''===⋅+=+,故切线斜率1[(ln 1)]1x x k x x ==+=,所以切线方程为11(1)y x -=⋅-,即 y x =.三、应用题或综合题1.(2010年,10分)现有边长为96厘米的正方形纸板,将其四角各剪去一个大小相同的小正方形,折做成无盖纸箱,问剪区的小正方形边长为多少时做成的无盖纸箱容积最大? 解:设剪区的小正方形边长为x ,则纸盒的容积2(962)yx x =-,048x <<.2(962)2(962)(2)(962)(966)y x x x x x '=-+⋅--=--,令0y '=,可得 16x =(48x =舍去).因只有唯一的驻点,且原题中容积最大的无盖纸箱一定存在,故当剪区的小正方形边长为16厘米时,做成的无盖纸箱容积最大. 2.(2010年,10分)设函数()f x 在[0,1]上连续,并且对于[0,1]上的任意x 所对应的函数值()f x 均为0()1f x ≤≤,证明:在[0,1]上至少存在一点ξ,使得()f ξξ=.解:令()()F x f x x =-,由于()f x 在[0,1]上连续,故()F x 在[0,1]上也连续.(0)(0)0(0)F f f =-=,(1)(1)1F f =-.而对[0,1]x ∀∈,0()1f x ≤≤,故(0)0F ≥,(1)0F ≤.若(0)0F =,即(0)00f -=,(0)0f =,则0ξ=; 若(1)0F =,即(1)10f -=,(1)1f =,则1ξ=;当(0)0F ≠,(1)0F ≠时,(0)(1)0F F ⋅<,而()F x 在[0,1]上连续,故根据零点定理可得,至少存在一点(0,1)ξ∈,使得()0F ξ=,即()0f ξξ-=,()f ξξ=.综上,在[0,1]上至少存在一点ξ,使得()f ξξ=.3.(2009年,10分)某工厂需要围建一个面积为2512m 的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁.问堆料场的长和宽各为多少时,才能使砌墙所用的材 料最省?解:设堆料场的宽为x m ,则长为512x m ,设砌墙周长为y ,则5122y x x=+, 令251220y x'=-=,得 2256x =,16x =(16x =-舍去).因只有一个驻点,且原题中最值一定存在,故当16x =时,函数有最小值.即当宽为16m ,长为32m 时,才能使砌墙所用的材料最省. 4.(2009年,10分)当0x >,01a <<时,1a x ax a -≤-.解:原不等式即为 10a x ax a -+-≤.设()1a f x x ax a =-+-,则(1)当1x=时,()110f x a a =-+-=,即10a x ax a -+-=成立;(2)当01x <<时,111()(1)0a af x ax a a x--'=-=->,故()f x 单调增加,可得()(1)0f x f <=,即10a x ax a -+-<成立;(3)当1x>时,111()(1)0a af x ax a a x--'=-=-<,故()f x 单调减少,可得()(1)0f x f <=,即10a x ax a -+-<成立.综上,当0x>,01a <<时,不等式10a x ax a -+-≤成立,即1ax ax a -≤-.5.(2008年,8分)求函数233y x x =-的单调区间、极值、凹凸区间与拐点.解:函数的定义域为(,)-∞+∞.先求单调区间和极值.令2633(2)0y x xx x '=-=-=,得驻点0x =,2x =,用驻点将整个定义域分为三个区间(,0)-∞,(0,2),(2,)+∞.当(,0)x ∈-∞时,0y '<,函数单调减少;当(0,2)x ∈时,0y '>,函数单调增加;当(2,)x ∈+∞时,0y '<,函数单调减少.故函数的单调增加区间为[0,2],单调减少区间为(,0]-∞和[2,)+∞;极小值(0)0f =,极大值(2)4f =.再求凹凸区间和拐点.令660y x ''=-=,得1x =.当(,1)x ∈-∞时,0y ''>,函数为凹的;当(1,)x ∈+∞时,0y ''<,函数为凸的,且当1x =时,2y =,故函数的凹区间为(,1]-∞,凸区间为[1,)+∞,拐点为(1,2).6.(2007年,8分)求函数11y x x =++的单调区间、极值、凹凸区间和拐点.