范德蒙行列式及其应用
范德蒙行列式及应用论文
范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。
范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。
范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。
范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。
范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。
首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。
通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。
其次,在微积分中,范德蒙行列式也有着重要的应用。
在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。
通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。
另外,在数论中,范德蒙行列式也有着重要的应用。
由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。
通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。
除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。
它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。
范特蒙德矩阵行列式
范特蒙德矩阵行列式范特蒙德矩阵行列式矩阵理论作为现代数学的重要分支,在科学领域和应用领域中有着广泛的应用。
而矩阵行列式是矩阵理论中的重要概念。
本文将介绍范特蒙德矩阵行列式(Vandermonde determinant),并探讨其相关性质和应用。
一、范特蒙德矩阵行列式的定义范特蒙德矩阵行列式,又称范德蒙行列式,是由范特蒙德(Vandermonde)于1772年引入的。
它的定义如下:对于正整数n和n个实数a1, a2,…, an,范特蒙德矩阵V是一个n×n的矩阵,其中第i行第j列的元素是ai的j−1次方,即:$$V = \begin{pmatrix}1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & a_n & a_n^2 & \cdots & a_n^{n-1}\end{pmatrix}$$范特蒙德矩阵行列式(Vandermonde determinant)是矩阵V的行列式,记作:$$\prod_{1 \le i < j \le n} (a_j - a_i)$$二、范特蒙德矩阵行列式的性质范特蒙德矩阵行列式具有以下性质:1. 对任意正整数n和n个实数a1, a2,..., an,范特蒙德矩阵行列式的绝对值等于$\prod_{i<j}(ai - aj)$,即范德蒙定理。
2. 范特蒙德矩阵行列式的值只与a1, a2,…, an的大小关系有关,而与它们的顺序无关。
3. 当a1, a2,..., an等距时,即存在正整数k和h,使得ai=a1+(i−1)k(i=1,2,…,n),则Vandermonde determinant等于$\prod_{i<j}(j-i)$,即n个不同的有理数的秩次数。
范德蒙德行列式的研究与应用
范德蒙德行列式的研究与应用给定n个数$x_1,x_2,...,x_n$,范德蒙德行列式定义为:$$\begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}$$1.行列式的值只与$x_1,x_2,...,x_n$有关,而与n无关。
2.当$x_1,x_2,...,x_n$中存在两个数相同时,行列式的值为0。
3.当$x_1,x_2,...,x_n$中的数互不相同时,行列式的值为:$$\prod_{1 \leq i < j \leq n} (x_j - x_i)$$其中$\prod$表示乘积。
1.插值多项式:给定n个互不相同的点$(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$,根据这些点来构造一个插值多项式可以使用范德蒙德行列式。
具体而言,可以通过以下公式计算出多项式的系数:$$\begin{bmatrix}x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \\\end{bmatrix}\begin{bmatrix}a_0\\a_1\\\vdots \\a_{n-1}\\\end{bmatrix}\begin{bmatrix}y_1\\y_2\\\vdots \\y_n\\\end{bmatrix}$$其中,$a_0,a_1,...,a_{n-1}$为待求的多项式系数。
数学与应用数学本科毕业范文范德蒙行列式及其应用
本科毕业论文论文题目:范德蒙行列式及其应用学生姓名:学号:专业:数学与应用数学指导教师:学院:年月日毕业论文(设计)内容介绍目录中文摘要 (1)英文摘要 (1)一、引言 (2)二、范德蒙行列式定义及性质 (2)三、范德蒙行列式的应用 (3)(一)范德蒙行列式在多项式理论中的应用 (3)(二)范德蒙行列式对整除问题的应用 (5)(三)范德蒙行列式在矩阵的特征值与特征向量中的应用 (6)(四)范德蒙行列式在向量空间理论中的应用 (7)(五)范德蒙行列式在线性变换理论中的应用 (8)(六)范德蒙行列式在微积分中的应用 (10)(七)范德蒙行列式在求解行列式中的应用 (13)参考文献 (16)范德蒙行列式及其应用摘要:行列式最早出现在16世纪关于线性方程组的求解问题中,时至今日行列式理论的应用却远不如此.它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;线性变换;多项式Application of Vandermonde’s DeterminantAbstrac t:The determinant appeared at the earliest which was used to solve the problem concerning the liner equations in 16 centuries,but the days up to now the theoretical in determinant was far used in lots of domains.Vandermonde’s determinant is regarded an a kind of special determinant,which not only have the special form but also have the extensive application.The article inquired into the Vandermonde’s determinant in vector space, linear transformation,polynomial theories and determinant’s calculation of application. Keywords:Vandermonde’sDeterminant;vectorspace;lineartransformation,polynomial theories; determinant’s calculation of application.一 引言在高等代数中,行列式计算及其相关的证明是一个重点,也是难点.它最早出现在线性方程组的求解问题中,时至今日,行列式理论的应用越来越广泛,它是后期学习和应用线性方程组,向量空间,矩阵和线性变换的基础.正确而快速的解决行列式问题是其他一切工作的前提,也是科研工作中最为关键的一步.行列式的计算有一定的规律性和技巧性,掌握行列式的规律性有助于我们高效准确的解决科研工作中遇到的行列式问题.而范德蒙行列式是一种重要的行列式,在行列式计算中可以把一些特殊的或者是类似于范德蒙行列式的行列式转化为范德蒙行列式进行计算.由于范德蒙行列式有着独特的构造和优美的形式而被广大科研工作者广泛的应用,因而成为一个著名的行列式.二 范德蒙行列式定义及性质1. 范德蒙行列式的定义形如12222121111211 (1)n nn n n nx x x x x x x x x ---的行列式,称为1x ,2x ,…n x 的n 阶范德蒙行列式,记作 n V (1x ,2x ,…n x ).下面以递推法为例介绍范德蒙行列式的计算n V (1x ,2x ,…n x )=21311222221331111111122133111111000n n n n n n n n n n n x x x x x xx xx x x x x x x x x x x x x x x x ---------------=2131122133112222213311()()()()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------------=21()x x -31()x x -…1()n x x -n-1V (2x ,…n x ).仿上做法有n-1V (2x ,…n x )=3242223()()n n n x x V x x --(x -x )(x -x ).再递推下直到11V =,故n V (1x ,2x ,…n x )=21()x x -31()x x -…1()n x x -.32422()n x x -(x -x )(x -x )(1n n x x --).1=1i j j i nx x ≤<≤-∏. 有以上的计算易得,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1n nn n n nx x x x x x x x x ---=∏(i j x x -). 有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.三 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.(一) 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助.例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0, 如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c a c a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c x c x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.(二) 范德蒙行列式对整除问题的应用多项式的根与整除性是密切相关的,所以有时候可以用范德蒙行列式的性质讨论某些多项式或者整数的整除题. 例4 设121(),(),(),n f x f x f x -是n-1个复系数多项式,满足 11n x x ++++2121()()()n n n n n f x xf x x f x --+++,证明121(1)(1)(1)0n f f f -====.证 设2121()()()n n n n n f x xf x x f x --+++=1()(1)n p x x x -+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得 212122(2)1211(1)(2)121(1)(1)(1)0,(1)(1)(1)0,(1)(1)(1)0.n n n n n n n n f f f f f f f f f ωωωωωω--------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这个关于1(1)f ,2(1)f ,1(1)n f -的齐次线性方程组的系数行列式,因此21(,,,)0n V ωωω-=.