半导体材料的基本特性 ppt课件

合集下载

半导体器件基础课件(PPT-73页)精选全文完整版

半导体器件基础课件(PPT-73页)精选全文完整版

有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术

半导体基础知识PPT培训课件

半导体基础知识PPT培训课件
半导体基础知识ppt培 训课件
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。

第四章半导体材料-PPT课件

第四章半导体材料-PPT课件
0 0
1 . 1 2 7 m 红外 G a A s , E g 1 . 4 e V , 0 . 8 8 5 m
2、非平衡载流子 光发射 电子被光激发到导带而在价带中留下空穴,状态不 稳定。由此产生的电子空穴对称为非平衡载流子。过一 段时间,电子将跃迁回价带,同时发射一个光子,称为 光发射。 光发射应用:半导体发光二极管、半 导体激光器。但非平衡载流子不是由光激 发产生,而由电子、空穴注入产生。
在外电场下,半导体有电流,电流密度:
jE
且与载流子浓度n、载流子有效质量m*和弛豫时间 有 关: 2
ne j E m* j E
e — 迁 移 率 m * 导电性能 n e
半导体中电子运动不同于真空。真空中服从牛顿定 律,F=-eE=m0a。 m0—自由电子质量。半导体中电子于能带中受约束, 也可以用牛顿定律描述运动。但m0要改成m*。不同半 导体m*不同。
Si Si Si
Si
Si中掺5价P,P取代Si原子。4个 价电子与Si组成共价键。第5个价电 子多余,输送到导带上成为自由电 子。导带中电子导电。 产生的自由电子浓度约等于杂质 原子浓度(可控)。
导带
Si Si
e
Si
P
Si
导带
P
P施主Βιβλιοθήκη PPn型半导体
价带
P
P
施主
P
P
价带
P称为施主杂质,表示能给出一个价电子。
4-2 传统的典型半导体材料
一、分类
1、元素半导体
ⅢA-ⅦA族,十几种元素,如Ge、Si、Se(硒)、Te (碲)等。 2、化合物半导体
二元化合物 ⅢA-ⅤA化合物,9种(Al、Ga、In——P、As、Sb)

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。

《半导体物理学》课件

《半导体物理学》课件
重要性
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。

半导体物理课件

半导体物理课件

结论:磷杂质在硅、锗中电离时,能够释放电子而 产生导电电子并形成正电中心。这种杂质称施主杂 质 。掺施主杂质后,导带中的导电电子增多,增 强了半导体的导电能力。
主要依靠导带电子导电的半导体称n型半导体。
*从Si的电子能量图看:
电离能的计算:
氢原子
En
mq4
(4 0 )2 22
1 n
(2)受主杂质 (Acceptor) p型半导体 Ⅳ族元素硅、锗中掺Ⅲ族元素,如硼(B): *从si的共价键平面图看:
两边取对数并整理,得:
EF
1 2
EC ED
1 2
k0T
ln(
ND 2NC
)
ED起了本征EV 的作用
载流子浓度:
EC EF
EC
EF
n0 NCe k0T NCe k0T e k0T
ND NC
1
2
EC ED
e 2k0T
ND NC
1 2
ED
e 2k0T
2
2
(2)中温强电离区
N
D
n0 ND
(2)EF ~T
(3)EF ~掺杂(T一定,则NC也一定)
T一定,ND越大,EF越靠近EC(低温: ND > NC 时 , ND
(ln ND -ln2 NC)
ND < NC 时, ND
|ln ND -ln2 NC| 中温:由于T的升高, NC增加,使ND < NC , ND
B13:1S22S22P63S23P1 B有三个价电子,当它与周围的四
个Si原子形成共价键时,必须从别 处的硅原子中夺取一个价电子,共价 键中缺少一个价电子,产生空穴。 硼原子接受一个电子后,成为带负 电的硼离子。 B- —负电中心.

