10第十章--高分子纳米复合材料
高分子纳米复合材料的制备与性能研究

高分子纳米复合材料的制备与性能研究高分子纳米复合材料是将纳米材料与高分子材料相结合而形成的一种新型复合材料。
它具有许多优良的性能,如优异的力学性能、高耐磨性、耐温性能和导电性能等。
因此,研究高分子纳米复合材料的制备与性能一直是材料科学领域的热点之一。
一、纳米材料的制备与表征纳米材料是具有尺寸小于100纳米的颗粒状物质,因其尺寸效应和界面效应的出现,使其具有与体材料不同的特殊性能。
常见的纳米材料包括纳米颗粒、纳米管和纳米片等。
制备纳米材料的方法有很多种,包括溶胶-凝胶法、化学气相沉积法和机械法等。
此外,还需要对纳米材料进行表征,以确定其形貌、结构和性能等。
常用的表征手段有透射电子显微镜(TEM)和扫描电子显微镜(SEM)等。
二、高分子纳米复合材料的制备方法高分子纳米复合材料的制备方法主要包括物理混合法、原位聚合法和胶束模板法等。
物理混合法是将纳米材料直接与高分子材料进行机械混合,然后通过热压、溶液浸渍或溶胶凝胶法形成复合材料。
原位聚合法则是在纳米材料表面引入功能单体,通过聚合反应将其与高分子材料连接起来。
胶束模板法则是利用纳米胶束结构控制高分子材料的组装行为,形成具有规则微观结构的复合材料。
三、高分子纳米复合材料的应用领域高分子纳米复合材料具有较高的力学性能和导电性能,因此广泛应用于工程领域。
例如,在航空航天领域中,高分子纳米复合材料可以用于制作轻量化的结构材料,提高航空器的载荷能力和燃料效率。
在电子领域,高分子纳米复合材料可以作为电池的电解质或封装材料,提高电池的性能和寿命。
此外,高分子纳米复合材料还可以应用于水处理、医学和环境保护等领域。
四、高分子纳米复合材料的性能研究对于高分子纳米复合材料的性能研究,主要包括力学性能、导电性能和热性能等方面。
力学性能的研究可以通过拉伸实验、压缩实验和弯曲实验等来评价材料的强度和刚度等性能。
导电性能的研究可以通过电阻测试和电导率测试等来评价材料的导电性能。
热性能的研究可以通过热重分析和差示扫描量热分析等来评价材料的热稳定性和导热性能。
高分子纳米复合材料

高分子纳米复合材料
高分子纳米复合材料是一种由纳米材料与高分子材料相结合而成的新型材料,具有许多优异的性能和广泛的应用前景。
纳米材料的引入可以显著改善高分子材料的力学、热学、光学和电学性能,使其在工程领域中具有更广泛的应用价值。
首先,高分子纳米复合材料具有优异的力学性能。
由于纳米材料的加入,可以有效地增强高分子材料的强度、刚度和韧性,使其具有更好的耐磨、耐冲击和耐腐蚀性能。
这使得高分子纳米复合材料在航空航天、汽车制造、建筑材料等领域中得到广泛应用。
其次,高分子纳米复合材料具有优异的热学性能。
纳米材料的加入可以显著提高高分子材料的热稳定性和热导率,使其具有更好的耐高温和隔热性能。
这使得高分子纳米复合材料在电子电器、航空航天、新能源等领域中得到广泛应用。
此外,高分子纳米复合材料还具有优异的光学和电学性能。
纳米材料的加入可以显著改善高分子材料的透明度、抗紫外线性能和导电性能,使其具有更广泛的应用前景。
这使得高分子纳米复合材料在光学膜、光电器件、柔性电子等领域中得到广泛应用。
综上所述,高分子纳米复合材料具有优异的力学、热学、光学和电学性能,具有广泛的应用前景。
随着纳米技术的不断发展和高分子材料的不断创新,相信高分子纳米复合材料将在未来得到更广泛的应用,为人类社会的发展做出更大的贡献。
高分子纳米复合材料的制备及应用研究

高分子纳米复合材料的制备及应用研究高分子纳米复合材料是一种新型的材料,主要由高分子基质和纳米填充剂组成。
这种材料具有许多良好的性能,如优异的力学性能、热稳定性、电学性能和气体阻止性能等。
因此,在化学、电子、医学、航空航天等领域都有广泛的应用。
一、高分子纳米复合材料的制备方法高分子纳米复合材料的制备方法包括机械法、化学法和物理法等多种方法。
机械法主要是通过研磨来实现纳米颗粒的加入,但这种方法会破坏高分子的结构,从而影响材料的性能;化学法主要是通过控制反应条件来实现纳米颗粒的加入,但这种方法需要对材料的纯度、反应速率等有很高的要求;物理法主要是通过各种物理手段来实现纳米颗粒的加入,如超声波、等离子体等。
其中,超声波辅助制备是目前应用最为广泛的一种方法。
该方法可以通过控制超声波的频率、功率和处理时间等参数来实现纳米颗粒的均匀分散在高分子基质中,从而得到具有优良性能的高分子纳米复合材料。
二、高分子纳米复合材料的应用研究高分子纳米复合材料的应用研究主要包括以下几个方面:1. 电子领域:高分子纳米复合材料可以制备高性能的电子器件,如场效应晶体管、有机发光二极管、薄膜晶体管等。
其中,场效应晶体管是高分子纳米复合材料在电子领域中最成功的应用。
该器件不仅具有高迁移率、高电流驱动能力和良好的稳定性等优点,还可以通过控制纳米填充剂的种类和含量来实现器件性能的调控。
2. 医学领域:高分子纳米复合材料可以制备一些用于医学诊断和治疗的纳米药物载体,如聚乳酸纳米粒子、碳纳米管纳米复合材料等。
这些材料不仅具有较小的粒径和较大的比表面积,具有良好的药物负载能力和靶向性,还可以通过控制组成和结构来调控药物的释放行为,从而提高治疗效果。
3. 航空航天领域:高分子纳米复合材料可以制备高性能的航空航天部件,如复合材料和超高温材料等。
其中,碳纤维增强高分子基质复合材料是一种重要的结构材料,具有优异的力学性能和热稳定性,已经广泛应用于航空航天领域中。
高分子纳米复合材料的制备与性能研究