例5 设12,,n a a a 是正整数,证明()12,,n V a a a 能被()()2121221n n n n ----整除.证明 由()()()111222111111n nn n a a a a aa I aa a --=-1!2!!n =111222112111211121n n n a a a n a a a n a a a n ---. 知()12,,n V a a a 能被1!2!!n =()()2121221n n n n ----整除.(三) 范德蒙行列式在矩阵的特征值与特征向量中的应用例 6 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 7 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11j r r A x x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.(四) 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例8 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,)n i i i i a t t t -=,i=1,2,…n,n 是n 维向量空间的一组基.证 令21111121222221111n n n n nnn a t t t a t t t A a t t t ---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为12,,,n t t t 是互不相同的实数,所以0T A A =≠,则12,,,n a a a 线性无关.例 9 设V 是数域F 上的n 维向量空间,任给正整数n m ≤,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取()2111,2,2,,2n α-=,()()()2222121,2,2,2n α-=,()()()211,2,2,2mmm n m α-=,令()()()()()()111222212121122212221222nnnk k k n k k k n n k k k n D ---=,121n k k k m ≤≤≤≤≤,()()()()()()111222212121122212221222n nnk k k n k k k n n k k k n D ---=是范德蒙行列式,且0n D ≠,所以12,,,n k k k ααα线性无关.例 10 设V 是数域F 上的n 维向量空间,则V 的有限个真子空间不能覆盖V.证明:当n=1时,显然成立.设n>1时,令12,,,n ααα是V 的一个基,设}{112n n n S k k k F V ααα-=+++∣∈⊂,其中,n F 为F 中元素之集合.令112:,n n n F S k e ke k e ϕ-→→+++,12,,,n e e e 为单位向量.则易证ϕ是双射,从而S 中有无穷多个不同的元素.设,1,2,i V i t =为V 的真子空间,则S 中的元素在i V 中的个数小于n,否则,若,1,2,j i V j n β∈=111121112,.n n n nn n n k k k k βαααβααα--⎧=+++⎪⎨⎪=+++⎩则由,,1,2,,,i j k k i j n i j ≠=≠,知系数行列式为非零的范德蒙行列式,故有,1,2,,j k V j n α∈=,进而,1,2,i V V i t ==矛盾.从而S 中只有有限多个元素在1ti i V =中,而S 中有无穷多个元素,所以存在x S ∈,但1,ti i x V =∉即V 的有限个真子空间不能覆盖其自身.(五) 范德蒙行列式在线性变换理论中的应用在高等代数的学习中,线性变换一直是一个重点,也是难点,题目的变化也比较多,在有些题目中,我们可以巧妙地利用范德蒙行列式来解决这类题目. 例11 如果12,,,s λλλ是线性变换的全部两两不同的特征值,(1,2,,)i i V s λα∈,则当120s ααα+++=时,必有12s ====0ααα.证明 注意到(1)I i i i s αλαΛ=≤≤,对等式120s ααα+++=两边逐次作用,得112222211221111220,0,0.s s s ss s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 用矩阵表示为()()111122121110,0,,01s s s s s s λλλλαααλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭(1)矩阵1111221111s s s s s B λλλλλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙行列式,由于12,,,s λλλ两两不同,从而B 是可逆矩阵.在(1)式两边右乘1B -, 得12s ====0ααα.例12 数域F 上的n 维向量V 的线性变换σ有n 个互异的特征值12,,n λλλ,则1) 与σ可交换的V 的线性变换都是21,,,n e σσσ-的线性组合,这里e 为恒等变换.2)21,,,,n V αασασασα-∀∈线性无关的充要条件为1,ni i αα==∑这里()i i i σααλ=,1,2,i n =证明:1)设δ是与σ可交换的线性变换,且(),1,2,,i i i i n σαλα==则 }{i i V k k F λα=⎪∈是δ的不变子空间.令21121n n xe x x x δσσσ--=++++且(),1,2,,i i i k i n σαα==,则由以下方程组21111211121212221221121,,.n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=++++⎪=++++⎪⎨⎪⎪=++++⎩ (1)因为方程组(1)的系数行列式是范德蒙行列式,且()1ij j i nD λλ≤<≤=-∏,所以方程组(1)有唯一解,故δ是21,,,n e σσσ-的线性组合.2)充分性因为1ni i αα==∑,所以()()()()111112212111,,,,,,1n n n n nn λλλλασασααααλλ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,并且()111122111101n i j j i nn nn λλλλλλλλ--≤<≤-=-≠∏,所以1111221111n n nn λλλλλλ---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是可逆矩阵,又因为12,,,n ααα是V 的一组基,()()1,,,n ασασα-线性无关.3)必要性 设12,,,n e e e 是分别属于1,,,n λλλ的特征向量,则12,,,n e e e 构成V 的一个基,因而有1122n n k e k e k e α=+++.若0,1,2,i k i n ≠=,则i i k e 是σ的属于i λ的特征向量,故结论成立.若存在}{1,2,,j n ∈,使0j k ≠,不妨设12,,,r k k k 去不为零,而120r r n k k k ++====,因而有1122r r k e k e k e α=+++则()()()()()111111112222212121,,,,,,,,,n n n r r n r r r r r k k k k k k e e e e e e A k k k λλλλασασαλλ----⎡⎤⎢⎥⎢⎥==•⎢⎥⎢⎥⎢⎥⎣⎦. 利用范德蒙行列式可知A 有一个r 阶子式不为零,所以秩(A )=r ,从而()()()1,,,n r ασασα-=,又因为r n <线性无关,所以()()()1,,,n ασασα-线性无关,矛盾.从而1,ni i αα==∑1,2,i n =.(六) 范德蒙行列式在微积分中的应用如果视多项式为实函数,则范德蒙行列式还可以应用到微积分领域.例13 ()f x 在[],a b 上连续,在(),a b 内存在2阶导数,证明a x b <<上有()()()()()1"2f x f a f b f a x a b a f c x b -----=-,这里(),c a b ∈.特别的,存在,(,)c a b ∈,使()()2,()2()"()24b a a bf b f f a f c -+-+=. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F x x x f x b b f b =,为范德蒙行列式,则()f x 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,故有中值定理,存在12a x x x b <<<<,使()()12''0F x F x ==,故再运用一次中值定理,存在()12,c x x ∈,使()''0F c =,即()()()()()''2''22002111f c a a f a F c x x f x b b f b ==0 . 展开行列式即得()()()()()1"2f x f a f b f a x a b a f c x b -----=-. 特别的,取2a bx +=,则有相应的()',c a b ∈,使上式成立,即()()()()212"22a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--=+-,化简即得()()2,()2()"()24b a a bf b f f a f c -+-+=.反复利用微分中值定理,可以类似的证明下面更一般的结论:设()f x 在[],a b 内存在n-1阶导数,12n a x x x b <<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例 14 设()f x 在区间I上n 阶可导()2n ≥,若对()()()()00,,,,n n n x I f x M f x M M M ∀∈≤≤为正常数,证明:存在n-1个正常数121,,,n M M M -使对x I ∀∈,有()()()1,2,1.k k f x M k n ≤=-证明:设121,,n a a a I -∈,且()0,i i j a a a i j ≠≠≠,由泰勒公式,对于1,2,,1i n =-,有()()()()()11!!n xn k ni i i k f f f x a f x a a k n ξ-=+=++∑,有此得 ()()()()()11!!n xn kn i i i k f f a f x a f x a k n ξ-==+--∑, 因此 ()()()()()1012!!!nx n k n i i i n k f f A a f x a f x a M M k n n ξ-=≤+++≤+∑,其中11max ni i n A a ≤<-=,令()()()11,,1,2,,1!x n ki i k f a A x x I i n k -==∈=-∑,则()()02,1,2,,1!i n AA x M M x I i n n ≤+∈=-,由于方程组的系数行列式D 为()()()2311111231222223111112!3!1!2!3!1!2!3!1!n n n n n n n a a a a n a a a a n D a a a a n ---------=-=()211112122212121111111!21!1n n n n n n n a a a a a a a a a n a a a -------=-!,其中后面的行列式为121,,,n a a a -范德蒙行列式,由()i j a a i j ≠≠及0i a ≠知0D ≠,故由克莱姆法则知,存在于X无关的常数()()()()()()121,,k k k n λλλ-,使得:()()()()()11n k k i i i f x A x λ-==∑,(),1,2,,1x I i n ∀∈∀=-,由此推得,1,2,,1x I k n ∀∈∀=-,有()()()()()()()110112!n n k k k i n k i i i i A fx A x M M M n λλ--==⎡⎤≤≤+=⎢⎥⎣⎦∑∑.