光合作用的生理生态培训课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子传递体在类囊体膜上的这种分布,使电子在膜的内外进 行定向传递,形成跨膜质子梯度,推动ATP形成。
(四)PSII的结构与运转
1、PSII复合体的结构
PSII反应中心结构模式图
示意PSII反应中心D1蛋白和D2蛋白的结构。 D1很容易受到光化学破坏,会发生活性 逆转。
电子从P680传递到去镁叶绿素(Pheo)继而传递到两个质体醌QA和QB。P680+在“Z” 传递链中被D1亚基中酪氨酸残基还原。
Cytb/f复合体:基粒垛叠区、基粒末端与边缘
PSI复合体:PSI-α:基粒外周 PSI-β:间质片层
ATP酶复合体(CF,coupling factor):
CF1:位于膜表面,起催化作用,ADP+Pi ATP Cf2:插入膜内,提供H+通道
OEC(放氧复合体):膜内表面 P680的原初电子供体:位于膜内侧,原初电子受体
PSII的一个重要功能,就是参与水的裂解放氧。有关分子 氧释放的机理,依然是目前研究的重要问题。
(1)氧释放动力学 光合放氧具有周期现象,在闪光诱导动力学研究中,发现 氧的释放伴随着4个闪光周期的摆动,即每4次闪光出现一个放 氧高峰。Kok等提出4个S态循环的模型(Kok钟),OEC需要积 累4个氧化当量(正电荷),才能从2个水分子中夺取4个还原当 量,释放一分子氧。
1、光合电子传递的顺序
(1)两个光系统 红降现象: 双光增益效应:
PSII和PSI:
PSII:P680核心、捕光色素蛋白复合体 (LHCII)、放氧复合体(OEC)
PSI: P700核心、LHCI
(2)Z链 (Z schem)
2、电子传递体在类囊体膜上的分布
类囊体膜上存在4中蛋白复合体:
PSII复合体:PSII-α:基粒中央 PSII-β:间质片层
激子传递:激子通常是指非金属晶体中由电子激发的量
子(激子是能量和动量相同的分子共有的电子激发态)。它 能转移能量但不能转移电荷。其能ຫໍສະໝຸດ Baidu传递效率决定于两个分 子间的作用矩阵。
在由相同分子组成的聚光色素系统中,其中一个色
素分子受光激发后,高能电子在返回原来轨道时也会发出激 子,此激子能使相邻色素分子激发,即把激发能传递给了相 邻色素分子,激发的电子可以相同的方式再发出激子,并被 另一色素分子吸收,
(3)水氧化放氧系统 包括:三种外周蛋白(33,23,17KD), Mn簇, Cl, Ca2+
2、PSII的运转
PSII是执行光诱导电荷分离及电子传递的基本单位,P680 中心色素是一个chla双分子体。
电子从放氧中心到P680+是很快的过程。Yz是D1蛋白上 的第161位Tyr残基。
原初的电荷从P680到Pheo只需几个皮秒(ps),Pheo-又 立即被QA氧化,QA-又被QB在100-200微秒时间内氧化。 QB先形成半醌QB-,然后又从另一个QA-接受1个电子,形 成还原型醌QB2-。(这里QA是单电子受体,QB是双电子受 体)。
这种在相同分子内依靠激子传递来转移能量的方式 称为激子传递。
天线色素吸收的光能,经过色 素间的一系列传递,汇集到反应中 心,在那里引起光化学反应。
(二)原初光化学反应
原初反应是光合作用中将光能转化为化学能 的最初步骤,其反应非常快,在fs—ps之间。
反应部位:光合膜(反应中心)
(三)叶绿体电子传递
位于膜外测。 PQ:可以在膜的疏水区移动。 P700的电子供体(PC)位于膜内表面,受体fd位于
膜外表面。
这样的空间排列,使得P680受光激发后,在类囊体的内表 面发生水的氧化,并向类囊体膜内释放O2和H+。在膜的外测 发生PQ还原,并通过跨膜移动,把膜外质子传到腔内。
PSI受光激发后,从类囊体内侧的PC接受电子,并在膜的外 测把电子交给fd,从而在膜的外测进行NADP的还原。
hv1 hv2 hv3 hv4
S0 → S1 → S2 → S3 → S4 → S0+4H++O2 这里,S0-S4代表放氧中心的不同氧化还原状态,hv1-hv4