高分子纳米复合材料的制备与性能研究导言高分子纳米复合材料是一种由高分子基体和纳米填料组成的复合材料。
这种复合材料具有优异的物理、化学和力学性能,被广泛应用于各个领域。
本文将以制备方法和性能研究为主线,探讨高分子纳米复合材料的最新研究进展。
制备方法高分子纳米复合材料的制备方法主要包括溶液法、熔融法和原位聚合法等。
溶液法是目前研究得最为广泛的一种制备方法。
它通过将纳米填料分散到高分子溶液中,然后通过溶剂蒸发或流变调控等方法实现纳米填料在高分子基体中的均匀分散。
溶液法制备的高分子纳米复合材料具有优异的加工性能和物理性能。
性能研究高分子纳米复合材料的性能研究主要包括物理性能、力学性能和热性能等方面。
物理性能的研究主要关注复合材料的介电性能、热导率和光学性能等。
高分子纳米复合材料在这些方面可以显著改善,并具有潜在的应用前景。
力学性能的研究主要关注复合材料的强度、硬度和韧性等。
纳米填料的加入可以增强基体材料的力学性能,并提升复合材料的综合性能。
热性能的研究主要关注复合材料的热稳定性和热分解性能等。
纳米填料的加入可以提高复合材料的热稳定性,并提高其在高温环境下的应用性能。
应用前景高分子纳米复合材料具有广泛的应用前景。
在电子领域,高分子纳米复合材料可以应用于电子元器件和柔性电子器件等。
其优异的介电性能和热导率可以提高电子器件的性能,并增强其抗热性能。
在能源领域,高分子纳米复合材料可以应用于太阳能电池和储能器件等。
纳米填料的加入可以提高太阳能电池的光电转换效率,并提高储能器件的能量密度。
在汽车工业领域,高分子纳米复合材料可以应用于汽车制动系统和轮胎等。
其优异的力学性能可以提高汽车制动系统的刹车效果,并提高轮胎的耐磨性和抗老化性能。
结论高分子纳米复合材料的制备方法和性能研究是当前材料科学领域的研究热点。
通过不断改进制备方法和深入研究性能,可以进一步优化高分子纳米复合材料的性能,并拓宽其应用范围。
高分子纳米复合材料的研究将为解决环境、能源和汽车等领域的技术难题提供新的解决思路,并促进科技创新和经济发展的持续推进。
高分子纳米复合材料介绍PPT(24张)

特殊性质
同步增韧增强效应——纳米材料对有机聚合
物进行复合改性,却是在发挥无机材料增强
效果的同时,又能起到增韧的效果。
新品功能高分子材料——传统功能高分子基
本上都是通过化学反应合成特殊官能团得到
。但是纳米材料可以直接或者间接达到具体
的功能,如光电转换,高校催化,紫外屏蔽
例如,李谷等对PS/纳米CaCO3复合材料玻璃化 转变及物理老化研究发现,少量的纳米CaCO3粒 子对PS基体的分子链锻松弛行动有促进作用,并 且随着纳米CaCO3质量分数的增加而有不同程度 的下降。
卢红斌等对层状硅酸盐-环氧树脂纳米复合材料在 受限环境下松弛行为的研究得出了三种松弛模型 。认为,与硅酸盐片层相连的链段松弛速率最低 ,而在层与层之间的部分松弛速率最快。其他区 域的链段松弛速率则与纯PS时的相同。当聚合物 与硅酸盐片层以弱的作用力(比如物理吸附)结 合时其链段松弛速率最低。当聚合物嫁接到硅酸 盐固体表面时,松弛速率最快。也即是,当聚合 物链与纳米粒子结合时,这部分的链段松弛速率 会大大增加。
纳米复合材料是由两种或两种以上的固相至少在一维 以纳米级大小(1 -100 nm) 复合而成的材料。
非晶体、半晶体、晶体
无论分散相还是 连续相
无机物(陶瓷、金属等)、 有机物(高分子)等
4
聚合物基纳米复合材料
以聚合物(树脂)为连续相,以纳米 粒子为分散相的复合材料。
一般纳米粒子为无机物。但有时候是有机物 ,如刚性棒状高分子,包括溶致性和热致性 液晶高分子。他们以分子水平分散在聚合物 基体中,形成有机物/有机物纳米复合材料 。
纳米CaCO3粒子的加入对PS分子链的影响是两方 面的:一方面,纳米CaCO3的加入,增加了PS链 与链间的自由体积;另一方面,纳米CaCO3粒子 对其之间的PS分子链起到了加速松弛作用。这两 种因素不相互对立,而是各自独立,共同促进了 分子链的松弛,只是方式的不同。
高分子纳米复合材料的制备与性能研究

高分子纳米复合材料的制备与性能研究引言:高分子纳米复合材料是一种具有优异性能和广泛应用前景的新型复合材料。
通过将纳米颗粒与高分子基体相结合,可以获得许多独特的性能,如优异的力学性能、热稳定性、电性能等。
本文将对高分子纳米复合材料的制备方法和性能研究进行综述,并讨论其在不同领域中的应用前景。
一、高分子纳米复合材料的制备方法1. 溶液混合法:溶液混合法是一种常用的制备高分子纳米复合材料的方法。
该方法通过将纳米颗粒和高分子溶液混合,并经过溶剂蒸发或沉淀法使纳米颗粒与高分子基体相互作用和结合。
该方法操作简单,适用于制备多种类型的高分子纳米复合材料。
2. 界面聚合法:界面聚合法利用化学反应在纳米颗粒表面形成高分子层,使纳米颗粒与高分子基体之间通过共价键连接。
这种方法可以有效控制纳米颗粒与高分子基体之间的界面相互作用,提高复合材料的力学性能和稳定性。
3. 反应挤出法:反应挤出法结合了聚合反应和挤出工艺,可以在挤出过程中实现纳米颗粒与高分子基体的混合和反应。
此方法具有高效、节约能源和环保的特点,并且可用于对物料进行连续大规模生产。
二、高分子纳米复合材料的性能研究1. 力学性能研究:高分子纳米复合材料的力学性能是其研究的重点之一。
研究表明,纳米颗粒的添加可以显著改善高分子复合材料的力学性能,如增强材料的强度、硬度和韧性等。
同时,纳米颗粒的大小、分散度和填充浓度等参数也对力学性能有着重要影响。
2. 热稳定性研究:高分子纳米复合材料的热稳定性是其在高温环境下应用的关键性能之一。
纳米颗粒的添加可以提高材料的热稳定性和热解温度,并改善其热膨胀系数。
研究发现,在热稳定性研究中,纳米颗粒的表面改性和分布均匀性对提高高分子纳米复合材料的热稳定性具有重要影响。
3. 电性能研究:高分子纳米复合材料在电子器件和能源领域具有广泛的应用前景。
研究表明,纳米颗粒的添加可以显著提高高分子复合材料的电导率、介电常数和电子迁移率。
不仅如此,纳米颗粒的表面修饰和填充方式也对电性能有着重要影响。
功能高分子材料_第十章高分子纳米复合材料ppt课件