例15 设函数()f x 在0x =附近有连续的n 阶导数,且()()()()'00,00,,00n f f f ≠≠≠.若121,,,n c c c +为一组两两互异的实数,证明,存在唯一的一组实数121,,,n λλλ+,使得当0h →时,()()110n i i i f c h f λ-=-∑是比n h 高阶的无穷小.证明:由题设条件可得,()()1,2,1i f c h i n =+在0x =处带有皮亚诺型余项的马克劳林展开式:()()()()1100!k k nk nk h c f c h f h k ==+ο∑,()()()()2200!k k nk n k h c f c h f h k ==+ο∑,当0h →时,若()()110n i i i f c h f λ-=-∑为比n h 高阶的无穷小.则121112211222112211112211++=1,++=0,++=0,++=0.n n n n n nn nn n c c c c c c c c c λλλλλλλλλλλλ++++++++⎧⎪+⎪⎪+⎪⎨⎪⎪⎪+⎪⎩ 这是以121,,,n λλλ+为未知数的线性方程组,其系数行列式为:()121222121111211110n n ijj i n nn n n c c c D c c c c c c c c ++≤<≤++==-≠∏.故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+,使得当0h →时,()()110n iii f c h f λ-=-∑是比nh高阶的无穷小.(七) 范德蒙行列式在求解行列式中的应用行列式的计算是高等代数的重点内用之一,在一些行列式的求解问题中,常可见到范德蒙行列式的踪影,此时提示我们可利用行列式的性质或拆项,升降等方法,将给定行列式转化为范德蒙行列式的形式,从而利用其结果,求出原行列式的值,恰当灵活的运用范德蒙行列式会大大简化某些复杂行列式的计算.例16 122222221211112111=nn n n n n n n na x a x a x D a x a x a x a x a x a x ---+++++++++.解 将原n 阶行列式升阶为一个n+1阶行列式122222221211112111110000nnn n n n n n na x a x a x D a x a x a x a x a x a x ---+++=++++++. 然后将此n+1阶行列式第一行乘以()1,2,i a i n -=加到第i+1行可得12222212121111n nnnn n na x x x D a x x x a x x x -=--=1222212122111000n nnn n nx x x x x x x x x -12222212121111n nnnn n na x x x a x x x a x x x =()()()121112nn ijiijj i ni j i nx x x x x x a x x ≤≤≤=≤≤≤•----∏∏∏.例 17 设0x y z >>>,试证明:()2221,,0xx yz f x y z y y xz xy yz xzz z xy=<++. 证明:()()()()222222312222xx yz x x yz x y z x x D yy xz c x y z c c y y xz x y z y y zz xyzz xy x y z z z +++-=+++-+++-+++- ()()()()222x x xy yz xzy y xy yz xz xy yz xz y x z x z y zz xy yz xz++=++=++---++故()2221,,x x yzf x y z y y xz xy yz xzzz xy=++=()()()y x z x z y ---. 由已知0x y z >>>,有()0y x -<,()0z y -<,()0z x -<,所以有(),,0f x y z <例18 计算行列式()()()()()()()()()0001010111101n nnn n nnn n nn nn n n n a b a b a b a b a b a b D a b a b a b +++++++=+++解:设01000111101n nn n n n n n n n n nn n n n nC C a C a C C a C aD C C a C a =,01111012111n nn n n n n nb b b b b b D ---=,对2D 进行各行依交换,就可以得到范德蒙行列式,于是()()0010112112112011111111nnn n nn n n nnnnn n nnn a a b b b a a D D D C CC b b b a a ++=•=•-=12n n nnC C C()0ijj i na a ≤<≤-∏()()121n n +-()0ijj i nb b ≤<≤-∏.参考文献[1] 同济大学数学系.线性代数(第五版).北京:高等教育出版社.2007(9)[2] 北大数学系编.王萼芳等修订.高等代数.第三版.北京:高等教育社.2003(2).[3] 郭大钧等.吉米多维奇数学分析习题集解(第三版).济南:山东科学技术出版社.2005(3).[4] 张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社.1999[5] 白述伟.高等代数选讲[M].哈尔滨黑龙江教育出版社.1996.[6] 同济大学.高等代数与解析几何[M].北京:高等教育出版社.2005:223.[7] 刘丽,林谦,韩本三,等.高等代数学习指导与习题解析[M].成都:西南财经大学出版社.2009:39.170.253.[8] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社.2001:168.169.176.[9] 吴良森,毛羽辉.数学分析习题精解:多变量部分 [M].北京:科学出版社,2005.[10] 毛纲源.线性代数解题方法和技巧[M].武汉:湖南大学出版社.山东师范大学本科毕业论文(设计)题目审批表山东师范大学本科毕业论文(设计)开题报告论文题目:学院名称:专业:学生姓名:学号:指导教师:年月日山东师范大学本科毕业论文(设计)教师指导记录表指导教师意见评阅人意见答辩委员会意见学院学位分委员会意见山东师范大学本科毕业论文(设计)答辩记录表学院:(章)系别:专业:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:。
范德蒙行列式经典例题
范德蒙行列式经典例题范德蒙行列式是19世纪的数学家哈勒•范德蒙提出的一种数学思想,它可以用来解决许多数学问题。
范德蒙行列式的经典应用是用来解决二元一次方程,而这样就给出了许多可以用来练习的例题。
下面将介绍列出几个范德蒙行列式经典例题:一、解决一元二次方程题目:2x2+7x+1=0解:通过范德蒙行列式,可得:|2 7||1 0|令左边矩阵的行列式D = 2*0-7*1 = -7则根据范德蒙行列式,可求出:x1= D/2= -7/2x2= (-7+-√49)/4即根为x1=-3.5,x2=-1.5二、解决多元一次方程题目:2x+y+6z=17 , 5x-y-3z=2 , 4x+3y-2z=1解:通过范德蒙行列式,可得:|2 1 6||5 -1 -3||4 3 -2|令左边矩阵的行列式D = (2*(-1)*(-2)-1*5*(-3)+6*3*4) = 28 则根据范德蒙行列式,可求出:x1= (17*(-2)*(-3)-2*(-1)*6+1*5*4)/D= 6x2= (17*(-1)*4-2*3*6+1*(-3)*5)/D= 4x3= (17*2*3-2*(-1)*(-3)+1*(-1)*(-2))/D= 3三、应用范德蒙行列式进行微积分题目:求∫sin2(x)dx解:利用范德蒙行列式,可得:| sin 2x -1 || cos 2x 0 |令左边矩阵的行列式D = sin2x * 0 - (-1) * cos2x = cos2x则根据范德蒙行列式,则可求得∫sin2(x)dx= sin2x + c,其中c为常数。
四、直角梯形面积计算题目:梯形ABCD的对角线AB和CD的长分别为2 cm 和4 cm,且∠BAC=45°,求梯形ABCD的面积S。
解:通过范德蒙行列式,可得:|2 tan45°||4 0 |令左边矩阵的行列式D = (2 * 0 - tan45° * 4) = -2因此面积S = D / 2 = -1由此可看出,梯形ABCD的面积为1平方厘米。
范德蒙行列式及其应用
范德蒙行列式及其应用1 预备知识定义1.1)133(]1[p121211112111,n n n n n nx x x D x x x n x x x ---⋯⋯=,⋯⋯⋯⋯⋯⋯叫做 的阶范德蒙行列式.12111121111212111n i i i n i i i n n n n nx x x D n x x x x x x x x x ---+++⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯叫做阶准范德蒙行列式.定理1.2)133(]1[p ∏≤≤≤-=ni j jin x x D 1)(.证明 方法一)133(]1[p由n D 的最后一行开始,每一行减去它的相邻的前一行乘以1x ,并由行列式的展开定理可得递推公式111312)())((----=n n n D x x x x x x D Λ,其中1-n D 是n x x x Λ32的n-1阶范德蒙行列式,由以上递推公式可求得∏≤≤≤-=ni j jin x x D 1)(.证明 方法二将n D 看作系数与121,,-n x x x Λ有关,未知量是n x 的一元多项式.则当)1,,2,1(-==n i x x i n Λ时,0=n D .所以121,,-n x x x Λ是n D 的根,所以,)1,2,1()(-=-n i D x x n i n Λ.又因为当j i ≠时,1),(=--j n i n x x x x ,所以*---=-)())()((12121n n n n n n x x x x x x x x x g D ΛΛ另一方面,如果将n D 按最后一列展开,可知道, n D 是n x 的n-1次多项式,且1-n n x 项的系数是n-1阶范德蒙行列式12122212111nn n n n nx x x D x x x ----⋯⋯=⋯⋯⋯⋯⋯与*可比较得 )(211n n x x x g D Λ=-.因此1121)())((-----=n n n n n n D x x x x x x D Λ;同理22122111)())((---------=n n n n n n D x x x x x x D Λ;依似类推,最后有)(1212x x D D -=.又因为11=D ,所以∏≤≤≤-=ni j jin x x D 1)(.另外利用行列式的性质可推得n 阶范德蒙行列式的性质)1(]2[p 性质1 若将n D 逆时针旋转ο90,可得值为 n n n D 2)1()1(--.性质2 若将n D 顺时针旋转ο90,可得值为n n n D 2)1()1(--.性质3 若将n D 旋转ο180,可得值为n D .2 范德蒙行列式在行列式计算中的应用2.1 简单变形 例1 计算()()()()11111nnn a a a n D a a a n -⋯-⋯⋯⋯⋯=-⋯-⋯解 由范德蒙行列式性质3得!)