《半导体材料》课件

《半导体材料》课件

N型半导体
通过向半导体中掺入五价杂质,可以形成具有负 电荷的N型半导体。
PN结
PN结是由P型和N型半导体材料结合而成的结构, 具有重要的电子器件应用。
二极管
二极管是一种基本的半导体器件。它具有只允许 单向电流通过的特性。
4. 高级半导体器件
M Oபைடு நூலகம்FET
MOSFET是一种基于半导体材料 的重要集成电路组件,广泛应用 于电子设备中。
光电二极管
光电二极管是一种半导体器件, 可以将光能转换为电能,广泛用 于通信和光电领域。
激光二极管
激光二极管是利用半导体材料产 生激光的器件,应用于激光打印 机、激光通信等领域。
5. 应用领域
计算机芯片
半导体材料是计算机 芯片制造的基础,推 动了电子产品的快速 发展。
通信设备
半导体器件在无线通 信、移动通信等领域 中发挥着重要的作用。
光电子器件
光电子器件利用半导 体材料的特性,实现 光信号的检测和处理。
新能源领域
半导体材料在太阳能 电池、燃料电池等新 能源领域有着广泛的 应用。
6. 总结
半导体材料具有独特的电性能和广泛的应用。通过了解半导体的基本概念和器件原理,我们可以更好地理解现 代电子技术的发展和应用。期待未来半导体材料的更多突破和创新!
2. 基本概念
1 价带和导带
半导体中的价带和导带决定了电子的能量状态和传导性质。
2 禁带宽度
禁带宽度是指价带和导带之间的能量间隔,影响了半导体的导电性。
3 掺杂
通过掺杂杂质,可以改变半导体的导电性能,使其成为P型或N型半导体。
3. 掺杂与半导体器件
P型半导体
通过向半导体中掺入三价杂质,可以形成具有正 电荷的P型半导体。

半导体材料 ppt课件

半导体材料  ppt课件

1.2.3 固溶半导体
由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质, 就称为固溶半导体,简称固溶体或混晶。 因为不可能作出绝对纯的物质,材料经提纯后总要残留一定数量的杂质,而且半导 体材料还要有意地掺入一定的杂质,在这些情况下,杂质与本体材料也形成固溶体, 但因这些杂质的含量较低,在半导体材料的分类中不属于固溶半导体。 另一方面,固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比 所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及 有关性质也随之变化。 固溶体增加了材料的多样性,为应用提供了更多的选择性。 为了使固溶体具有半导体性质常常使两种半导体互溶,如Si1-xGex(其中x <1);也 可将化合物半导体中的一个元素或两个元素用其同族元素局部取代,如用Al来局部取 代GaAs中的Ga,即Ga1-xAlxAs,或用In局部取代Ga,用P局部取代As形成Ga1xInxAs1-yPy 等等。 固溶半导体可分为二元、三元、四元、多元固溶体;也可分为同族或非同族固溶体 等(见表1.1 )。
表1.1 半导体材料分类及其开发情况 * 此处所列子项只举其中重要者,并未完全列出。
1.2.1 元素半导体 已知有12个元素具有半导体性质,它们在元素周期表中的位置如图1.1所示。 从这里也可以看出半导体材料与物质结构的密切关系。
处于III-A族的只有硼,其熔点高(2300oC),制备单晶困难,而且其载流子迁移率 很低,对它研究的不多,未获实际应用。 IV-A 族中第一个是碳,它的同素异形体之一金刚石具有优良的半导体性质,但制 备单晶困难,是目前研究的重点;石墨是碳的另一个同素异形体,系层状结构,难 以获得单晶,故作为半导体材料未获得应用。 IV-A族的第二个元素是硅,具有优良的半导体性质,是现代最主要的半导体材料。 再往下是锗,它具有良好的半导体的性质,是重要的半导体材料之一。 锡在常温下的同素异形体为b-Sn,属六方晶系,但在13.2oC以下 可变为立方晶 系灰锡(a-Sn)。灰锡具有半导体性质,属立方晶系。在从b-Sn转化为a-Sn 的过 程中,体积增大并变粉末,故难以在实际中应用。