21
10.4.1 高分子纳米复合材料的性能
复合材料是将两种或两种以上的 材料复合在一起,进行优势互补,以谋求 最佳的综合性能。而纳米复合材料是 指分散相尺度至少有一维小于 100nm 的复合材料,由于纳米分散相大的比表 面和强的界面作用,纳米复合材料表现 出不同于一般宏观复合材料的综合性 能。
2018/11/17 材料 22
功能高分子材料课件_第十 章高分子纳米复合材料
10.1纳米的基本知识
1 .纳米的概念
“纳米”是英文 nanometer 的译名, 是一种度量单位,1纳米为百万分之一 毫米,即1毫微米,也就是十亿分之一 米,约相当于 45 个原子串起来那么长。 纳米结构通常是指尺寸在100纳米以下 的微小结构。 纳米研究的范围是1到100纳米, 0.1纳米是单个氢原子的尺寸,因此所 谓0.1纳米层面的“纳米技术”是不存 在的。
材料
2018/11/17
25
(3)电学磁学性能 B.Scrosati等人通过将纳米尺寸 的陶土粉末分散到聚乙二醇-锂盐中 获得一种新型的含锂聚电解质。此 复合物在30℃~80℃范围内有很好 的机械稳定性能和高的离子导电性, 所以此纳米复合聚电解质在可充锂 电池的应用上有很好的前景。
2018/11/17
材料
19
10.4
高分子纳米复合材料
高分子纳米复合材料是近年来高分子材料科学的 一个发展十分迅速的新领域。一般来说,它是指分散 相尺寸至少有一维小于100纳米的复合材料。这种新型 复合材料可以将无机材料的刚性、尺寸稳定性和热稳 定性与高分子材料的韧性、可加工性及介电性质完美 地结合起来,开辟了复合材料的新时代,制备纳米复 合材料。已成为获得高性能复合材料的重要方法之一。
2018/11/17 材料 7
高分子纳米复合材料的制备及应用研究

高分子纳米复合材料的制备及应用研究近年来,随着材料科学和纳米技术的不断发展,高分子纳米复合材料成为了研究热点之一。
高分子纳米复合材料指的是将纳米材料与高分子基体复合而成的一种新型材料。
由于其具有极高的比表面积和独特的物理、化学、力学和光学性质,并且可以根据需要进行功能化改性,因此在材料科学、能源、环保等领域都具有广泛的应用前景。
一、高分子纳米复合材料的制备方法纳米复合材料的制备方法多种多样,常见的有浸渍法、原位合成法、机械研磨法、共混法等。
而高分子纳米复合材料在制备过程中,还需要考虑到高分子基体与纳米材料的相容性以及复合接口的结构与性能。
以下是几种常见的高分子纳米复合材料制备方法:1. 溶液浸渍法:将纳米材料加入溶液中,将高分子样品浸渍到溶液中,使溶液中的纳米材料渗入到高分子内部。
经过干燥和加热处理,即可得到高分子纳米复合材料。
2. 原位合成法:将纳米材料和高分子单体在反应体系中随机共混,经过缩聚或交联反应即可生成高分子纳米复合材料。
3. 机械研磨法:将高分子和纳米材料放入球磨机中进行研磨,使纳米材料在高分子基体中均匀分散,从而形成高分子纳米复合材料。
4. 共混法:将高分子和纳米材料按一定比例直接混合均匀即可。
这种方法操作简单,但高分子与纳米材料的相容性较差,容易出现复合体系结构不稳定等问题。
二、高分子纳米复合材料的应用研究1. 环保领域:高分子纳米复合材料可以作为各种环保材料的添加剂,用于改善其性能,例如:作为水处理材料的添加剂,能够提高材料的吸附能力、抗菌性和抗氧化性等;作为塑料加工材料的添加剂,能够提高材料的力学和物理性能,还能降低材料的可燃性。
2. 能源领域:高分子纳米复合材料在太阳能电池、柔性电池等领域具有广泛应用前景。
例如,利用纳米颗粒改性的高分子电解质可以提高固态电池的离子导电性,从而提高电池的电化学性能和稳定性。
3. 医疗领域:高分子纳米复合材料可以用于制备生物医用材料,例如修复骨骼、皮肤、血管、人工关节等。
功能高分子材料 第十章高分子纳米复合材料PPT课件

材料
2
2.纳米科技概念的提出与发展
最早提出纳米尺度上科学和技术问题
的是著名物理学家、诺贝尔奖获得者理
查德·费恩曼。纳米科技的迅速发展是
在80年代末、90年代初。80年代初发明
当代最受爱戴的科 了费恩曼所期望的纳米科技研究的重要
纳米材料结构的特殊性[如大的比表面以及一系列新的效 应(小尺寸效应、界面效应、量子效应和量子隧道效应)]决定 了纳米材料出现许多不同于传统材料的独特性能,进一步优 化了材料的电学、热学及光学性能。
研究方面:一是系统地研究纳米材料的性能、微结构和 谱学特征,通过和常规材料对比,找出纳米材料特殊的规律, 建立描述和表征纳米材料的新概念和新理论;二是发展新型 纳米材料。
学家之一。他不但 仪器——扫描隧道显微镜(STM)、原子
以其科学上的巨大 贡献而名留青史,
力显微镜(AFM)等微观表征和操纵技术,
而且因在“挑战者” 它们对纳米科技的发展起到了积极的促
号航天飞机事故调 查中的决定性作用 而名闻遐迩。他还
进作用。与此同时,纳米尺度上的多学 科交叉展现了巨大的生命力,迅速形成
子、构造纳米结构,同时为科学家提供
在纳米尺度下研究新现象、提出新理论
的微小实验室。
同时,与纳米材料和结构制备过程
相结合,以及与纳米器件性能检测相结
合的多种新型纳米检测技术的研究和开
发也受到广泛重视。如激光镊子技术可
用于操纵单个生物大分子。
07.11.2020
材料
9
07.11.2020
10.3 纳米科技前景的展望
是一个撬开原子能 为一个有广泛学科内容和潜在应用前景
高分子纳米复合材料