())()((111∏∏∏=≤≤≤≤≤≤=-=---=nk ni j ni j k j i i a j a D例2 计算n+1阶行列式211111111112122222222221111111111nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a b a b a b a b a a b a b a b a b D a a b a b a b a b ---+++++++++⋯⋯=⋯⋯⋯⋯⋯⋯⋯解 从第i 行提取公因子)1,,2,1(+=n i a ni Λ,就可以得到转置的n+1阶范德蒙行列式,于是()111b nnn i iji j i n D a b =≤<≤+=-∏∏例3 计算行列式2111111212222221111n n n n n nn n x x x x x x x x x x D x x x x x ---⋯-⋯-=⋯⋯⋯⋯⋯⋯-解 从第i 行提取公因子)1,,2,1(1+=-n i x x i iΛ,然后再把第1列加到第2列,之后再把第2列加到第3列,⋯,再把第n-1列加到第n 列,就得到n 阶范德蒙行列式,于是()111nii j i j i ni x D x x x =≤<≤=--∏∏.例4 计算行列式()()()()()()11112122221222212221111n nnnn n n n n n n n n n n n D n n n n ----⋯--⋯--=⋯⋯⋯⋯⋯--⋯⋯解 由范德蒙行列式性质得()()()()()()()()12111111112122212122221222n n n n n n nnnn n n n n D n n n n n n n n +----⋯--⋯⋯⋯⋯⋯⋯=-⋯--⋯--()1!nn =-1!2!⋯2.2 升阶法求解 例1 计算n 阶行列式221111222222221*********n n n n n n n n n n n n nnnnx x x x x x x x D x x x x x x x x --------⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯解 将D 升阶为下面的n+1阶行列式221111112212222212211111122122111111n n n n n n n n n n n n n n n n n n n n n n n n n nx x x x x x x x x x x x x x x x x x x x xx x x x ----+-----------⋯⋯⋯⋯⋯⋯⋯⋯⋯∆=⋯⋯⋯既插入一行与一列,使1+∆n 是关于x x x x n ,,,21Λ的n+1阶范德蒙行列式,此处x 是变数.于是∏≤≤≤+----=∆ni j j in n x xx x x x x x 1211)()())((Λ,故1+∆n 是一个关于x 的n 次多项式,它可以写成{}ΛΛ++++-+-=∆-≤≤≤+∏12111))(1()(n n n ni j j in x x x x x x x.另一方面,将1+∆n 按其第n+1行展开,既得Λ+-+-=∆-+≤≤≤+∏11211)1()(n n n ni j j in Dx x x x,比较1+∆n 中关于1-n x的系数,既得∏≤≤≤-+++=ni j j in x xx x x D 121)()(Λ.例2 计算211122222111111111nnnnnnx x x x x x D x x x ++++++=+++L L L LL LL解 将行列式增加第一行第一列并保持行列式值不变21112100011111111nnnn nx x x D x x x +++=+++L L L L LL LL把第一列乘以-1分别加到其它的列得21112111111n n n n n x x x D x x x ---=L L L L L L L L 把第一行拆分得2211111122200011111111nn n n nn nnn nx x x x x x D x x x x x x =-L L L L LL L L L L L L L L LL第一个行列式按第一行展开提取i x 后为n 阶范德蒙行列式,第二个行列式为1n +阶范德蒙行列式()()()111121nniijijii j i nj i ni D x x x x x x =≤≤≤≤==----∏∏∏∏p p()()11121n ni i i j i i j i nx x x x ==≤≤⎡⎤=---⎢⎥⎣⎦∏∏∏p2.3 套用定理法求解 定理 2.3.1()12121211111211112121111,2,3,1n i n in i i i i p p p n n p p p i i i n n n n nx x x D x x x D i n x x x x x x x x x -----+⋯+++⋯⋯⋯⋯⋯⋯⋯==⋯=⋯-⋯⋯⋯⋯⋯⋯∑其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,∑-in p p p x x x Λ21表示()n i -阶排列和,nD 为n 阶范德蒙行列式. W证明过程大部分是用数学归纳法给出其计算结果的,本文用代数教程中广泛使用的升阶法证明 证明 ()i 在行列式1+i D 中第1i +行和()1n +列相应的元素.考虑()1n +阶范德蒙行列式()122222121111121211111111121111n n i i i i ni i i i n i i i i n n n nnx x x x x x x x f x D x x x x x x x x x x x x x x x x ----++++⋯⋯⋯⋯⋯⋯⋯⋯==⋯=⋯⋯⋯⋯⋯⋯⋯⋯()()()()213111n x x x x x x xx --⋯--()()()3222n x x x x xx -⋯--⋯ ⋯ ⋯ ⋯ ()n x x -=()()()()121n ijj i nxx x x x x x x ≤<≤--⋯--∏ )(*()ii 由()*式的两端,分别计算多项式()f x 中i x 项的系数.在()*式的左端,由行列式计算得,ix 项的系数为行列式中该元素对应的代数余子式()()()()()111,11111i n i n i n i i A D D ++++++++=-=-在()*式的右端,由多项式计算得,由12,,n x x x ⋯为()0f x =的n 个不同根,根据根与系数的关系,ix 项的系数为()()()1212110,1,2,1nnn in i p p p ij p p p j i na x x x xx i n --⋯≤<≤=-⋯-=⋯-∑∏其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,i p p p x x x -Λ21表示()n i -阶排列和.()iii 比较()f x 中i x 项的系数计算行列式1i D +,因为()*式的左右端i x 项的系数应相等,所以 ()()()12121111n in ii nn ii p p p ij p p p j i nD x x x xx --+-+⋯≤<≤-=-⋯-∑∏ ()()121211n in ii p p p ij p p p j i nD x x x xx --+⋯≤<≤=⋯-**∑∏()()1212110,1,2,1n nn ii p p p n p p p D x x x D i n -+⋯=-⋯=⋯-∑定理得证.利用定理可以计算各阶准范德蒙行列式,简便易行. 例1计算准范德蒙行列式1234562222221234564444444123456555555123456666666123456111111a a a a a a a a a a a a D a a a a a a a a a a a a aaaaaa=解 由定理,因为6,3,n i ==所以()123123416p p p ij p p p j i D a a a aa ≤<≤=-=∑∏()()12312445616ijj i a a a a a a a a a a a ≤<≤++⋯+-∏.可以看出升阶法求解中的例1套用定理求解更简单.3 范德蒙行列式在其它方面的应用例1设()21211112111111,1n n n n n n x x x a a a p x a a a ------⋯⋯=⋯⋯⋯⋯⋯⋯其中121,n a a a -,⋯是互不相同的数.(1)由行列式定义,说明()p x 是一个1n -次多项式; (2)由行列式的性质求()p x 的根.证明(1)将()p x 按第一行展开知它是x 的多项式,又1n x-的系数为()11n +-乘以一个范德蒙行列式,其值不为零(因为i a 互异),故()p x 为关于x 的1n -次多项式. (2)取()1,2,i x a i n ==⋯,则行列式两行相同其值为零,即有()0i p a =,故121,n a a a -,⋯是()p x 的全部根.例2 设()112n n f x a a x a x-=+++L 011,,,n εεε-L 为全部的n 次单位根,证明:()()()123112211132011345122341n n nn n n n n n n na a a a a a a a a a a a a a a D f f f a a a a a a a a a a εεε-------==L L L L L L LL L L L L证明 令ε为n 次原根,且假定()0,1,1iji n εε==-L 用范德蒙行列式()()()()212124211111111111n n n n n n εεεεεεεεε------∆=L L L L LLL LL左乘D ,再从每列分别提出()()()111,,n f ff εε-L 即得()()()()()()()()()()()()()()()()()()()111212121111111111n n n n n n n n n n f f f f f f D f f f f f f f f f f εεεεεεεεεεεεεεεεε----------∆==∆L L L L L LLL因为0∆≠,所以()()()()()()1101n n D f ff f f f εεεεε--==LL .只要熟悉了范德蒙行列式使用的形式和使用技巧,便可以很好地应用范德蒙行列式了.例3 如果n 次多项式()21121n n n n n o f x a a x a x a x a x ---=+++++L 有1n +个不同的根,那么()0f x ≡.证明 设121,,n x x x +L 是()f x 的1n +个不同的根,则有2111211112112222221112111100n n n n n o n nn n n o n n n n n n n n o n a a x a x a x a x a a x a x ax a x a a x a x a x a x --------+-+++⎧+++++=⎪+++++=⎪⎨⎪⎪+++++=⎩L L L L L L L L L L L L L L L L L L 上式可看作1n +个未知量10,,,n n a a a -L 1n +个方程的齐次线性方程组.其系数行列式为()2111222211121111101n n n ijj i n n n n n x x x x x x D x x x x x +≤≤++++==-≠∏p L L L L LLLL所以上式只有零解.即1100,n n a a a a -=====L 也就是说()0f x ≡.。
范德蒙行列式及其应用
目录摘要及关键词 (1)一、范德蒙行列式 (1)(一)范德蒙行列式定义 (1)(二)范德蒙行列式的推广 (4)二、范德蒙行列式的相关应用 (8)(一) 范德蒙行列式在行列式计算中的应用 (8)(二) 范德蒙行列式在微积分中的应用 (14)(三) 范德蒙行列式在多项式理论中的应用 (19)(四) 范德蒙行列式推广的应用 (21)三、结束语 (22)四、参考文献 (23)范德蒙行列式及其应用摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程组、矩阵、向量空间和线性变换的基础,起着重要作用。
而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。
本文将通过对n阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。