表示闪光的顺序。从S0到S4共积累4个氧化当量,S4是不稳定 的,它释放出分子氧后又回到S0状态。
这样,每次循环吸收4个光量子,氧化2个水分子,向PSII中 心传递4个电子,释放4个质子,1个氧分子。
1、叶绿素激发与去激
2、色素之间的能量传递
共振传递:在色素系统中,一个色素分子吸收光能
被激发后,其中高能电子的振动会引起附近另一个分子中某 个电子的振动(共振),当第二个分子电子振动被诱导起来, 就发生了电子激发能量的传递,第一个分子中原来被激发的 电子便停止振动,而第二个分子中被诱导的电子则变为激发 态,第二个分子又能以同样的方式激发第三个、第四个分子 。这种依靠电子振动在分子间传递能量的方式就称为“共振 传递”。
(2)Mn, Cl, Ca与放氧的关系 (1)Mn 直接参与水裂解积累4个氧化当量的过程。 锰以不同的亲和程度结合在PSII颗粒上,利用加热或Tris
图中还表明了Mn聚集体(MSP)对水的氧化。 CP43和CP47是叶绿素结合蛋白。
包括3个部分:
(1)捕光天线系统 ●围绕P680的CP43和CP47蛋白复合体组成的内周天线 (近侧天线) ●由LHCII复合体组成的外周天线(远侧天线)
(2)D1-D2蛋白 D1-D2蛋白:由2个32KD蛋白组成,其中包括原初电子供 体Yz(Tyr161残基)。 反应中心电子传递链: Yz-P680-Pheo-QA(D2蛋白)-QB(D1蛋白)构成反应 中心的电子传递链。
完全还原的QB2-从间质接受2个质子,形成QBH2,并与PQ 交换位置,随后再向cytb/f传递。
D1蛋白亚基是QB的载体,故又称为QB蛋白,它可被 DCMU等除草剂结合,从而阻断电子从QA-向QB-的传递。
此外,许多逆境因子,如强光、高盐等对电子传递的抑制部 位,也是这里。
3、PSII的水裂解放氧
光合作用的生理生态
一、光反应——同化力形成
(一)光能的吸收与传递
叶绿素的卟啉环上具有很多共轭双键,正是 这些共轭双键能够吸收可见光(400-700nm) 。
最稳定的价电子处于基态,能量最低。当光量 子被一个基态的电子吸收,光量子的能量就被加 到电子上,电子跃迁为能级较高的激发态。对于 可见光,电子跃迁时间为10-15s.
(四)PSII的结构与运转
1、PSII复合体的结构
PSII反应中心结构模式图
示意PSII反应中心D1蛋白和D2蛋白的结构。 D1很容易受到光化学破坏,会发生活性 逆转。
电子从P680传递到去镁叶绿素(Pheo)继而传递到两个质体醌QA和QB。P680+在“Z” 传递链中被D1亚基中酪氨酸残基还原。
Cytb/f复合体:基粒垛叠区、基粒末端与边缘
PSI复合体:PSI-α:基粒外周 PSI-β:间质片层
ATP酶复合体(CF,coupling factor):
CF1:位于膜表面,起催化作用,ADP+Pi ATP Cf2:插入膜内,提供H+通道
OEC(放氧复合体):膜内表面 P680的原初电子供体:位于膜内侧,原初电子受体
PSII的一个重要功能,就是参与水的裂解放氧。有关分子 氧释放的机理,依然是目前研究的重要问题。
(1)氧释放动力学 光合放氧具有周期现象,在闪光诱导动力学研究中,发现 氧的释放伴随着4个闪光周期的摆动,即每4次闪光出现一个放 氧高峰。Kok等提出4个S态循环的模型(Kok钟),OEC需要积 累4个氧化当量(正电荷),才能从2个水分子中夺取4个还原当 量,释放一分子氧。
1、光合电子传递的顺序
(1)两个光系统 红降现象: 双光增益效应:
PSII和PSI:
PSII:P680核心、捕光色素蛋白复合体 (LHCII)、放氧复合体(OEC)
PSI: P700核心、LHCI
(2)Z链 (Z schem)
2、电子传递体在类囊体膜上的分布
类囊体膜上存在4中蛋白复合体:
PSII复合体:PSII-α:基粒中央 PSII-β:间质片层
激子传递:激子通常是指非金属晶体中由电子激发的量
子(激子是能量和动量相同的分子共有的电子激发态)。它 能转移能量但不能转移电荷。其能ຫໍສະໝຸດ Baidu传递效率决定于两个分 子间的作用矩阵。
在由相同分子组成的聚光色素系统中,其中一个色