高分子纳米复合材料
高分子纳米复合材料是一种由高分子材料与纳米材料混合而成的新型材料,具有优异的性能和广泛的应用前景。
在高分子基体中加入纳米填料,可以显著改善高分子材料的力学性能、热学性能、电学性能、光学性能等,使其具有更广泛的应用领域。
首先,高分子纳米复合材料在力学性能上表现出色。
由于纳米填料的加入,高分子基体的强度、刚度和韧性得到了显著提高。
例如,碳纳米管、纳米粒子等纳米填料的加入可以大大增强高分子材料的拉伸强度和弯曲强度,提高其耐磨性和耐疲劳性,使其在工程结构材料中得到广泛应用。
其次,高分子纳米复合材料在热学性能上也有显著的改进。
纳米填料的加入可以有效提高高分子材料的热稳定性和热导率,使其在高温环境下仍能保持良好的性能。
例如,氧化铝纳米粒子的加入可以显著提高高分子材料的热导率,使其在电子器件散热材料中得到广泛应用。
此外,高分子纳米复合材料在电学性能和光学性能上也表现出色。
纳米填料的加入可以提高高分子材料的导电性能和光学透明性,使其在电子器件、光学器件等领域有着广泛的应用前景。
例如,碳纳米管的加入可以显著提高高分子材料的导电性能,使其在导电材料中得到广泛应用。
总的来说,高分子纳米复合材料具有优异的性能和广泛的应用前景,其在力学性能、热学性能、电学性能和光学性能等方面都有显著的改进。
随着纳米技术的不断发展,高分子纳米复合材料必将在材料领域中发挥越来越重要的作用,为各个领域的发展提供更加优异的材料支撑。
高分子纳米复合材料的合成与性能优化

高分子纳米复合材料的合成与性能优化随着科技发展和人们对功能材料需求的增加,高分子纳米复合材料作为一种新型材料受到了广泛关注。
高分子纳米复合材料是在高分子基质中添加纳米颗粒,通过优化复合材料的结构和性质,达到改善材料性能的目的。
本文将重点探讨高分子纳米复合材料的合成方法和性能优化方向。
一、高分子纳米复合材料的合成方法1. 界面结构调控法界面结构调控法是高分子纳米复合材料的常用合成方法之一。
该方法通过调控纳米颗粒与高分子基质之间的界面结构,优化相互作用力,实现高分子和纳米颗粒间的协同效应。
这种方法可以提高复合材料的力学性能和热稳定性。
2. 液相混合法液相混合法是一种简单且广泛应用的合成方法。
该方法将纳米颗粒和高分子基质分散在溶液中,经过搅拌和干燥等步骤,最终得到高分子纳米复合材料。
这种方法适用于大规模生产,并且能够控制纳米颗粒的分散度和尺寸。
3. 界面交联法界面交联法是一种将纳米颗粒与高分子基质通过化学交联反应结合在一起的合成方法。
该方法可以增强界面结合力,防止纳米颗粒的脱落,并且提高材料的力学性能和热稳定性。
然而,该方法需要精确的反应条件控制和合适的化学交联剂选择。
二、高分子纳米复合材料的性能优化方向1. 力学性能优化力学性能是评价高分子纳米复合材料优劣的重要指标之一。
通过调控纳米颗粒的大小、形状和分布,可以增强材料的硬度、强度和韧性等力学性能。
同时,也可以通过调整材料的组成和结构,优化纳米颗粒和高分子基质之间的相互作用,提高材料的力学性能。
2. 热稳定性优化高分子纳米复合材料在高温环境中往往容易发生热分解、氧化等现象,导致材料性能下降。
因此,提高材料的热稳定性是一个重要的优化方向。
可以通过选择高热稳定性的纳米颗粒,或者添加阻燃剂等手段,提高材料的热稳定性和耐热性。
3. 电学性能优化高分子纳米复合材料在电子器件领域有广泛的应用。
优化电学性能是提高材料在电子器件中的性能的关键。
可以通过调控纳米颗粒和高分子基质的界面结构,提高材料的导电性能和介电性能。
高分子材料纳米复合材料的制备及其性能研究

高分子材料纳米复合材料的制备及其性能研究高分子材料作为一种重要的材料,在各行各业中都有着广泛的应用。
但是,高分子材料本身具有的一些缺点,如强度、刚度、耐热性和耐化学腐蚀性等方面相对较差,因此需要寻求新的方法来弥补这些缺陷。
纳米复合材料作为一种新型的高分子材料,具有优异的力学性能、热学性能、电学性能等,因此已成为材料科学领域的一个热点研究方向。
本文将介绍高分子材料纳米复合材料的制备方法及其性能研究进展。
一、高分子材料纳米复合材料的制备方法1. 溶液混合法溶液混合法是一种较为简单的方法,其制备过程为:将高分子溶液和纳米填料分别溶解在简单溶剂中,然后混合两种溶液制备所需的纳米复合材料。
溶液混合法制备出来的纳米复合材料分散性好,但其结构和性能受溶剂选择限制。
2. 熔融混合法熔融混合法是将高分子和纳米填料加热到熔点以上,使纳米填料均匀分散到高分子中,再经过混合、挤出和拉伸等步骤,最终制备成纳米复合材料。
这种方法制备出来的纳米复合材料能够充分发挥纳米填料的性能,但是其高温下稳定性较差。
3. 溶胶-凝胶法溶胶-凝胶法是利用化学反应制备高分子/纳米复合材料,在此方法中,先制备出纳米粒子的溶胶,再加入高分子溶液,并进行交联反应,最终制备成纳米复合材料。
这种方法制备出来的纳米复合材料稳定性较好,但是制备工艺较复杂。
4. 界面聚合法界面聚合法是将纳米粒子和高分子分别溶解在两种不相容的溶剂中,然后在两种溶剂的界面上进行界面聚合反应,最终制备成纳米复合材料。
该方法制备出来的纳米复合材料分散性好,但由于反应过程中的界面问题容易导致杂质的引入,因此制备过程较为复杂。
二、高分子材料纳米复合材料的性能研究1. 力学性能纳米材料的加入可以显著改善高分子材料的力学性能。
例如,我们可以将纳米粒子添加到聚丙烯中,使复合材料的拉伸强度和弹性模量显著提高,同时还可以提高其硬度和刚度。
2. 热学性能由于纳米复合材料的纳米颗粒具有较高的比表面积和表面活性,因此可以通过纳米颗粒与高分子材料之间的相互作用来改善纳米复合材料的热学性能。
高分子纳米复合材料介绍