关键词:范德蒙行列式、行列式The Determinant of Vandermonde and Its ApplicationYuping- Xiao(Department of Mathematics Bohai University Jinzhou 121000 China) Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only animportant point but also a difficult point,it is a foundation of learning linear equations,matrices,vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems.Key words: the Vandermonder determinant; determinant一、范德蒙行列式(一)范德蒙行列式定义定义1[1]关于变元x,2x n x的n阶行列式1122221211112111n n nn n n nx x x D x x x x x x ---= (1) 叫做1x ,2x n x 的n 阶范德蒙行列式。
(整理)范德蒙行列式及其应用
范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。
它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质 1.范德蒙行列式的定义 定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---= (1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在级行列式中,第行(或第列)的元素除外都是零,那么这个行列式等于与它的代数余子式的乘积 ,在=中,从最后一行开始,每一行减去它相邻前一行的倍得=根据上述定理=提出每一列的公因子后得=最后一个因子是阶范德蒙行列式,用表示,则有=同样可得=()()()此处是一个n-2阶范德蒙行列式,如此继续下去,最后得=()()()由以上的计算可以得出,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1nn n n n nx x x x x x x x x ---=∏(i j x x -).有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.二. 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.1. 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助. 例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0,如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有 ()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c ac a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c xc x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.2. 范德蒙行列式在矩阵的特征值与特征向量中的应用例 4 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 5 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11jr r Ax x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.3. 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例。
范德蒙行列式的推广及其在教学中的应用
范德蒙行列式的推广及其在教学中的应用
范德蒙行列式的推广及其在教学中的应用
德蒙行列式是一种正交化处理方法,它也称作正交行列式。
它主要用于调整数据,使相应的变量之间形成一种平行关系。
在统计学中,德蒙行列式也称作正交因子分析的主成分分析。
范德蒙行列式是德蒙行式的一种推广,它将行列式的变量和系数扩展到多个变量之间形成多列。
范德蒙行列式对调整数据更有效,因为它考虑了多个变量之间的相互关系。
范德蒙行列式可以更好地探索数据集中的不同变量的关系。
此外,它还能估计出一个变量的综合指标,以衡量该变量出现的频率。
教学中,范德蒙行列式可以用于解释数据库中的复杂关系,帮助学生了解两个或多个变量之间的精确关系。
此外,该方法还可以建立一个可以衡量多个变量相互影响程度的联合指标,帮助学生更有效地理解多变量数据集和使用数据来测量其他变量时出现的潜在因素。
总体而言,范德蒙行列式可以提供有效的处理数据的方法,能够帮助学生学习多变量数据分析,解决复杂的理论问题。
它也可以用于教学过程中,帮助学生了解各种变量之间的关系,用数据形象化进行深入分析。
范德蒙的行列式
范德蒙的行列式摘要:一、范德蒙行列式的定义二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系2.行列式的可逆性3.行列式的乘积性质三、范德蒙行列式的计算方法1.递推法2.矩阵的行列式公式3.扩展行列式公式四、范德蒙行列式在数学中的应用1.线性方程组的求解2.矩阵的逆矩阵求解3.矩阵的LU 分解五、范德蒙行列式的推广1.范德蒙行列式的更高阶数2.带标号的范德蒙行列式正文:范德蒙行列式是一种特殊的行列式,它是以法国数学家范德蒙命名的。
范德蒙行列式具有很多重要的性质和应用,下面我们来详细了解一下。
一、范德蒙行列式的定义范德蒙行列式是一个n 阶行列式,它的定义如下:|A| = a11 * a22 * ...* ann- a12 * a21 * ...* an1+ a13 * a22 * ...* an2- a14 * a23 * ...* an3+ ...+ (-1)^(n-1) * a1n * a2n-1 * ...* ann其中,a11, a12, ..., ann 是矩阵A 的主对角线元素,a12, a21, ..., an1 是矩阵A 的次对角线元素,以此类推。
二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系范德蒙行列式的转置行列式等于其本身,即|A| = |A^T|。
2.行列式的可逆性当且仅当矩阵A 可逆时,范德蒙行列式不为零。
3.行列式的乘积性质设矩阵A 和矩阵B 都是n 阶矩阵,则有|AB| = |A| * |B|。
三、范德蒙行列式的计算方法1.递推法对于n 阶矩阵A,我们可以通过递推的方式计算范德蒙行列式。
具体来说,我们可以先计算出n-1 阶矩阵A"的范德蒙行列式,然后用主对角线元素和次对角线元素的关系来计算n 阶矩阵A 的范德蒙行列式。
2.矩阵的行列式公式根据矩阵的行列式公式,我们可以直接计算出范德蒙行列式。
3.扩展行列式公式通过扩展行列式公式,我们也可以计算范德蒙行列式。
范德蒙行列式的证明及其应用
范德蒙行列式的证明及其应用在高等代数中,范德蒙行列式是一个具有特殊形式和重要性质的行列式。
它不仅在理论上有着深刻的意义,而且在实际的数学问题求解中也有着广泛的应用。
范德蒙行列式的形式如下:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix}\接下来,我们先来证明范德蒙行列式。
证明范德蒙行列式通常使用数学归纳法。
当\(n = 2\)时,范德蒙行列式为:\begin{vmatrix}1 & 1 \\x_1 & x_2\end{vmatrix} = x_2 x_1\假设\(n 1\)阶范德蒙行列式成立,即:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_{n 1} \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_{n 1}^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 2} & x_2^{n 2} & x_3^{n 2} &\cdots & x_{n 1}^{n 2}\end{vmatrix} =\prod_{1\leq i < j\leq n 1} (x_j x_i)\对于\(n\)阶范德蒙行列式,将其按第一列展开:\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix} =\sum_{k = 1}^n (-1)^{1 + k} 1 \timesM_{1k}\其中\(M_{1k}\)是原行列式中第一行第\(k\)列元素的余子式。
范德蒙行列式的应用
范德蒙行列式的应用摘要:本文根据范德蒙行列式的特点,归纳总结了范德蒙行列式在代数、微积分中的应用. 关键词:范德蒙行列式;代数;微积分1 前言范德蒙行列式在行列式中占有比较重要的地位,其运用也可谓广泛.范德蒙行列式在代数、微积分、几何中都有应用.本文只讨论其在代数、微积分中的应用.在之前我们先给出文中要用到的一些基本知识点:① 行列式的展开定理[1]:若存在一个n 阶行列式111212122212n nn n nna a a a a a D a a a =其中,第i 行(或第j 列)的元素除ij a 外都是零,那么这个行列式等于ij a 与它的代数余子式ij A 的乘积:ij ij D a A =.② 泰勒公式[2]:若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x =+- 即()200000000''()()()()'()()()()(())2!!n n n f x f x f x f x f x x x x x x x x x n =+-+-++-+-③ 皮亚诺余式的马克劳林展开式[2]:''()'2(0)(0)()(0)(0)()2!!n nn f f f x f f x x x x n =+++++④ 克莱姆法则[1]:一个含有n 个未知量n 个方程的线性方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=+++=+++=当它的行列式0D ≠时,有且仅有一个解1212,,,n n D D Dx x x D D D=== ,此处j D 是把行列式D 的第j 列的元素换以方程组的常数项12,,,n b b b 而得到的n 阶行列式.2 范德蒙行列式的定义及其证明[1]2.1 范德蒙行列式的定义122221211112111nn n n n n na a a D a a a a a a ---=这个行列式叫做一个n 阶范德蒙行列式(V andermonde )行列式,其值1()n i j n i j D a a ≥>≥=-∏.2.2 范德蒙行列式的证明证明:由最后一行开始,每一行减去它的相邻的前一行乘以1a ,得213212213311-222221331111110- - -0(-) (-)()0()()()n n n n n n n n n a a a a a a D a a a a a a a a a a a a a a a a a a --=----由前言①行列式的展开定理,213212213311-2222213311 - --(-) (-) ()()()()n n n n n n n n n a a a a a a a a a a a a a a a D a a a a a a a a a ---=---提出每一行的公因子后,得23222213112322223111()()() nn n n n n n na a a D a a a a a a a a a a a a ---=---最后的因子是一个1n -阶的范德蒙行列式,我们用1n D -代表它:213111()()()n n n D a a a a a a D -=---同样得1324222()()()n n n D a a a a a a D --=---此处2n D -是一个2n -阶的范德蒙行列式.