《半导体器件物理》课件

《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性

《半导体基础》课件

《半导体基础》课件

在温度升高或电场加强时,电 子和空穴的输运能力增强。
掺杂可以改变半导体的导电性 能,增加载流子的数量。
半导体中的热传导
01 热传导是热量在半导体中传递的过程。
02 热传导主要通过晶格振动和自由载流子传 递。
03
半导体的热传导系数受到温度、掺杂浓度 和材料类型的影响。
04
在高温或高掺杂浓度下,热传导系数会增 加。
模拟电路和数字电路中均有广泛应用。
场效应晶体管
总结词
场效应晶体管是一种电压控制型器件,利用电场效应来控制导电沟道的通断。
详细描述
场效应晶体管可分为N沟道和P沟道两种类型,通过调整栅极电压来控制源极和漏极之 间的电流。场效应晶体管具有低噪声、高输入阻抗和低功耗等优点,广泛应用于放大器
和逻辑电路中。
集成电路基础
掺杂半导体
N型半导体
通过掺入施主杂质,增加自由电子数量,提高导电能力。
P型半导体
通过掺入受主杂质,增加自由空穴数量,提高导电能力。
宽禁带半导体

碳化硅(SiC)
具有宽禁带、高临界击穿场强等特点, 适用于制造高温、高频、大功率的电子 器件。
VS
氮化镓(GaN)
具有宽禁带、高电子迁移率等特点,适用 于制造蓝光、紫外线的光电器件。
详细描述
二极管由一个PN结和两个电极组成,其单 向导电性是由于PN结的正向导通和反向截 止特性。根据结构不同,二极管可分为点接 触型、肖特基型和隧道二极管等。
双极晶体管
总结词
双极晶体管是一种电流控制型器件,具有放 大信号的功能。
详细描述
双极晶体管由三个电极和两个PN结组成, 通过调整基极电流来控制集电极和发射极之 间的电流,实现信号的放大。双极晶体管在

《半导体物理基础》课件

《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响

《半导体材料》课件

《半导体材料》课件
解决策略
解决可靠性问题需要从材料的设计、制备、封装、测试等各个环节入手,加强质量控制和可靠性评估。
半导体材料的环境影响与可持续发展
环境影响
半导体材料的生产和使用过程中会对环境产生一定的影响,如能源消耗、废弃物处理等。
可持续发展
为了实现可持续发展,需要发展环保型的半导体材料和生产技术,降低能源消耗和废弃物排放,同时 加强废弃物的回收和再利用。
《半导体材料》ppt 课件
目录
CONTENTS
• 半导体材料简介 • 半导体材料的物理性质 • 常见半导体材料 • 半导体材料的制备与加工 • 半导体材料的发展趋势与挑战
01
半导体材料简介
半导体的定义与特性
总结词
半导体的导电能力介于导体和绝缘体 之间,其电阻率受温度、光照、电场 等因材料的制备技术
制备技术
为了获得高性能的半导体材料,需要 发展先进的制备技术。这包括化学气 相沉积、分子束外延、离子注入等。
技术挑战
制备技术面临的挑战是如何实现大规 模生产,同时保持材料的性能和均匀 性。
半导体材料的可靠性问题
可靠性问题
随着半导体材料的广泛应用,其可靠性问题越来越突出。这包括材料的稳定性、寿命、可靠性等方面的问题。
VS
电阻率
电阻率是衡量材料导电能力的物理量。半 导体的电阻率可以通过掺杂等方式进行调 控,从而实现对其导电性能的优化。
光吸收与发光特性
光吸收
半导体具有吸收光子的能力,当光子能量大于其能带间隙时,电子从价带跃迁至导带, 产生光电流。
发光特性
某些半导体在受到激发后可以发出特定波长的光,这一特性使得半导体在发光器件、激 光器等领域具有广泛应用。
离子束刻蚀
利用离子束对材料进行刻蚀,实现纳米级加工。