高分子纳米复合材料介绍1. 引言高分子纳米复合材料是一种新型的复合材料,其制备方法是将纳米颗粒与高分子材料相结合。
由于纳米颗粒具有特殊的性质,高分子纳米复合材料在热、电、力学以及光学等性能方面表现出了优异的特点。
本文将介绍高分子纳米复合材料的概念、制备方法、性能以及应用领域。
2. 高分子纳米复合材料的概念高分子纳米复合材料,顾名思义,是将纳米颗粒与高分子材料组合在一起形成的新材料。
纳米颗粒是一类尺寸在1到100纳米之间的微粒,具有相较于其它材料更大的表面积和量子效应等特点。
通过将纳米颗粒与高分子材料相结合,可以使新材料具有纳米颗粒和高分子材料各自的优良特性。
高分子纳米复合材料广泛应用于材料科学、纳米技术、材料工程等领域。
3. 高分子纳米复合材料的制备方法高分子纳米复合材料的制备方法主要有以下几种:3.1 溶液法溶液法是一种将高分子材料和纳米颗粒分散于溶剂中,然后通过表面活性剂、超声波或者机械搅拌等方法使纳米颗粒均匀地分散在高分子材料的溶液中。
随后,通过溶胶凝胶技术、湿法共混或者溶剂挥发等方法,将溶液中的溶剂去除,形成高分子纳米复合材料。
溶液法制备的高分子纳米复合材料具有成本低、制备过程简单等优点。
3.2 熔融法熔融法是将高分子材料和纳米颗粒混合均匀,并通过高温使其熔融,然后通过冷却使其固化,形成高分子纳米复合材料。
熔融法制备的高分子纳米复合材料具有工艺简单、高生产效率等优点。
3.3 原位聚合法原位聚合法是一种在纳米颗粒表面进行原位聚合反应,使纳米颗粒与高分子材料发生化学结合,形成高分子纳米复合材料。
原位聚合法制备的高分子纳米复合材料具有分散性好、界面结合强等优点。
4. 高分子纳米复合材料的性能高分子纳米复合材料具有许多优异的性能,主要表现在以下方面:4.1 机械性能高分子纳米复合材料具有较高的强度、硬度、刚性等机械性能,比传统的高分子材料更加耐磨、耐腐蚀。
4.2 热性能高分子纳米复合材料具有较高的热稳定性和热导率,可以在高温条件下保持较好的性能稳定性。
高分子纳米复合材料的制备与性能研究

高分子纳米复合材料的制备与性能研究近年来,高分子纳米复合材料在材料科学和工程领域引起了广泛的关注。
高分子纳米复合材料是由高分子基体和纳米粒子组成的复合材料,具有独特的材料性质和应用潜力。
本文将探讨高分子纳米复合材料的制备方法以及其性能研究。
高分子纳米复合材料的制备方法主要分为两种:一种是填充法,即将纳米粒子填充到高分子基体中;另一种是原位合成法,即在高分子基体中原位合成纳米粒子。
填充法制备高分子纳米复合材料的步骤包括纳米粒子的分散、混合和成型。
首先,纳米粒子需要通过适当的分散剂进行分散,以保证纳米粒子在高分子基体中的均匀分布。
然后,将分散的纳米粒子与高分子基体混合,通过加热、压力或其他力学手段将其成型。
原位合成法制备高分子纳米复合材料时,可以通过在高分子基体中引入相应的化学反应物,使纳米粒子在高分子基体中原位合成。
高分子纳米复合材料具有许多优越的性能,这主要归因于纳米粒子的特殊性质和高分子基体的柔性。
首先,纳米粒子具有高比表面积和量子效应,能够增加复合材料的力学强度、导热性和电导率等性能。
其次,纳米粒子的尺寸效应和界面效应可以改变高分子基体的玻璃化转变温度、热稳定性和电学性能。
此外,纳米粒子还可以通过改变高分子基体的形貌和结构来调控复合材料的光学、磁性和表面性质。
高分子纳米复合材料的性能研究主要包括力学性能、热性能、电学性能和光学性能等方面。
力学性能的研究可以通过拉伸、压缩和弯曲等方式来获得材料的强度、韧性和刚度等参数。
热性能的研究可以通过热重分析仪和差示扫描量热仪等仪器来测定材料的热失重、热稳定性和热传导性等性质。
电学性能的研究可以通过测量材料的电导率、介电常数和介电强度等来评估材料的电子传输性能和绝缘性能。
光学性能的研究可以通过紫外可见分光光度计和显微镜等仪器来测定材料的透明度、折射率和发光性能等。
高分子纳米复合材料的应用潜力非常广泛。
在能源领域,高分子纳米复合材料可以用于制备高效的太阳能电池、锂离子电池和超级电容器等能源存储装置。
高分子纳米复合材料制备方法