如此继续下去,最后得2131132211()()()(-)()()()n n n n n i j n i j D a a a a a a a a a a a a a a -≥>≥=---⋅--=-∏ 3 范德蒙行列式在代数方面的应用3.1 利用范德蒙求解n 阶行列式 例1[3] 计算(1)()1111n n na a a n D a a a n --=--解:由行列式的性质得111(()())()!j i nj i n nk D a j a i i j k ≤<≤≤<≤==---∏=-∏=∏例2[3] 计算111112221n n n n n n na x x a x x D a x x ---=解:按第一列展开得1nk k k D a A ==∑,其中k A 为元素k a 的代数余子式,在k A 的第i 行提出公因子(,1,2,,)i x i k i n ≠= ,即 222211221133331232132221121221212111111(1),(1),,1111(1)1n n n n n n nnn n nnn nn n n n n n n n x x x x x x x x A x x x A x x x x x x x x x x x A x x x x x ----++----+----=-=-=-即得范德蒙行列式11111,1(1)(1)()()nnk n kk ki k i i j i i i kj i nA x x x x x x +---==≠≤<≤=----∏∏∏,所以1111(1)()(/())n nn i i j i i i i i j i nD x x x a x f x +==≤<≤=--∑∏∏其中12()()()()n f x x x x x x x =---例3[4] 计算1n +阶行列式1-22111111111122122222222122111111111n n n n nn n n n nn n n n nn n n n n n n n a a b a b a b b a a b a b a b b D a a b a b a b b --------++++++++=解:从第i 行提取公因子(1,2,,1)n i a i n =+ ,就可以得到转置的1n +阶范德蒙行列式1-22111111111112211222222221211221111111111111n n n nn n n n n n nn n n n n n n n n n n n n a b a b a b a b a b a b a b a b D a a a a b a b a b a b ---------+-----++++++++=于是111[]njni i i j i n i jb b D a a a =≤<≤+=-∏∏ 例4[4] 计算行列式2111111212222221111n n n n n n nn x x x x x x x x x x D x x x x x -----=- 解:从第i 行提出(1,2,,)1ii x i n x =- ,然后再把第1列加到第2列,之后,第2列加到第3列, ,第-1n 列加到第n 列,就得到范德蒙行列式 即21221111111112122122222222121221221111111111111n n n n n n n n n n n n n nn n nnnx x x x x x x x x x x x x x x x x x x D x x x x x x x x x x x ---------------=⋅⋅=------于是11()1nii j i j i nix D x x x =≤<≤=-∏∏-例5[5] 计算n 阶行列式123222212322221231231111nnn n n n n nn n n nnx x x x x x x x D x x x x x x x x ----=解:考虑1n +阶行列式123222221231222221231111112312311111nn n n n n n n nn n n n n nnn n nnnx x x x x x x x x x V x x x x x x x x x x x x x x x +----------=它是关于1n +个变元12,,,,n x x x x 的范德蒙行列式,由范德蒙行列式知111()()nn k j i k i j nV x x x x +=≤<≤=--∏∏若将1n V +按最后一列展开,则111,12,1,11,1n n n n n n n n n V A xA x A x A -++++++=++++ 要计算的行列式其实就是1n V +中元素1n x -的余子式,1n n M +,即,1n n n D M +=而21,1,1,1(1)n n n n n n n A M M ++++=-=-就是111()()nn k j i k i j nV x x x x +=≤<≤=--∏∏的系数,所以,111()nn n n k j i k i j nD M x x x +=≤<≤==-∑∏3.2 利用范德蒙行列式证明向量组线性相关、无关的问题 例[6]1 判断向量组232312232334(1,,,), (1,,,)(1,,,), (1,,,)a a ab b bc c cd d d αααα====是线性相关还是线性无关.其中,,,a b c d 各不相同. 解:考虑相应的齐次线性方程组:112233440x x x x αααα+++=即1234123422221234333312340000x x x x ax bx cx dx a x b x c x d x a x b x c x d x +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ 此方程的系数行列式是范德蒙行列式222233331111 (-)(-)(-)(-)(-)(-)a b c d D a b c d a b c d b a c a d a c b d b d c ==因为,,,a b c d 各不相同,所以0D ≠.根据④克莱姆法则可知,方程组只有零解.从而1234,,,αααα线性无关.例[7]2 设12,,,m λλλ 是方阵A 的m 个特征值,12,,,m p p p 依次是与之对应的特征向量.如果12,,,m λλλ 各不相等,则12,,,m p p p 线性无关.证明:设有常数12,,,m x x x 使11220m m x p x p x p +++= .则1122()0m m A x p x p x p +++= ,即1112220m m m x p x p x p λλλ+++= ,类推之,有1112220.(1,2,,1)k k km m m x p x p x p k m λλλ+++==-把上列各式合写成矩阵形式,得1111221122111(,,,)(0,0,,0).1m m m m m m m x p x p x p λλλλλλ---⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭上式等号左端第二个矩阵的行列式为范德蒙行列式,当i λ各不相等时该行列式不等于0,从而该矩阵可逆.于是有1122(,,,)(0,0,,0)m m x p x p x p = , 即0(1,2,,)j j x p j m == . 但0j p ≠,故0(1,2,,)j x j m == .所以向量组12,,,m p p p 线性无关.3.3 用线性方程组范德蒙行列式来解决有关多项式的根的问题例[8] 设01,,,n x x x 两两互异,函数()f x 在i x x =处的值为()i i f x y = (0,1,,)i n = .证明:存在唯一的n 次多项式()n p x ,使()n i i p x y = (0,1,,)i n =. 证明:令2012()n n n p x a a x a x a x =++++ ,由题设,有01000,01111,01,nn nn n nn n n a a x a x y a a x a x y a a x a x y⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这是以01,,,n a a a 为未知数的线性方程组,其系数行列式为范德蒙行列式的转置,200021110211 ()1nn j i i j nn n n n x x x x x x D x x x x x ≤<≤==-∏.由于()i j x x i j ≠≠,故0D ≠,从而方程组有唯一解,即存在唯一的多项式()n p x ,使()n i i p x y = (0,1,,)i n =. 注 作为特例,我们不难知道:若n 次多项式2012()n n n p x c c x c x c x =++++ 对1n +个不同的x 值都是零,则()0n p x ≡.4 范德蒙行列式在微积分中的应用例[9]1 确定常数,,,a b c d ,使得()cos cos 2cos3cos 4f x a x b x c x d x =+++,当0x →时为最高阶的无穷小,并给出其等价表达式.解:对()f x 的各项利用②泰勒公式,即由ln x 的泰勒展开式246(2)ln 1(1)24!6!(2)!n n x x x x x n =-+-++- 有24624666(2)(2)(2)()[1()][1()]2!4!6!2!4!6!x x x x x x f x a o x b o x =-+-++-+-+24624666(3)(3)(3)(4)(4)(4)[1()][1()]2!4!6!2!4!6!x x x x x x c o x d o x +-+-++-+-+22221(234)2a b c d a b c d x =+++-+++44441(234)4!a b c d x ++++666661(234)()6!a b c d x o x -++++ 当0x →时,若()f x 最高阶无穷小在6阶以上,则有方程组2224446660234023402340a b c d a b c d a b c d a b c d +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩其系数行列式2223334441 1 1 1 1 2 3 4 1 2 3 41 2 3 4D =为范德蒙行列式,由于0D ≠,故以,,,a b c d 为未知数的方程组只有零解: 0a b c d ==== 从而()0f x ≡.这显然不合题意,故以下考虑()f x 当0x →时最高阶无穷小为6阶的情形. 令222444023402340a b c d a b c d a b c d +++=⎧⎪+++=⎨⎪+++=⎩等价于222444234234b c d a b c d a b c d a ++=-⎧⎪++=-⎨⎪++=-⎩此以,,b c d 为未知数的线性方程,其系数行列式为范德蒙行列式22214441 1 1 2 3 4 02 3 4D =≠方程组有唯一一组依赖于a 的整数解:922,,77b ac ad a =-==-,从而()f x 在0x =的邻域内的最高阶无穷小有下述形式的表达式76666192()(234)()6!77f x a a a a x o x =--+⋅-⋅+ 667()2ax o x =+ 例[10]2 设()f x 至少有k 阶导数,且对某个实数a 有()lim ()0,lim ()0k x x x f x x f x αα→∞→∞== (1)试证:()lim ()0,1,2,,i x x f x i k α→∞== ,其中(0)()f x 表示()f x .证明:由条件(1),要证明()lim ()0i x x f x α→∞=,只要将()()i f x 写成与()f x 与()()k f x 的线性组合即可.利用泰勒公式,21(1)()()()()()()()2!(1)!!k k k k m m m m f x m f x mf x f x f x f k k ξ--'''+=+++++- (2)其中,1,2,,m x x m m k ξ<<+= 这是关于(1)(),(),(),,()k f x f x f x f x -''' 的线性方程组,其系数行列式为212k-1221111 11 1 1 12!(k-1)!1 2 2 2 221 2 12!(1)! 1 3 3 1!2!(1)!12!(1)!k k k D k k k k k ---==-- 12131k k k k k --后一个行列式为范德蒙行列式,其值为1!2!