解:函数的定义域为(,1)(1,)-∞--+∞.先求单调区间和极值.令221(2)10(1)(1)x x y x x +'=-==++,得驻点2x =-,0x =,用驻点将整个定义域分为三个区间(,2)-∞-,(2,1)--,(1,0)-,(0,)+∞.当(,2)x ∈-∞-时,0y '>,函数单调增加;当(2,1)x ∈--时,0y '<,函数单调减少;当(1,0)x ∈-时,0y '<,函数单调减少;当(0,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为(,2]-∞-和[0,)+∞,单调减少区间为[2,1)--和(1,0]-;极大值(2)3f -=-,极小值(0)1f =.再求凹凸区间和拐点.因432(1)2(1)(1)x y x x -+''=-=++,故当(,1)x ∈-∞-时,0y ''<,函数为凸的;当(1,)x ∈-+∞时,0y ''>,函数为凹的,故函数的凸区间为(,1)-∞-,凹区间为(1,)-+∞.凹凸性改变的点为1x =-,不在定义域内,故函数没有拐点.7.(2007年,8分)在周长为定值l 的所有扇形中,当扇形的半径取何值时所得扇形的面积最大?解:设扇形的半径为x ,则弧长为2lx -,设扇形的面积为y ,则由题意211(2)22y l x x x lx =-=-+.令202l y x '=-+=得,4l x =.唯一的极值点即为最大值点.故当扇形的半径为4l时,扇形的面积最大. 8.(2006年,10分)求函数321y x x x =--+的单调区间、极值及凹凸区间、拐点.解:函数的定义域为(,)-∞+∞. 先求单调区间和极值.令2321(31)(1)0y xx x x '=--=+-=,得驻点13x =-,1x =,用驻点将整个定义域分为三个区间1(,)3-∞-,1(,1)3-,(1,)+∞.当1(,)3x ∈-∞-时,0y '>,函数单调增加;当1(,1)3x ∈-时,0y '<,函数单调减少;当(1,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为1(,]3-∞-和[1,)+∞,单调减少区间为1[,1]3-;极大值132()327f -=,极小值(1)0f =.再求凹凸区间和拐点.令620y x ''=-=,得13x =.当1(,)3x ∈-∞时,0y ''<,函数为凸的;当1(,)3x ∈+∞时,0y ''>,函数为凹的,且当13x =时,1627y =,故函数的凸区间为1(,]3-∞,凹区间为1[,)3+∞,拐点为116(,)327.9.(2006年,10分)设函数()f x 在[0,1]上连续,且()0f x >.证明方程11()0()xxf t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.证明:先证存在性.设011()()()x xF x f t dt dt f t =+⎰⎰,[0,1]x ∈.因()f x 在[0,1]上连续,故()F x 在[0,1]上也连续,且011011(0)00()()F dt dt f t f t =+=-<⎰⎰,11(1)()0()0F f t dt f t dt =+=>⎰⎰,故由零点定理可得,至少存在一点(0,1)ξ∈使得()0F ξ=,即在(0,1)内方程至少存在一个根.再证唯一性,即证()F x 的单调性.1()()0()F x f x f x '=+>,故()F x 单调增加,所以结合上面根的存在性可知,方程011()0()xxf t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.10.(2005年,8分)已知()y f x =与2arctan 0xt y e dt -=⎰在(0,0)处切线相同,写出该切线方程并求2lim ()n nfn→∞. 解:切线斜率()22arctan arctan 02011x xtx x e k e dtx --==⎛⎫'===⎪ ⎪+⎝⎭⎰,故切线方程为01(0)y x -=⋅-,即 y x =.因()yf x =过点(0,0),故(0)0f =,且(0)1f '=,故 222()()()2lim ()lim lim 2(0)211()n n n f f n n n nf f n n n→∞→∞→∞'''===='.。