素分子受光激发后,高能电子在返回原来轨道时也会发出激 子,此激子能使相邻色素分子激发,即把激发能传递给了相 邻色素分子,激发的电子可以相同的方式再发出激子,并被 另一色素分子吸收,
(3)水氧化放氧系统 包括:三种外周蛋白(33,23,17KD), Mn簇, Cl, Ca2+
2、PSII的运转
PSII是执行光诱导电荷分离及电子传递的基本单位,P680 中心色素是一个chla双分子体。
电子从放氧中心到P680+是很快的过程。Yz是D1蛋白上 的第161位Tyr残基。
原初的电荷从P680到Pheo只需几个皮秒(ps),Pheo-又 立即被QA氧化,QA-又被QB在100-200微秒时间内氧化。 QB先形成半醌QB-,然后又从另一个QA-接受1个电子,形 成还原型醌QB2-。(这里QA是单电子受体,QB是双电子受 体)。
这种在相同分子内依靠激子传递来转移能量的方式 称为激子传递。
天线色素吸收的光能,经过色 素间的一系列传递,汇集到反应中 心,在那里引起光化学反应。
(二)原初光化学反应
原初反应是光合作用中将光能转化为化学能 的最初步骤,其反应非常快,在fs—ps之间。
反应部位:光合膜(反应中心)
(三)叶绿体电子传递
位于膜外测。 PQ:可以在膜的疏水区移动。 P700的电子供体(PC)位于膜内表面,受体fd位于
膜外表面。
这样的空间排列,使得P680受光激发后,在类囊体的内表 面发生水的氧化,并向类囊体膜内释放O2和H+。在膜的外测 发生PQ还原,并通过跨膜移动,把膜外质子传到腔内。
PSI受光激发后,从类囊体内侧的PC接受电子,并在膜的外 测把电子交给fd,从而在膜的外测进行NADP的还原。
hv1 hv2 hv3 hv4
S0 → S1 → S2 → S3 → S4 → S0+4H++O2 这里,S0-S4代表放氧中心的不同氧化还原状态,hv1-hv4
表示闪光的顺序。从S0到S4共积累4个氧化当量,S4是不稳定 的,它释放出分子氧后又回到S0状态。
这样,每次循环吸收4个光量子,氧化2个水分子,向PSII中 心传递4个电子,释放4个质子,1个氧分子。
1、叶绿素激发与去激
2、色素之间的能量传递
共振传递:在色素系统中,一个色素分子吸收光能
被激发后,其中高能电子的振动会引起附近另一个分子中某 个电子的振动(共振),当第二个分子电子振动被诱导起来, 就发生了电子激发能量的传递,第一个分子中原来被激发的 电子便停止振动,而第二个分子中被诱导的电子则变为激发 态,第二个分子又能以同样的方式激发第三个、第四个分子 。这种依靠电子振动在分子间传递能量的方式就称为“共振 传递”。
(2)Mn, Cl, Ca与放氧的关系 (1)Mn 直接参与水裂解积累4个氧化当量的过程。 锰以不同的亲和程度结合在PSII颗粒上,利用加热或Tris
图中还表明了Mn聚集体(MSP)对水的氧化。 CP43和CP47是叶绿素结合蛋白。
包括3个部分:
(1)捕光天线系统 ●围绕P680的CP43和CP47蛋白复合体组成的内周天线 (近侧天线) ●由LHCII复合体组成的外周天线(远侧天线)
(2)D1-D2蛋白 D1-D2蛋白:由2个32KD蛋白组成,其中包括原初电子供 体Yz(Tyr161残基)。 反应中心电子传递链: Yz-P680-Pheo-QA(D2蛋白)-QB(D1蛋白)构成反应 中心的电子传递链。
完全还原的QB2-从间质接受2个质子,形成QBH2,并与PQ 交换位置,随后再向cytb/f传递。
D1蛋白亚基是QB的载体,故又称为QB蛋白,它可被 DCMU等除草剂结合,从而阻断电子从QA-向QB-的传递。
此外,许多逆境因子,如强光、高盐等对电子传递的抑制部 位,也是这里。
3、PSII的水裂解放氧
光合作用的生理生态
一、光反应——同化力形成
(一)光能的吸收与传递
叶绿素的卟啉环上具有很多共轭双键,正是 这些共轭双键能够吸收可见光(400-700nm) 。
最稳定的价电子处于基态,能量最低。当光量 子被一个基态的电子吸收,光量子的能量就被加 到电子上,电子跃迁为能级较高的激发态。对于 可见光,电子跃迁时间为10-15s.