半导体基础知识答辩ppt课件

半导体基础知识答辩ppt课件

1.2.2 V—A特性曲线
实验曲线
i

击穿电压UBR
(1) 正向特性 i
u
V
mA
(2) 反向特性
i u
V
uA
0
u
反向饱和电流
导通压降 硅:0.7 V
死区

电压
E
锗:0.3V
硅:0.5 V 锗: 0.1 V
E
(1)正向特性:
对应于图1-12曲线的第①段,为二极管伏特性的正向特 性部分。这时加在二极管两端的电压不大,从数值上看,只 有零点几伏,但此时流过二极管的电流却较大,即此时二极 管呈现的正向电阻较小。一般硅管正向导通压降约为0.6~ 0.7V, 锗管约为0.2~0.3V。
少子—电子
少子—空穴
少子浓度——本征激发产生,与温度有关 多子浓度——掺杂产生与,温度无关
1.2.1 PN结
1 . PN结的形成
PN结合 因多子浓度差 多子的扩散 空间电荷区
形成内电场 阻止多子扩散,促使少子漂移。 内电场E
P型半导体 空间电荷区 N型半导体
- - --
++ ++
- - --
++ ++
正向电流
- - --
++ ++
内电场 E
EW
R
(2) 加反向电压——电源正极接N区,负极接P区
外电场的方向与内电场方向相同。
动画演示
外电场加强内电场 →耗尽层变宽 →漂移运动>扩散运动
→少子漂移形成反向电流I R
P
空间电 荷区
N
- - --
++ ++

《半导体物理第一章》课件

《半导体物理第一章》课件

3
1.3.3 pn结的I-V特性
详细解释pn结的I-V特性曲线,包括正向和反向电流的变化。
1.4 光电应及其在太 阳能电池中的应用。
2 1.4.2 光电二极管
阐述光电二极管的原理 及其在通信和显示技术 中的应用。
3 1.4.3 光电池
讨论光电池的构造、工 作原理和应用领域。
1.5 半导体器件的制作技术
晶体生长
介绍半导体晶体生长方法和技 术,如Czochralski法和液相外 延。
晶体制备
讨论半导体晶体的切割、抛光 和清洗等制备工艺。
制作半导体器件
概述半导体器件制作的关键步 骤,包括光刻、扩散和金属沉 积等工艺。
1.6 总结与展望
1.6.1 半导体物理的应用前景
评估半导体物理在电子技术、通信和能源领域 的未来发展。
1.1 半导体材料的基本性质
半导体的定义
介绍半导体的定义,以及其与导体和绝缘体的区别。
半导体的基本性质
探讨半导体的导电性、禁带宽度、载流子等基本特性。
半导体的能带结构
解释能带理论,讨论导带与禁带之间的能量差异对电子行为的影响。
1.2 掺杂半导体
1.2.1 掺杂的概念
介绍半导体掺杂的概念,包 括n型和p 型半导体的区别。
《半导体物理第一章》 PPT课件
An engaging and comprehensive introduction to the fundamental properties of semiconductor materials and their applications in electronic devices.
1.2.2 正、负离子掺 杂
说明正、负离子掺杂对半导 体电子结构的影响。

半导体材料总结ppt课件

半导体材料总结ppt课件
(一)、半导体材料特性(5学时)
1.半导体材料的发展趋势
2.半导体材料的分类ຫໍສະໝຸດ 3.半导体材料的基本性质及应用
4.实例说明如何运用半导体材料知识开展实验设