江苏省专转本高数全部知识点第一讲:极限、洛比塔法则第四讲:中值定理及其导数的应用

江苏省专转本高数全部知识点第一讲:极限、洛比塔法则第四讲:中值定理及其导数的应用
' f 即 ( ) 0
(1)
例如, f ( x ) x 2 2 x 3 ( x 3)( x 1).
在[1,3]上连续,
f ( x ) 2( x 1),
在( 1,3)上可导,
且 f ( 1) f ( 3) 0,
f () 0.
取 1, (1 ( 1,3))
0
y
y
o
x0

x

x0
o
x
(是极值点情形)
y

y


o
x0
x
o
x0
x
(不是极值点情形)
求极值的步骤:
(1) 求导数 f ( x );
(2) 求驻点,即方程 f ( x ) 0 的根;
(3) 检查 f ( x ) 在驻点左右的正负号 , 判断极值点 ;
(4) 求极值.
例1 求出函数 f ( x ) x 3 3 x 2 9 x 5 的极值. 解
f ( x ) 0, 在[1,2]上单调减少;
当2 x 时, f ( x ) 0, 在[2,)上单调增加;
单调区间为 ( ,1], [1,2], [ 2, ).
注意:区间内个别点导数为零,不影响区间的单调性.
3 y x , y x 0 0, 但在( ,)上单调增加. 例如,
2 f ( x ) 3 x 6 x 9 3( x 1)( x 3)
令 f ( x ) 0, 得驻点 x1 1, x2 3. 列表讨论
x
f ( x )
f ( x)
( ,1) 1
( 1,3)

3
0

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

河南专升本考试高等数学常用公式大汇总

河南专升本考试高等数学常用公式大汇总
多元函数微分法及应用
全微分的近似计算:Δz ≈ dz = f x ( x, y ) Δx + f y ( x, y ) Δy 多元复合函数的求导法: dz ∂z ∂u ∂z ∂v z = f [u (t ), v(t )] = ⋅ + ⋅ dt ∂u ∂t ∂v ∂t ∂z ∂z ∂u ∂z ∂v z = f [u ( x, y ), v( x, y )] = ⋅ + ⋅ ∂x ∂u ∂x ∂v ∂x 当u = u ( x, y ),v = v( x, y )时, du = ∂u ∂u ∂v ∂v dx + dy dv = dx + dy ∂x ∂y ∂x ∂y
2 2 2
α
1 − cosα 1 − cosα sin α α 1 + cosα 1 + cosα sin α = = ctg = ± = = 1 + cosα sin α 1 + cosα 2 1 − cosα sin α 1 − cosα
·余弦定理: c = a + b − 2ab cos C
平面的方程: v 1、点法式:A( x − x0 ) + B( y − y0 ) + C ( z − z 0 ) = 0,其中n = { A, B, C}, M 0 ( x0 , y0 , z 0 ) 2、一般方程:Ax + By + Cz + D = 0 x y z 3、截距世方程: + + = 1 a b c 平面外任意一点到该平面的距离:d = Ax0 + By0 + Cz 0 + D A2 + B 2 + C 2
= ln( x + x 2 ± a 2 ) + C

专升本高数公式大全

专升本高数公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

专升本高等数学第三章 中值定理与导数的应用练习题

专升本高等数学第三章 中值定理与导数的应用练习题

第三章 中值定理与导数的应用1.在下列四个函数中,在[]1,1-上满足罗尔定理条件的函数是( )A .18+=x yB .142+=x yC .21x y =D .x y sin = 2.函数()xx f 1=满足拉格朗日中值定理条件的区间是 ( ) A .[]2,2- B . []0,2- C .[]2,1 D .[]1,03.方程0155=+-x x 在()1,1-内根的个数是 ( )A .没有实根,B .有且仅有一个实根,C .有两个相异的实根,D .有五个实根.4.函数()3553x x x f -=在R 上有 ( )A .四个极值点;B .三个极值点C .二个极值点D .一个极值点. 5.函数()7186223+--=x x x x f 的极大值是 ( )A .17B .11C .10D .96.若函数()x f 在[]b a ,上连续,在()b a ,可导,则 ( )A .存在()1,0∈θ,有()()()()()a b a b f a f b f --'=-θB .存在()1,0∈θ,有()()()()()a b a b a f b f a f --+'=-θC .存在()b a ,∈θ,有()()()()b a f b f a f -'=-θD .存在()b a ,∈θ,有()()()()b a f a f b f -'=-θ.7.求极限x xx x sin 1sin lim 20→时,下列各种解法正确的是 ( )A .用洛必塔法则后,求得极限为0B .因为x x 1lim 0→不存在,所以上述极限不存在C .原式01sin sin lim 0=⋅=→x x x xxD .因为不能用洛必塔法则,故极限不存在8.设函数212x xy +=,在 ( )A .()+∞∞-,单调增加B .()+∞∞-,单调减少C .()1,1-单调增加,其余区间单调减少D .()1,1-单调减少,其余区间单调增加9.曲线xe y x+=1 ( ) A .有一个拐点 B .有二个拐点 C .有三个拐点 D . 无拐点10.指出曲线23x xy -=的渐近线 ( )A .没有水平渐近线,也没有斜渐近线B .3=x 为其垂直渐近线,但无水平渐近线C .即有垂直渐近线,又有水平渐近线D . 只有水平渐近线11.函数()()312321--=x x x f 在区间()2,0上最小值为 () A .4729B .0C .1D .无最小值12.求()201ln lim x x x x +-→13.求()⎪⎪⎭⎫⎝⎛-+→x x x 11ln 1lim 014.求x xx 3cos sin 21lim 6-→π15.求()xx x 1201lim +→16.求函数149323+--=x x x y 的单调区间。