高分子纳米复合材料制备方法《高分子纳米复合材料的奇妙制备之旅》嘿,你知道吗?高分子纳米复合材料可神奇啦!今天我就来给你讲讲它的制备方法,就像讲一个超级有趣的冒险故事一样。
我先来说说什么是高分子纳米复合材料吧。
高分子呢,就像是一个超级长的链条,由好多好多小单元连起来的。
纳米材料呢,那可是超级小的东西,小到你都想象不出来。
把这两个家伙组合在一起,就变成了高分子纳米复合材料。
这就好比把小蚂蚁和长长的绳子组合起来,能做出一个超级特别的东西一样。
那怎么制备这个高分子纳米复合材料呢?一种方法是共混法。
这就像是做水果沙拉一样。
我们有高分子这个“大水果”,还有纳米材料这个“小水果”。
我们把它们放在一起搅拌搅拌。
可是呢,这可不是像做水果沙拉那么简单哦。
我们要让纳米材料均匀地分布在高分子里面,就像要让那些小水果在大水果里面分布得很均匀一样难。
有时候,纳米材料会聚在一起,就像小水果们抱成一团,这样可不好。
那怎么办呢?我们就得想办法,比如说加点东西,就像在水果沙拉里加点沙拉酱,让它们更好地混合。
还有一种方法叫原位聚合法。
这个可就更酷了。
这就像是在一个小城堡里建造东西一样。
我们先把纳米材料放在一个地方,就像把建造材料放在城堡里。
然后呢,我们让高分子在这个地方慢慢生长起来。
就好像小种子在城堡里慢慢长成大树一样。
纳米材料就被包裹在高分子里面啦。
我就想啊,这纳米材料在高分子里面是不是像小虫子躲在树洞里一样呢?这个方法的好处就是纳米材料和高分子结合得特别紧密,就像好朋友紧紧抱在一起。
再说说溶胶- 凝胶法吧。
这就有点像变魔术了。
我们有一些特殊的溶液,就像魔法药水一样。
我们把高分子和纳米材料的原料放在这个魔法药水里面。
然后呢,慢慢地,溶液就会变成一种凝胶的样子,就像魔法药水凝固了一样。
在这个过程中,高分子和纳米材料就结合在一起了。
我就好奇,那些科学家们在做这个的时候,是不是感觉自己像魔法师呢?我有个同学叫小明,他也对这个特别感兴趣。
高分子纳米复合材料的制备与性能分析

高分子纳米复合材料的制备与性能分析简介:高分子纳米复合材料是一种将纳米材料与高分子材料相结合的新型材料。
由于纳米材料具有小尺寸效应和表面效应等特殊性质,与高分子材料的复合可产生一系列优异的性能。
本文将重点介绍高分子纳米复合材料的制备方法及其性能分析。
1. 高分子纳米复合材料的制备方法1.1 原位聚合法原位聚合法是一种常见的高分子纳米复合材料制备方法。
它通过在高分子反应体系中加入纳米颗粒的原料,并通过聚合反应使纳米颗粒和高分子链共同生长。
这种方法能够有效控制纳米颗粒的分散状态,提高复合材料的力学性能。
1.2 混炼法混炼法是一种简单且常用的制备高分子纳米复合材料的方法。
在混炼过程中,将纳米颗粒与高分子材料混合,并通过机械力的作用使纳米颗粒均匀分散于高分子基体中。
混炼法制备的高分子纳米复合材料具有较好的可控性和可扩展性,适用于大规模制备。
2. 高分子纳米复合材料的性能分析2.1 机械性能分析高分子纳米复合材料的机械性能是评价其性能的重要指标之一。
纳米颗粒能够增加高分子材料的界面强度和刚性,从而提高复合材料的抗拉强度、硬度和耐磨性等机械性能。
同时,纳米颗粒的特殊结构还能够提高复合材料的抗冲击性能和阻尼性能。
2.2 热学性能分析高分子纳米复合材料的热学性能是其应用于高温环境的重要考虑因素。
纳米颗粒的加入使高分子材料的热稳定性和热导率得到提升,能够抵抗高温环境下的变形和热膨胀,提高材料的耐热性。
2.3 电学性能分析高分子纳米复合材料在电学性能方面也具有独特的优势。
纳米颗粒的引入可以增加复合材料的电导率和介电常数,从而提高材料的导电性能和电磁屏蔽性能。
此外,纳米颗粒还能够提高复合材料的光学性能,如增加材料的透明度和折射率。
3. 应用与展望高分子纳米复合材料由于其优异的性能,在众多领域都有广泛的应用。
例如,在航空航天、电子器件和汽车制造等领域中,高分子纳米复合材料被用作结构材料、导电材料和隔热材料等。
随着纳米技术和高分子技术的不断发展,高分子纳米复合材料的性能将进一步提升,其应用领域也将不断扩展。
高分子纳米复合材料