ppt课件.
1
1
2. 半导体材料的分类
禁带宽度的不同,又可分为: 窄带隙半导体材料:Si,Ge 宽带隙半导体材料:GaN,ZnO,SiC,AlN
ppt课件.
23
23
GaAs电学性质
电子迁移率高达 8000cm2 VS
GaAs中电子有效质量为自由电子的1/15, 是硅电子的1/3
用GaAs制备的晶体管开关速度比硅的快 3~4倍
高频器件,军事上应用
ppt课件.
24
24
本征载流子浓度
T 3 0 0 K n i 1 .3 1 0 6/c m 3
化学组分和结构的不同,又可分为: 元素半导体、化合物半导体、固溶体半导体、非晶半导 体、微结构半导体、有机半导体和稀磁半导体等
使用功能的不同,可分为: 电子材料、光电材料、传感材料、热电致冷材料等
ppt课件.
2
2
ppt课件.
3
3
按功能和应用
光电半导体
热电半导体
微波半导体 气敏半导体 微电子半导体
ppt课件.
6
6
(1)半导体材料结构
晶体: 有规则对称的几何外形; 物理性质(力、热、电、光…)各向异性; 有确定的熔点; 微观上,分子、原子或离子呈有规则的周期性 排列,形成空间点阵(晶格)。
简单立方晶格
面心立方晶格
Au、Ag、Cu、Al…
ppt课件.
体心立方晶格 Li、Na、K、Fe…
六角密排晶格 Be,Mg,Zn,Cd…
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PPT课件
19
提高芯片的性能
关键尺寸 芯片上的最小物理尺寸 芯片上器件尺寸的相应缩小是按比例进行的,仅减小一个 尺寸是不可接受的。
PPT课件
20
每块芯片上的元件数 减小一块芯片的关键尺寸使得可 以在硅片上制造更多的元件 ,由于芯片数增加性能也得 到提高。
摩尔定律
PPT课件
21
功耗 真空管耗费很大功率,而半导体器件确实耗用很 小的功率,随着器件的微型化,功耗相应减小,尽管晶体 管数以惊人的速度增长,但是功耗却在不断的下降。
10
价带:被价电子填充的能带 导带:被自由电子填充的能带 禁带:导带底与价带顶之间能带 带隙:导带底与价带顶之间的能量差
PPT课件
11
能带的特点:
能带的宽窄由晶体的性质决定,与所含的原子数无关。 能量较高的能带比较宽,能量低的较窄。 每个能带中的能级数目与晶体中的原子数有关。 能带中能量不连续
PPT课件
PPT课件
8
能带结构
电子的共有化运动
——满足能量最低原理 ——泡利不相容原理
PPT课件
9
能带结构的形成 两个原子靠近时,电子波函数将重叠。 这时泡利不相容原理不允许一个量子态上有两个电子存在, 于是一个能级将分裂为2个能级,N个原子靠近时,一个能 级将分裂为N个相距很近的能级,形成能带
PPT课件
纵观20世纪中硅基微电子技术的发展历程,未来微电子技术 将主要表现为:
1、器件的特征尺寸继续缩小
2、系统集成芯片将是将来一段时间内发展的重点
3、微电子与其它学科的结合将诞生新的技术交叉点和产业 增长点。
PPT课件
25
集成电路
集成电路的概念 将若干个二极管、晶体管、电阻和电容等元件按照特定 的电路连接方式,焊接到一快半导体单晶片或陶瓷机片 上,使之成为一个整体以完成某一特定功能的电路组件。
12
常见半导体——硅
硅是一种元素半导体 ,4个价电子,正好位于优质导体和 绝缘体之间。
选择硅的主要理由: 硅的丰富度 更高的熔化温度允许更宽的工艺容限 更高的工作温度范围 氧化硅的自然形成
PPT课件
13
半导体产业的发展
半导体产业发展的基础是在20世纪上半业开发的技术 上培育出来的,关键技术是在工业和学术网中获取的。
PPT课件
17
半导体工业为什么有如此的发展速度
第一:集成电路业属于非资源耗尽型的环保类产业,原始材 料是地壳中的二氧化硅。
第二:集成电路的设计与制造技术中高新技术含量和技术赋 加值极高 ,产出效益好。