(1)!k - ,故D=1!.于是可从方程组(2)把(1)(),(),(),,()k f x f x f x f x -''' 写成() (m=1,2,,k)f x m + 与()() (m=1,2,,k)k m f ξ 的线性组合.我们只要证明()lim ()lim ()0k m x x x f x m x f ααξ→∞→∞+== (m =1,2,,k 即可. 事实上,设x t x k ≤≤+,于是()()()lim ()lim ()lim lim ()0i i i x x x x x x x ft t f t t f t t t ααααα→∞→∞→∞→∞⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(0,)i k= 在此式中分另令,0t x m i =+=和令,m t i k ξ==,则得()lim ()lim ()0k m x x x f x m x f ααξ→∞→∞+== (1,2,,)m k =. 注:类似的方法可证如下命题[11]设函数f 在(,)a +∞上有直到n 阶导数,且有()lim (),lim ()n x x f x A f x B →∞→∞==.求证:()lim ()0,1,2,,k x f x k n →∞== .例[12]3 设函数()f x 在0x =附近有连续的n 阶导数,且'()(0)0,(0)0,,(0)0n f f f ≠≠≠ ,若121,,,n p p p + 为一组两两互异的实数,证明:存在唯一的一组实数121,,,n λλλ+ ,使得当0h →时,11()(0)n i i i f p h f λ+=-∑是比n h 高阶的无穷小.证明:由题设条件,可得()i f p h (1,2,,1)i n =+ 在0x =处常有③皮亚诺余项的马克劳林展开式:()110()(0)()!k k nk n k p h f p h f o h k ==+∑, (1)()220()(0)()!k k nk n k p h f p h f o h k ==+∑, (2)()110()(0)()!k k nk n n n k p h f p h f o h k ++==+∑, (1)n + 121(1)(2)(1)n n λλλ+⨯+⨯+++⨯ ,得()()11111111()(0)1(0)(0)()!n n nn k k k ni i i i i i i k i f p h f f p f h o h k λλλ+++====-=-++∑∑∑∑. 当0h →时,若11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小,则1211122112221122111122111,0,0,0.n n n n n n n n n n p p p p p p p p p λλλλλλλλλλλλ++++++++++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩ 这是以121,,,n λλλ+ 为未知数的线性方程组,其系数行列式121222121111211 1 1()0n n j i i j n n n nn p p p D p p p p p p p p ++≤<≤++==-≠∏,故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+ ,使当0h →时,11()(0)n i i i f p h f λ+=-∑是比n h 高阶无穷小. 5 结束语全文分为五个部分.第一部分是前言.先介绍了本文将要用到的一些相关知识.如行列式的展开定理;泰勒公式;皮亚诺余式的马克劳林展开式.第二部分范德蒙行列式的定义及其证明.主要介绍了什么叫做范德蒙行列式,以及对范德蒙行列式做了证明.第三部分范德蒙行列式在代数方面的应用.这也是我所写的主要类容.它又分别包含了利用范德蒙求解n阶行列式;利用范德蒙行列式证明向量组线性相关、无关的问题;线性方程组范德蒙行列式来解决有关多项式的根的问题这三个方面.第四部分为范德蒙行列式在微积分中的应用.主要就泰勒公式与范德蒙行列式的合用,范德蒙行列式与泰勒公式的特殊形式皮亚诺余项的马克劳林展开式的合用做了一定的阐述.第五部分为结束语与致谢,主要就是对本文的写作的回顾、感慨以及对帮助我老师的谢谢.参考文献[1]张禾瑞,郝炳新.高等代数(第四版)[M].北京:高等教育出版社,1999.[2]华东师范大学数学系编.数学分析(第三版)[M].高等教育出版社.[3]晏林.范德蒙行列式的应用[C].云南:文山师范高等专科学校学报,第13卷,第2期,2001年11月.[4]冯锡刚.范德蒙行列式在行列式计算中的应用[J].济南:山东轻工业学院学报,2006年第2期第14卷.[5]陈治中.线性代数与解析几何辅导[M].清化大学北京交通大学出版社.[6]吴声钟.线性代数内容、方法与练习[M]电子工业出版社.[7]同济大学数学教研组编.工程数学线性代数(第三版)[M]. 高等教育出版社.[8]易大义,陈道琦.数值分析引论[M].杭州:浙江大学出版社,1998,17-18.[9]邹应.数学分析习题及其解答[M].武汉:武汉大学出版社,2001.[10]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社.[11]吴良森,毛羽辉,宋国栋,魏木生.数学分析习题精解[M].北京:科学出版社,2002,360-361.[12]章乐.几道考研试题的推广[J].大学数学,2003,19(5):117-119.Application of Vandermonde DeterminantAbstract: This article according to the Vander Mongolia determinant thecharacteristic, summaried the Vander Mongolia determinant in thealgebra, the fluxionary calculus application.Key word: Vander Mongolia determinant; Algebra; Fluxionary calculus11。
vandermonde行列式的一个推广及其在初等数学中的应用
vandermonde行列式的一个推广及其在初等数学中的应用
拉斐尔·范德蒙德(Rafael de laVandermonde)是一位法国数学家,他发明了一种矩阵,被称为范德蒙德矩阵(Vandermonde Matrix)。
范德蒙德矩阵是一种特殊的矩阵,它的每一行都是一个等差数列,每一列都是一个等比数列。
它的行列式可以用来计算一组数字的组合数。
范德蒙德矩阵的一个推广是多项式矩阵,它是一种特殊的范德蒙德矩阵,它的每一行都是一个多项式,每一列都是一个多项式的系数。
多项式矩阵的行列式可以用来计算一组多项式的组合数。
范德蒙德矩阵和多项式矩阵在初等数学中有着广泛的应用。
它们可以用来计算一组数字或多项式的组合数,这在求解多项式方程时非常有用。
此外,它们还可以用来计算组合数学中的组合数,以及概率论中的概率分布。
总之,范德蒙德矩阵和多项式矩阵是一种特殊的矩阵,它们的行列式可以用来计算一组数字或多项式的组合数,在初等数学中有着广泛的应用。
范德蒙德行列式的一些应用
互换一二行,再将第一行的倍数加到其他三行里。
第二章:范德蒙德行列式
2.1 范德蒙德行列式
范德蒙德行列式的式子为:
D_n=|■(■(1&1@x_1&x_2@x_1^2&x_2^2 )&■(…&1@…&x_n@…&x_n^2 )@■(…&…@x_1^(n-1)&x_2^(n-1) )&■(…&…@…&x_n^(n-1) ))|=∏_(n≥i>j≥l)▒〖(x_i-x_j)〗
范德蒙德行列式的一些应用
目录
第一章:行列式 10
1.1引言 10
1.2行列式的定义 10
1.3 行列式的性质ቤተ መጻሕፍቲ ባይዱ11
1.4:行列式的计算 11
范德蒙行列式的一个性质的证明及其应用
范德蒙行列式的一个性质的证明及其应用一、范德蒙行列式(又称多元行列式)的定义范德蒙行列式是由矩阵中每一行和每一列所引出的多项式。
它对多元方程模型具有重要意义,例如体积、表面积等。
范德蒙行列式 $$A_{n\times n}=\begin{Vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{Vmatrix}$$它由矩阵中n个基元项组成,记做:$$A_{ij}=|A_{ij}|$$其中,$A_{ij}$表示矩阵中任意一个基元项,它满足关系:$$A_{ij}=a_{ij}*(-1)^{i+j}$$二、范德蒙行列式的一个性质及其应用1、性质:2、应用:范德蒙行列式的应用是非常广泛的,他可以用来求解任意维度的行列式,例如:(1)在工程中,可用范德蒙行列式进行多元行列式计算;(2)在金融领域,可以使用范德蒙行列式进行数据分析和风险防护;(3)在统计学中,可以使用范德蒙行列式对数据进行回归分析;(4)在科学研究中,可以使用范德蒙行列式进行矩阵计算。
三、结论范德蒙行列式是矩阵中每一行和每一列所引出的多项式,其有一个性质是,当任意一个子矩阵中只有一行或一列有值时,此子矩阵的行列式等于其第一行或第一列元素的乘积。
它的应用可以用来求解多元行列式的计算,如:在工程、金融、统计学和科学研究中都有重要应用。
范德蒙行列式的应用
范德蒙行列式的应用什么是范德蒙行列式范德蒙行列式是线性代数中的一个重要概念,由荷兰数学家范德蒙提出。
它是一个多项式的行列式,其中每一行的元素都是以一定规律排列的。
范德蒙行列式的一般形式如下:∣∣∣∣∣∣∣∣1a 1a 12⋯a 1n−11a 2a 22⋯a 2n−1⋮⋮⋮⋱⋮1a n a n 2⋯a n n−1∣∣∣∣∣∣∣∣其中,a 1,a 2,…,a n 是给定的实数或复数。
范德蒙行列式的值可以通过高斯消元法等方法求得。
范德蒙行列式的应用范德蒙行列式在数学中有广泛的应用,特别在概率论、信号处理、统计学和机器学习等领域中发挥着重要作用。
1. 描述一组向量的线性相关性通过计算范德蒙行列式的值,可以判断一组向量是否线性相关。
具体来说,对于给定的向量 v 1,v 2,…,v n ,将它们按列排列成一个矩阵 A ,则范德蒙行列式的值可以判断这组向量是否线性相关。
当范德蒙行列式的值为零时,表示这组向量线性相关;当范德蒙行列式的值不为零时,表示这组向量线性无关。
2. 描述多项式插值问题范德蒙行列式可以用于多项式的插值问题。
给定一组已知的点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中 x i 互不相同,我们希望找到一个次数不超过 n −1 的多项式 P (x ),满足 P (x i )=y i 。
这时,我们可以使用范德蒙行列式来表示插值多项式的系数。
具体来说,设V是一个n×n的矩阵,其中V ij=x i j−1,则范德蒙行列式的每一行都是已知点的自变量的幂次,根据多项式插值定理,范德蒙行列式的值的绝对值等于插值多项式中的每个系数的模的值。
3. 生成正交多项式范德蒙行列式也可以用于生成正交多项式。
正交多项式是一类特殊的多项式,满足在某个权函数下的正交性。
根据勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式等的定义,我们可以利用范德蒙行列式来生成这些正交多项式。
具体来说,设V是一个n×n的矩阵,其中V ij=P i−1(x j),P i−1(x)表示度数不超过i−1的多项式。
范德蒙德行列式的性质及应用(16开)
Dn =( an − a1 )( an − a2 ) ⋯ ( an − an −1 )⋯⋯ ( a2 − a1 ) =
例1
1≤ j < i≤ n
∏
( ai − aj )
x1 x1 x1 − 1 x2 x2 计算行列式 D = x2 − 1 ⋯ ⋯ xn xn xn − 1
解 从第 i 行提出
x12 ⋯ x1n −1
∏
( ai − aj ) 故 ∆ n +1 是一个关
1≤ j <i ≤n
∏
1≤ j <i ≤n
2、范德蒙行列式的计算方法
定理 1 1 1 a1 a2
2 Dn = a12 a2 ... ... n −1 n −1 a1 a2
[1]
1 a3
... ...