高分子纳米复合材料高分子纳米复合材料是一种由高分子材料与纳米填料相结合的新型复合材料。
高分子材料具有优秀的力学性能、热性能和化学稳定性,而纳米填料则具有特殊的尺寸效应和表面效应,能够显著改善高分子材料的性能。
首先,高分子纳米复合材料具有卓越的力学性能。
纳米填料的加入可以有效地增强高分子材料的强度和刚度。
纳米填料具有高的比表面积和较小的颗粒尺寸,能够有效地增加高分子材料的物理交联点数。
这种物理交联能够阻止高分子材料的聚合物链的自由移动,从而提高材料的刚度和强度。
其次,高分子纳米复合材料具有卓越的热性能。
由于纳米填料的加入,高分子材料的热导率得到了显著提高。
这意味着高分子纳米复合材料可以更有效地传导热量,更好地分散热量,从而提高材料的耐热性和热稳定性。
此外,纳米填料还可以提高材料的阻燃性能,使其更加安全可靠。
最后,高分子纳米复合材料具有优异的化学稳定性。
纳米填料的加入可以有效地提高高分子材料的化学惰性,并增强其耐化学腐蚀性。
此外,由于纳米填料具有较大的比表面积和活性表面官能团,可以增加高分子材料与其他化学物质的反应界面,从而提高材料的吸附性能和催化性能。
综上所述,高分子纳米复合材料以其卓越的力学性能、热性能和化学稳定性而备受关注。
这种新型复合材料在诸多领域具有广泛的应用前景,如航空航天、电子器件、汽车工程等。
随着研究的深入和技术的进步,相信高分子纳米复合材料将会在未来发展中展现出更为广阔的前景。
高分子纳米复合材料是近年来材料科学领域的一个研究热点和发展方向。
它将纳米颗粒与高分子材料进行混合,并通过合适的处理方法使二者相互结合,形成一种新型材料。
由于纳米颗粒具有出色的特性和高分子材料的可塑性,高分子纳米复合材料具有更多独特的性质和潜在的应用领域。
高分子纳米复合材料的优势之一是具有独特的光学性能。
纳米颗粒的光学性质由其尺寸、形状和材料组成所决定,而高分子材料的光学性能则受到其分子结构和构型的影响。
将二者组合在一起,可以充分利用纳米颗粒的表面增强效应和高分子材料的可塑性,实现对光学性能的调控和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(衍射)作用,因此加入纳米级填加剂的复合材料可以做到无色 无色 透明。 透明 ②、热学性质 当固态物质颗粒的外形尺寸小至纳米尺寸时,引起的熔点的 显著变化称为纳米材料的热效应 纳米材料的热效应。 纳米材料的热效应 固态物质在较大外形尺寸时,其熔点是固定的 固定的。但是,当外 固定的 形尺寸小至纳米尺寸时,其熔点将显著降低,当颗粒小于10 nm 量级时尤为显著。例如,金的常规熔点为1064℃,当颗粒尺寸减 1064℃ 1064 小到10 nm 时,则降低27℃;当尺寸减小到2 nm 时,熔点仅为 10 降低27℃ 2 降低27 327℃ 327℃左右。 ③、磁学性质 颗粒状磁性材料的磁学性质,由于外部尺寸小至纳米尺寸 时,引起的独特的磁性变化称为纳米材料的磁效应 纳米材料的磁效应。 纳米材料的磁效应
三、纳米材料的制备方法
纳米材料制备方法进行简单的分类,可分为物理法 化学法 物理法和化学法 物理法 两大类。 1、物理方法 ①、真空冷凝法 是在采用高真空下加热 高真空下加热(如电阻法、高频感应法等)金属等 高真空下加热 块体材料,使其材料的原子气化 原子气化或形成等离子体 等离子体,然后快速冷 原子气化 等离子体 快速冷 却,最终在冷凝管上获得纳米粒子。 真空冷凝方法特别适合制备金属纳米粉 金属纳米粉,通过调节蒸发温度 金属纳米粉 温度 气体压力等参数,可以控制形成纳米微粒的尺寸。 场和气体压力 气体压力 真空冷凝法的优点 优点是纯度高、结晶组织好以及粒度可控且分 优点 布均匀,适用于任何可蒸发的元素和化合物;缺点 缺点是对技术和设 缺点 备的要求较高。
其中,聚合物纳米复合材料及其技术 聚合物纳米复合材料及其技术(聚合物纳米科学), 聚合物纳米复合材料及其技术 是当今发展最为迅速、最为贴近实用化的领域。
第一节 高分子纳米复合材料概述
一、纳米材料与纳米技术
1、纳米材料 是以纳米结构为基础的材料,或者以纳米结构为基本单元构 成的复合材料。 ①、纳米结构 以具有纳米尺度的物质单元为基础,按一定规律构筑或营造 的一种新结构体系,称为纳米结构体系。
超微粒子)、喷雾热解法 喷雾热解法。 喷雾热解法 ④、冷冻干燥法 这种方法也是首先制备金属盐的水溶液 金属盐的水溶液,然后将溶液冻结 冻结, 金属盐的水溶液 冻结 在高真空下使水分升华 升华,原来溶解的溶质来不及凝聚 溶质来不及凝聚,则可以得 升华 溶质来不及凝聚 到干燥的纳米粉体。 采用冷冻干燥的方法还可以避免某些溶液粘度大,无法用喷 雾干燥法制备的问题。 2、化学方法 ①、气相沉积法 是利用金属化合物蒸气 金属化合物蒸气的化学反应来合成纳米微粒的一种方 金属化合物蒸气 法。 这种方法获得的纳米颗粒具有表面清洁、粒子大小可控制、 无粘接以及粒度分布均匀等性以及原子间的相互作用将受 到尺寸大小的影响。诸如,熔点等热学性能、磁学性能、电学性 能、光学性能、力学性能和化学活性会出现与传统材料截然不同 的性质。一般认为导致纳米材料独特性能,主要基于以下四种基 本纳米效应。 1、表面效应 表面能随着粒径减小而增加的现象称为表面效应 表面效应。 表面效应 当颗粒状材料的直径降低到纳米尺度时,比表面积会非常 大,这样处在表面的原子或离子所占的百分数将会显著地增加。 然而由于缺少相邻的粒子,则出现表面的空位效应 表面的空位效应,表现出表面 表面的空位效应 粒子配位不足,表面能会大幅度增加 大幅度增加。这种在纳米尺度范围内发 大幅度增加 生的表面效应称为纳米表面效应。
例如,美国IBM公司在高真空和超低温下,用STM将吸附在镍 表面上的氙原子进行移动,排列出了IBM字样,被称为进行纳米操 控的标志性成果。 ②、原子力显微技术 原子力显微镜(atomic force microscope,AFM)也是高分 也是高分 辨的显微仪器,具有与STM相近的分辨率。 辨的显微仪器 其原理是,通过测定探针(纳米)与表面原子间微小的作用力 对材料表面进行表征和操控。因此,AFM不仅可以观察到非导电样 非导电样 品表面形态,而且还可以对数十个原子、甚至数个分子进行操 控,包括化学反应,从而对其表面进行微加工 微加工,大大拓展了其应 微加工 用范围,展示了 AFM 在未来大规模集成电路纳米级蚀刻技术方面 的应用潜力。