第三:集成电路的设计与制造业是充满技术驱动的效益驱动 的高活性产业
PPT课件
18
半导体的趋势
★ 提高芯片性能 ★ 提高芯片的可靠性 ★ 降低芯片的成本
PPT课件
1
原子结构 由三种不同的粒子构成:中性中子和带正电的 质子组成原子核,以及围绕原子核旋转的带负电核的电子, 质子数与电子数相等呈现中性。
PPT课件
2
电子能级 原子级的能量单位是电子伏特,它代表一个电 子从低电势处移动到高出1V的的电势处所获得的动能。
价电子层 原子最外部的电子层就是价电子层,对原子的 化学和物理性质具有显著的影响,只有一个价电子的原子 很容易失去这个电子,有7个价电子的原子容易得到一个 电子,具有亲和力。
本征半导体:几乎不含任何杂质的半导体。
自由电子 当导体处于热力学温度0K时,导体中没有自由电 子。当温度升高或受到光的照射时,价电子能量增高,有 的价电子可以挣脱原子核的束缚,而参与导电,成为自由 电子。
空穴 自由电子产生的同时,在其原来的共价键中就出现 了一个空位,原子的电中性被破坏,呈现出正电性,人们 常称呈现正电性的这个空位为空穴。
PPT课件
3
共价键
不同元素的原子共有价电子形成的粒子键,原子通过共有 电子来使价层完全填充变得稳定。束缚电子同时受两个原 子的约束,如果没有足够的能量,不易脱离轨道。
PPT课件
4
离子键
当价电子层电子从一种原子转移到另一种原子上时,就会形 成离子键,不稳定的原子容易形成离子键。
PPT课件
5
半导体分类
PPT课件
22
芯片可靠性
芯片可靠性致力于趋于芯片寿命的功能的能力,通过严格 的诸如无颗粒空气净化间的使用以及控制化学试剂的纯度 来控制玷污
PPT课件
23
降低芯片价格
由于特征尺寸的减小使得硅片上集成的晶体管增多降低了 成本。 半导体产品市场大幅度增长引入了制造的规模经济Fra bibliotekPPT课件
24
微电子技术发展展望
半导体材料的基本特性
半导体的概念
从导电特性和电阻率来分: 超导体: 大于106(cm)-1 导体: 106~104(cm)-1,容易导电的物体。如:铁、铜等 绝缘体: 小于10-10cm)-1,几乎不导电的物体。如:橡胶等 半导体: 104~10-10(cm)-1 ,导电性能介于导体和绝缘体之 间的物体,在一定条件下可导电。
PPT课件
26
集成电路优点
★提高工作速度 ★内部连线短,缩短延迟时间,尺寸小,连线分布电容和PN
结电容减小。 ★降低功耗 ★尺寸小,连线短,电阻小 ★降低电子整机成本? ★减少印制电路和插接件 ★体积小,质量轻 ★可靠性高
半导体产业
PPT课件
14
半导体发展趋势
半导体发展趋势——微电子时代 电子时代是由电子真空阶段延续到固体电子阶段的。 当分立器件逐步过渡到集成电路阶段时,出现了诸如半导体
器件集成化、电子系统集成化、电子系统微型化,也就出 现了微电子时代
PPT课件
15
电子技术的发展
电子技术的发展是以电子器件的发展而发展起来的。电子器 件的发展历经4个阶段:
★电子管
1906年,诞生第一只电子管
★晶体管
1947年,出现了半导体三极晶体管
★集成电路 电路
1960年12月,成功制造世界上第一块硅集成
★超大规模集成电路 1966年,美国贝尔实验室利用硅片 外延技术,制造了第一块大规模集成电路
PPT课件
16
集成电路的发展
摩尔定律:1964年 ,戈登.摩尔,半导体产业先驱者和 英特尔公司的创始人,预言在一块芯片上的晶体管数大 约每隔一年翻一番。
PPT课件
6
杂质半导体
概念:掺入杂质的本征半导体称为杂质半导体。 N型半导体:在本征半导体中掺入五价杂质元素,例如磷,氮 自由电子—多数载流子(由两部分组成) 空穴——少数载流子
PPT课件
7
P型半导体 在本征半导体中掺入三价杂质元素,如硼、 镓、铟等形成了P型半导体,也称为空穴型半导体。
自由电子—少数载流子 空穴——多数载流子(由两部分组成)
相关文档
最新文档