1 an
2 2 a3 ... an = ∏ ( a j − ai )( n ≥ 2) 1≤i < j ≤n ... ... n −1 n −1 a3 ... an
-1-
湖北师范学院文理学院 2012 届数学与应用专业毕业论文(设计)
范德蒙行列式的性质及应用
张鹏(指导老师:余红宴) (文理学院数学系 0807 班 湖北 黄石 435002)
1、前言
形如 1 a1 a12 ... a1n −1 1 a2 2 a2 ... n −1 a2 1 a3 2 a3 ... n −1 a3 ... ... ... 1 an 2 an ... n −1 ... an
(1)
不难看出, f ( x ) 是一个 ( n −1) 次多项式,并且它有 n − 1个根: a1 , a2 ,…,
a n −1 ,因此 f (x) = k ( x − a1 )( x − a2 )...( x − an −1 ), 其中 k 为特定常数.由于 k 为 x n −1
范德蒙行列式的应用
范德蒙行列式的应用范德蒙行列式是线性代数中的一个重要概念,它在许多领域中都有广泛的应用。
本文将从几何、物理、概率和统计四个方面介绍范德蒙行列式的应用。
一、几何1.计算向量组的体积向量组的体积可以通过范德蒙行列式来计算。
假设有三个向量a,b和c,它们所构成的平行六面体的体积可以表示为:V=|a·(b×c)|其中,|b×c|表示向量b和向量c所构成的平面上的面积,a·(b×c)表示向量a与该平面垂直的投影长度。
因此,V可以写成:V=|a·(b×c)|=|a b c|=|abc|这里的“abc”就是一个3阶范德蒙行列式。
2.求解三角形面积在平面几何中,三角形面积可以通过海龙公式或海涅公式来计算。
而另一种方法是使用范德蒙行列式。
假设三角形顶点为A(x1,y1),B(x2,y2)和C(x3,y3),则三角形ABC所构成的面积S可以表示为:S=1/2 |x1 y1 1||x2 y2 1||x3 y3 1|这里的“xyz”就是一个3阶范德蒙行列式。
二、物理1.计算电荷分布的能量在电学中,电荷分布所具有的能量可以通过静电能公式来计算。
而静电能公式可以表示为:U=1/2 ∑i∑j qi qj / (4πεr)其中,qi和qj表示第i个和第j个电荷,r表示它们之间的距离,ε是真空介质中的介电常数。
而∑i∑j qi qj可以表示为一个n阶范德蒙行列式:∑i∑j qi qj =|q11 q12 … q1n||q21 q22 … q2n||… … … ||qn1 qn2 … qnn|因此,静电能公式可以写成:U=1/2|q11/q12/…/q1n||q21/q22/…/q2n||… … … ||qn1/qn2/…/qnn| / (4πεr)这里的“qi”就是一个长度为n的向量。
三、概率计算概率分布函数在概率论中,概率分布函数可以通过累积分布函数来计算。
a是关于1,2,...,n的范德蒙行列式
题目:关于范德蒙行列式的性质和应用范德蒙行列式是数学中的一种特殊形式的行列式,在许多领域中都有重要的应用,例如上线性代数、概率论、数论等方面。
本文将围绕范德蒙行列式的定义、性质和应用展开详细的讨论,希望能够帮助读者更好地理解和运用范德蒙行列式。
一、范德蒙行列式的定义范德蒙行列式是一个n阶方阵,其元素为幂次型的变量,其一般形式可以表示为:\[ \begin{vmatrix}1 a_1 a_1^2 \cdots a_1^{n-1} \\1 a_2 a_2^2 \cdots a_2^{n-1} \\\vdots \vdots \vdots \vdots \\1 a_n a_n^2 \cdots a_n^{n-1} \\\end{vmatrix} \]其中a1, a2, ..., an为n个实数或复数。
二、范德蒙行列式的性质1. 范德蒙行列式的值与变量a1, a2, ..., an的排列顺序无关,即其值只与这些变量的取值有关,而与它们的次序无关。
2. 当n个变量a1, a2, ..., an两两不相等时,范德蒙行列式的值非零。
3. 当n个变量a1, a2, ..., an中有两个或多个相等时,范德蒙行列式的值为0。
4. 当范德蒙行列式的元素中存在一对相等的变量时,行列式中有两行或两列的元素完全相等。
三、范德蒙行列式的应用1. 线性代数中的应用范德蒙行列式上线性代数中有广泛的应用,特别是在解决线性方程组、矩阵求逆、向量空间、线性相关性等问题时,经常会涉及到范德蒙行列式的计算和性质。
2. 概率论中的应用范德蒙行列式在概率论中也有重要的应用,例如在多项式分布、二项式分布和超几何分布等概率分布的概率质量函数的计算中,常常会用到范德蒙行列式。
3. 数论中的应用在数论中,范德蒙行列式也有其独特的应用,例如在模意义下的数论运算、离散数论、多项式求值等问题中,经常会用到范德蒙行列式。
四、总结范德蒙行列式作为一种特殊形式的行列式,在数学中有着重要的地位和广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要及关键词 (1)一、范德蒙行列式 (1)(一)范德蒙行列式定义 (1)(二)范德蒙行列式的推广 (4)二、范德蒙行列式的相关应用 (8)(一) 范德蒙行列式在行列式计算中的应用 (8)(二) 范德蒙行列式在微积分中的应用 (14)(三) 范德蒙行列式在多项式理论中的应用 (19)(四) 范德蒙行列式推广的应用 (21)三、结束语 (22)四、参考文献 (23)范德蒙行列式及其应用摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程 组、矩阵、向量空间和线性变换的基础,起着重要作用。
而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。
本文将通过对n 阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。
关键词:范德蒙行列式、行列式The Determinant of Vandermonde and Its ApplicationYuping- Xiao(Department of Mathematics Bohai University Jinzhou 121000 China)Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only an important point but also a difficult point,it is a foundation of learning linear equations,matrices, vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems.Key words: the Vandermonder determinant; determinant一、范德蒙行列式(一)范德蒙行列式定义 定义1[1] 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nxx x D x x x x x x ---=(1)叫做1x ,2x n x 的n 阶范德蒙行列式。
下面我们来证明对任意的n (2n ≥),n 级范德蒙行列式等于1x ,2x n x 这n 个数的所有可能的差i j x x -(1j i n ≤≤≤)的乘积。
我们对n 作归纳法:当2n =时,1211x x =21x x -结果是对的。
设对于1n -级的范德蒙行列式结论成立,现在来看n 级的情形。
在(1)式中,第n 行减去第1n -行的1x 倍,第1n -行减去第2n -行的1x 倍,也就是由下而上依次地从每一行减去它上一行的1x 倍,有21311222212313112121221231312131122221231311212122123131111100n n nn n n n n n n n n n nn n n n n n n nx x x x x x d x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ---------------=------------=---=(21x x -)(31x x -)(1n x x -)232222322223111n n n n n nx x x x x x x x x ---后面这行列式是一个1n -阶的范德蒙行列式,根据归纳法假设它等于所有可能差i j x x -(2)j i n ≤<≤的乘积,而包含1x 的差全在前面出现了,因此,结论对n 级范德蒙行列式也成立,根据数学归纳法,完成了证明。
用连乘号,这个结果可以简写为1222212111112111()n n i j j i nn n n nx x x x x x x x x x x ≤<≤---=-∏(二)范德蒙行列式的推广定义2 推广的范德蒙行列式12123(,,)i i n V x x x x =11112122212122121111122312111111111000000n n i n i i n i n i n i n i n i n n i n i n i x x x A x x x A x A x x x A x A x A x +--+-+-+-+-+-+-+-+-2211122221122312121200000i n i i n i n i n i n i n i A A x A A x A x A x +--+-+-+-+-+-其中12i i i =+,0(1,2)j i j <=;121,,(1,2)jjjr r r n j j j A A A r i +-=分别表示关于j x(1,2)j =所在的列元素求j r 各阶导数的系数。
定理1212121121123121212121123(,,)(,)!!()()()i i i i n n i i i n n p p j j p p V x x x x V x x x j j x x x x x x +====⎧⎫⎧⎫=---⎨⎬⎨⎬⎩⎭⎩⎭∏∏∏∏证明(一)将12123(,,)i in V x x x x 的第11,2n n n i +++列分别提取11!,2!,3!!i 及11121,2,n i n i n i i ++++++分别提取21!,2!,3!!i 得行列式记为m V ,并记n i m +=,即:1212121231211(,,)!!i i i i n m j j V x x x x j j V ===∏∏其中112212222111221221111112231223121111111212121110000001001001010n m n i m i i m i m m m m m m m n m m m m m m x x x V x x x C x C x x x x C x C x C x C x C x C x -----------------=(二)将m V 的第1,22,1m m --行各乘以1,x -然后分别加到第,1m m -3,2行,并按第一列展开得到一个1m -阶行列式,记为1m V -即:2131111221331121122211222221331132132122211222322133111211211()()()()1()()()()()()()()()()n n n m n n m m m m m n n m m m m x x x x x x x x x x x x x x x C C x V x x x x x x x x x C C x C C x x x x x x x x x x C C x C C x ----------------=----------111222112211112132212322111211322412112221221212212100000()0()()()()m i i m i i i n i m m m m m m m m m m C x C x C x C x x C x C x V C C x C x C x C x C x x C x C x x ---+------------------(三)将1m V -的第1,2,1n -列分别提取21311(),()()n x x x x x x ---等因子,又因为第1n -列到第11n i +-列中1111l l q q q C C C ----=(其中,q l 为2,3,1m -),则1112()nm p mp V x x V --='=-∏ 其中 1123122221123121112222132312121111100100n mni m i m m m m m nm m x x x x V x x x x C x x x x x C x C x -----------'=22221122111122322123221121213232412221221212212110()0i n i i n i m m m m m m m m m m C x C x C x C x x C x C x C x C x C x C x x C x C x x +-+-----------------1m V -'的第1n i +列减去第一列并提取因子21()x x -,得第1n i +列为:113222221(0,1,,)(()m Tm C x C x x x ---作为公因子提到行列式外) 再把该列乘以-1加到第11n i ++列上去,得到第11n i ++列为:212213243222112221224212212(0,0,(),())(0,0,,())m m Tm m m m Tm C C x C x C C x C x x x x Cx x x-----------=--=242122()(0,0,1)m Tm x x C x ---再将第11n i ++列乘以-1加到第12n i ++列,得第12n i ++列为3243521122212(0,0,0,,())m m T m m m x x C C x C x x -------- =352122()(0,0,0,1,)m Tm x x C x --- 这样一直进行到第1211n i i m ++-=-列(共2i 次)。