4、宏观量子隧道效应 微观粒子(电子、原子)具有穿越势垒的能力称之为隧道效 隧道效 应。一些宏观的物理量,如纳米颗粒的磁化强度、量子相干器件 中的磁通量以及电荷等也具有隧道效应,它们可以穿越宏观系统 的势垒而产生性能变化,称为宏观量子隧道效应 宏观量子隧道效应。 宏观量子隧道效应 利用宏观量子隧道效应,可以解释纳米镍粒子在低温下继续 保持超顺磁性 超顺磁性的现象。这种纳米颗粒的宏观量子隧道效应和量子 超顺磁性 尺寸效应,将会是未来微电子器件发展的基础,它们确定了微电 子器件进一步微型化的极限。
第十章 高分子纳米复合材料
纳米科学是,20世纪末兴起的最重要的科技研究新领域,当 20世纪末 20世纪末 今世界各国都将纳米科学技术列入重点研究开发 重点研究开发的课题。 重点研究开发 纳米科学: 纳米科学: 1、纳米及纳米体系 ①、纳米是一个长度单位,1nm = 10-3 μm = 10-4 μm 。 ②、通常界定1~100 nm的体系为纳米体系。 2、纳米科学 ①、纳米体系,略大于分子尺寸的上限 略大于分子尺寸的上限,恰好能体现分子间 略大于分子尺寸的上限 分子间 强相互作用。这种分子间强相互作用引起的许多性质,与常规物 强相互作用 质相异,正是这种特异性质构成了纳米科学。
例如,大块纯铁的矫顽力约为80 A/m,而当颗粒尺寸减小到 nm时,其矫顽力可增加 1千倍 千倍。但是若进一步减小其尺寸,达 10 nm 到大约小于6 nm 6 nm时,其矫顽力反而降低到零 降低到零,呈现出超顺磁性 超顺磁性。 降低到零 超顺磁性 利用磁性超微颗粒具有高矫顽力 高矫顽力的特性,可以制作高密度信息存 高矫顽力 储材料。利用超顺磁性 超顺磁性,可以将磁性纳米颗粒制成用途广泛的磁 超顺磁性 性液体。 ④、力学性质 陶瓷材料在通常情况下呈脆性,然而由纳米颗粒压制成的纳 纳 米陶瓷材料却具有良好的韧性 米陶瓷材料 韧性。这种力学性质的变化称为纳米材 纳米材 韧性 料的力学效应。 料的力学效应 这是因为纳米材料具有大的界面,界面上的原子排列 原子排列是相当 原子排列 混乱的,原子在外力变形的条件下很容易迁移 迁移,因此表现出甚佳 混乱 迁移 的韧性与一定的延展性。
从宏观角度 宏观角度分类,纳米材料大致有以下四类: 宏观角度 A、纳米粉未 又称为超微粉或超细粉,是介于原子、分子与宏观物质之间处 于中间物态的固体颗粒材料,在块状材料和复合材料制备方面应用 较多。 B、纳米纤维 指填加纳米粉的纤维材料。 C、纳米膜 分为单层膜和多层膜的纳米膜材料,在光电子学领域和膜分离 领域应用广泛。 D、纳米块体 由纳米粉未通过高压或烧结成型,或者用高分子材料复合构成 的块状材料。
该法易于制备出从几纳米到几十纳米的非晶态或晶态纳米微 粒。可用于单质、无机化合物和复合材料纳米微粒的制备过程。 ②、化学沉淀法 是液相法的一种。即,将沉淀剂加入到包含一种或多种离子 的可溶性盐溶液中,使其发生化学反应,形成不溶性氢氧化物、 水合氧化物或者盐类而从溶液中析出,然后经过过滤、清洗,并 经过其他后处理步骤就可以得到纳米颗粒材料。 常用的化学沉淀法可以分为共沉淀法 均相沉淀法 多元醇 共沉淀法、均相沉淀法 共沉淀法 均相沉淀法、多元醇 沉淀法、沉淀转化法 沉淀法 沉淀转化法以及直接转化法 直接转化法等。 沉淀转化法 直接转化法 化学沉淀法的优点是工艺简单,适合于制备纳米氧化物粉体 等材料。缺点是纯度较低,且颗粒粒径较大。 ③、水热合成法 水热法是在高温 高压反应环境中,采用水作为反应介质, 高温、高压反应环境 水 高温 高压反应环境 使得通常难溶或不溶的物质溶解 反应 溶解、反应 溶解 反应,还可进行重结晶操作。
②、纳米体系尺寸上限以上为宏观领域,尺寸下限以下为微 观领域。其中,宏观领域以宏观物体作为研究对象,理论基础是 经典力学和电磁学;微观领域则以分子、原子作为研究对象,理 论基础是量子力学和相对论。 ③、显然,纳米体系领域需要用全新的理论 全新的理论为理论基础。即 全新的理论 形成纳米科学。 纳米晶体材料 纳米非晶体材料 纳米材料 纳米科学 (内容上) 纳米技术:在纳米尺寸范围内 纳米尺寸范围内对物质的加工、分 纳米尺寸范围内 析、表征、利用等相关技术。 纳米相颗粒材料,以及 以及 纳米复合材料 纳米结构材料
②、机械球磨法 是以粉碎与研磨 粉碎与研磨相结合,利用机械能来实现材料粉未纳米化 粉碎与研磨 的方法。该方法适合制备脆性材料 脆性材料的纳米粉。 脆性材料 机械球磨法的优点 优点是操作工艺简单,成本低廉,制备效率 优点 高,能够制备出常规方法难以获得的高熔点金属合金纳米超微颗 粒。缺点 缺点是颗粒分布太宽,产品纯度较低。 缺点 ③、喷雾法 喷雾法是通过将含有制备材料的溶液雾化 溶液雾化,然后制备微粒的 溶液雾化 方法。适合可溶性金属盐纳米粉 可溶性金属盐纳米粉的制备。即,首先制备金属盐溶 可溶性金属盐纳米粉 液,然后将溶液通过各种物理手段雾化,再经物理、化学途径转 变为超细微粒子的方法。 该法主要有喷雾干燥法 喷雾干燥法(将金属盐溶液送人雾化器,由喷嘴 喷雾干燥法 高速喷人干燥室,溶剂挥发后获得金属盐的微粒,收集后焙烧成
2、纳米技术 纳米技术是借助现代科学技术手段的全新的实用科学,包括 纳米加工技术、纳米分析表征技术、纳米操控技术等新型的科技 方法和手段。目前在纳米技术领域最显著的现代技术主要有以下 几种。 ①、扫描隧道显微镜技术 扫描隧道显微镜(scanning tunnel microscope STM),是 STM 目前为止进行表面分析的最精密仪器之一 最精密仪器之一。 最精密仪器之一 其工作原理是,利用量子力学中的隧道效应,通过探针针尖 探针针尖 (纳米)与样品表面保持恒定距离进行扫描,测量隧道效应电流, 从而对导体或半导体样品的表面形貌进行观察,其横向分辨率为 0.04 nm,纵向分辨率达0.01 nm,可以直接观察到原子和分子, 而且直接操纵和安排原子和分子。
除此之外,纳米颗粒的小尺寸效应还表现在超导电性、介电 性能、声学特性以及化学性能等诸多方面。 3、量子尺寸效应 当颗粒状材料的尺寸小至纳米尺寸时,其电子能级由连续转 变为量子化(最高占据分子轨道和最低空轨道,使能隙变宽,出 现能级的量子化)。这时,纳米材料电子能级之间的间距,随着 颗粒尺寸的减小而增大。当能级间距大于热能、光子能、静电能 以及磁能等的能量时,就会出现一系列与块体材料截然不同的反 常特性,这种效应称之为纳米量子尺寸效应。 纳米量子尺寸效应 纳米量子尺寸效应 例如,纳米颗粒具有高的光学非线性 特异的催化性能 光学非线性及特异的催化性能 光学非线性 特异的催化性能均属 此列。