4专升本中值定理及导数应用110227

4专升本中值定理及导数应用110227

专升本微积分课程辅导信息管理学院数学与管理工程系易伟明电话:3816896Email:yiwm@2011-3-42011-3-42§4.1微分中值定理§4.2洛必达法则§4.3用导数研究函数的单调性、极值、和最值§4.4函数曲线的凹向及拐点§4.5曲线的渐近线与函数作图§4.6导数在经济学中的应用第四章 中值定理及导数的应用2011-3-43§4.1 微分中值定理The Mean Value TheoremThe Mean Value Theorem 微分中值定理11、罗尔(Rolle Rolle))定理 22、拉格朗日(Lagrange)定理 33、柯西(Cauchy)定理2011-3-44a b o yA B x )(x f y =1、罗尔 ( ( Rolle Rolle Rolle ) ) 定理(R-(R-Th Th Th))则在(a ,b )内至少有一点ξ (a < ξ <b ),使得()0.f ξ′=若函数f (x )满足:1) 在闭区间[a ,b ]上连续, 2) 在开区间(a ,b )内可导,⎪⎩⎪⎨⎧),()(b f a f =3)ξ注意:罗尔定理的条件组1) 2) 3)是结论成立的充分条件,任一条都不是必要条件2011-3-4532()2525,[1,1],()1()0.f x x x x x f x Rolle f ξξ=−−+∈−=设验证是否满足定理的条件?若满足,求出定理中使的例322()2525()6102()[1,1](1,1)(1)(1)0.().f x x x x f x x x f x f f f x Rolle =−−+′=−−∴−−−==∴∵都是多项式;在上连续,在内可导且满足定理的三个条件解2011-3-4621211()61020(11)537(1,(1)65376(1,1)()0.1,1)()f f ξξξξξξξξ′=−−=−<<−=∈−+′∴−∉−==而得 , 在内存在一点,使得舍去2011-3-47()(2)(1)(1)(3)2,()0f x x x x x f x =++−−′=已知不求导数,试确定有几个实根例及其所在范围.(),()()[21][11][13]()(21)(11)(13)(2)(1)(1)(3)0,()[21][11][13]Th .f x f x f x f x f f f f f x R ′∴−−−−−−−=−===∴−−−−∵都是多项式在闭区间,,,,,上连续, 在开区间,,,,,上可导;且在,,,,,足解上均满条件2011-3-48112233123(2,1)()0(1,1)()0(1,3)()0. ()0.f f f f x ξξξξξξξξξ′∴−−=′−=′=′=在内至少存在一点,使;在内至少存在一点,使;在内至少存在一点,使即、、是的三个实根()0(21),(11),(13).′=∴−−−又为三次方程,它最多只有三个实根,这三个实根分别在区间,,,内f x ∵注意:本例应用罗尔定理的关键是主动找区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在(a, b)内至少
存在一点 ,
30. f (a)
f (b).

使得f ( ) 0.
2.拉格朗日定理:P64
如果函数 f ( x) 满足条件:
在(a, b)内 至 少 存
10 在[a, b]上 连 续 , 20在(a,b)内可导;
在 一 点, 使 得 : f ( ) f (b) f (a)
因此
1 x ln(x 1 x2 ) 1 x2 , (x 0)
解:设
f (x) (1 x) ln(1 x) arctanx x 0
f
(
x)

ln(1

x)

1 1

x x

1
1 x
2
ln(1 x) x2 0, (x 0) 1 x2
所以 f (x) , x 0
从而
f (x) f (0) [(1 x) ln(1 x) arctan x]x0 0, x 0
因此 ln(1 x) arctanx , x 0 1 x
3.函数的极值
⑴极值的定义:P72
定义 设函数 f (x)在 x0 的某邻域内有定义,且对 此 邻 域 内 任 一 点 x(x x0 ) , 均 有 f (x) f (x0 ) , 则 称 f (x0 )是函数 f (x) 的一个极大值;同样,如果对此邻域 内任一点 x(x x0 ) ,均有 f (x) f (x0 ) ,则称 f (x0 ) 是函 数 f (x)的一个极小值.函数的极大值与极小值统称为 函数的极值.使函数取得极值的点 x0,称为极值点.
x
lim ln y lim ln ln x x
x
x x
1
lim x ln x lim 1 0



x
1
x x ln x
1
所以
lim y lim (ln x) x 1
x
x
解法2:(指数法)
1
ln ln x
lim (ln x) x lim e x
ex ex sec2 x
2
0
ln x
(2)
lim
x
xa
,
a0
1
解:
lim
x
ln x xa



ห้องสมุดไป่ตู้
lim
x
x ax x 1

lim
x
1 axa
0

(3)
lim (
x0
1 x

e
1
x
) 1
解: 1 1
ex 1 x
lim( ) lim
x0 x ex 1 x0 x(ex 1)
ba
f (b) f (a) f ()b a
例题:P66 例1,2
㈡罗必塔法则:P67,68
则 lim f (x) lim f (x) A, (或) xa() g(x) xa() g(x)
lim f ( x) lim f ( x) lim f ( x) A (或) xa() g( x) xa() g( x) xa() g( x)
ln( x 1 x2 ) x( 1 x2 x) x 1 x2 (x 1 x2 ) 1 x2
ln(x 1 x2 ) 0, x 0
所以 f (x) , x 0 从而
f (x) f (0) [1 x ln(x 1 x2 ) 1 x2 ]x0 0
(1)如果在(a,b) 内 f (x) 0 ,则函数 f (x) 在 [a, b]上单调增加;
(2)如果在(a,b)内 f (x) 0,则函数 f (x)在 [a,b] 上单调减少.
求单调区间的4个步骤:
(1)确定函数的定义域,求出导数 f (x)
(2)求出导数等于0(驻点)和导数不存在的点 (3)根据(2)中的点将定义域分成若干个区间,并确定
ex 1
ex
lim
lim
0 0
x0
ex
1
xe x

0 0

x
0
ex
ex

xe x
lim 1 1 x0 2 x 2
1
(4) lim (ln x) x x
(0未定式) 1
解法1:(对数法) 设 y (ln x) x
ln
y

ln(ln
1
x) x

ln ln
f (x) 1 x ln(x 1 x2 ) 1 x2 , (x 0)
f (x) ln( x 1 x2 ) x(x 1 x2 ) 2x
(x 1 x2 ) 2 1 x2
x(1 x )
ln( x 1 x2 )
1 x2 x
(x 1 x2 ) 1 x2
f (x) 在每个区间的符号
(4)判断: 当f (x) 0时,单调增加
当f (x) 0时,单调减少
注:单调区间无所谓开、闭区间,一般为开区间
掌握P71 例题1-4
证明:(采用函数的单调性证明)
例3. 证明:
1 x ln(x 1 x2 ) 1 x2 , (x 0)
证明: 设
1.认真掌握课本P68-69的例题 2.独立完成P70 的习题(用罗必塔法则求极限)
例 求lim x 1 . x1 x 1 ln x
解 这是 未定型,通过“通分”将其化为
0 未定型.
0
lim x1
x
x
1

1 ln x


lim
x1
x
ln (x
x (x 1) 1) ln x

lim
x1
x1 x ln
ln x 1 x x 1
x
1

lim x1 1
ln x 1 ln x
x

lim
x 1
1 x2
x
1 x

1 2
.
例.求下列极限
ex ex (1) lim
x0 tan x
解:lxim0
ex ex tan x

0
lim
x0
x
(0 ) x
ln ln x
1
e e e 1 lim x x
lim x x ln x
0



㈢导数的应用
1. 切线方程和法线方程:
2. 曲线的单调性: P71 定理1
定理 2 设函数 f (x) 在[a,b] 上连续,在(a,b) 内 可导,则有
第三章 中值定理及导数的应用
3.1 中值定理 3.2 罗必塔法则 3.3 函数的单调性 3.4 函数的极值 3.5 函数的最值 3.6 函数的凹凸性及拐点,函数的图像
一、主要内容
㈠中值定理 1.罗尔定理: P63
如果函数 f (x) 满足条件:
120.0. 在在[(aa,,bb])上内连可续导;;
相关文档
最新文档