二元一次方程PPT课件教学内容

合集下载

二元一次方程PPT课件

二元一次方程PPT课件

下列方程,哪些是一元一次方程?
(1) − =


(2) − =


(3) − − =
(4) − =
×
×
什么叫做方程的解?
如果未知数所取得某个值能
使方程左右两边的值相等,那么
这个未知数的值叫做方程的解。
下列括号内的数是不是该方程的解?
(1) − = (x=1)
(2) − = (y=)
×

上个月我校进行义卖活动,六(5)班义
卖罐装可乐和罐装雪碧。
问题一:小宁同学花费30元购买了x罐
雪碧,请完成下表:
单价(元)数量(罐)总价(元)可列方程
雪碧
3
x
3/30 =
问题二:小宁同学一共花费40元购买了可
乐和雪碧12罐,请完成下表:
雪碧 可乐
单价(元)
3
数量(罐)
总价(元)
3
雪碧+可乐
可得方程:
4
+ /12 + = 12
4 3 + 4/40 3 + 4=40
视察刚才得到的方程:
1. =
2. + =
3. + = 40
二元一次方程
6.8 二元一次方程
二元一次方程:
含有两个未知数的一次方程叫做
哪些能使方程两边的值相等?
(1) = , =
×
(2) = , = − √
(3) = , =

使二元一次方程两边的值相等
的两个未知数的值,叫做二元
一次方程的解
=
=
记作:ቊ
,ቊ

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。

二元一次方程PPT课件全

二元一次方程PPT课件全

1. 根据上面的定义请每位同学写一个 2. 二元一次方程与同桌交流.
2.它们是二元一次方程吗?
(1) 3-2x =1 不是
(2) x2 y 0 不是
(3) x y 2y 0 是 3
(4)
y
1 2
x
不是
(5) x 2 1 不是 y
(6) 3 - 2xy =1 不是
选一选
下列各式是二元一次方程的是
5.已知方程 ( k 2 4 ) x 2 ( k 2 ) x ( k 8 )y k 7 ,当
k=
时,方程为一元一次方程;当ຫໍສະໝຸດ k=时,方程为二元一次方程。
学以致用
下列各式是二元一次方程的
c 是( )
A、x2 y 0 C、xy 2y 0
3
BD、、xy2y1x1
2
试 一
把下列各对数代入二元一次方程
.
(1) a+b+c=1 (2) mn=3
(3)4x+ =0
(4)2x=1-3y
1.根据题意列出方程:
(1)买5kg苹果和3kg梨共需23.6元,分 别求苹果和梨的单价.设苹果的单价 为x元/kg,梨的单价为y元/kg;
5x+3y=23.6
使二元一次方程两边的值相等的一 对未知数的值,叫做二元一次方程的 一个解。
二元一次方程PPT课件
(2)在高速公路上,一辆轿车行驶2时的路 程比一辆卡车行驶3时的路程还多20千米.如 果设轿车的速度是a千米/时,卡车的速度是b 千米/时,你能列出怎样的方程?
2a-3b=20
观察它们有什么共同点?
0.5x+0.8y=7.4 2a - 3b=20
含有两个未知数,且含未知 数的项的次数都是一次的 方程叫做二元一次方程.

二元一次方程组ppt课件

二元一次方程组ppt课件

5. B 提示:A.当
时,x-2y=0-2×
=1,是方程的解;B.当
时,x-2y=1-2×1=-1,不是方程的解;C.当
时,x-2y=1-2×0=1,是
方程的解;D.当
时,x-2y=-1-2×(-1)=1,是方程的解.
6. C 提示:A、B 方程组里含有 x,y,z 三个未知数,不符合二元一次方程组
方程组)
共计 44 元
共计 26 元
解析:从题图中可获得信息:2 件 T 恤衫和 2 瓶 矿泉水一共是 44 元
;1 件 T 恤衫和 3 瓶矿泉水一共 是 26 元.列出二元一次方程组即可.
答案:解:设每件 T 恤衫 x 元,每瓶矿泉水 y 元.
由题意,得 题型解法:解答有关二元一次方程组的图表信息题的关键是认真分析和提 取图表中的数据信息,挖掘图表中所隐含的等量关系,从而建立方程组求解.
D. 1
是方程 2x-ay=3b 的一个解,那么 a-
解析:将
代入方程2x-ay=3b,得 2+a= 3b,所以 a-3b=-2.故
选 C. 答案:C 题型解法:解决本题的关键是将方程的解代入,从而求出待定式子的值.
-9-
6.1 二元一次方程组
例 4 (巴中中考)已知关于 x,y 的二元一次方程组
为解的二元一次方程有无穷多个,只要从这些方
程中选中两个方程联立,即可得所要求的二元一次方程组.注意:在找两个
方程联立时,不能找系数成比例的两个方程.
-13-
6.1 二元一次方程组
[方法总结]
■检验二元一次方程组的解的方法———代入检验法 将这对数值分别代入方程组中的每个方程,只有当这对数值满足所有方程
k 的值为 ( )

二元一次方程ppt

二元一次方程ppt
3 无穷解
当两个方程的图像重合时,方程组有无穷多解。
线性方程组的概念
线性方程组是包含多个线性方程的集合,形如以下表达式:
a1x + b1y = c1 a2x + b2y = c2 ... anx + bny = cn
线性方程组的一般形式
1 形式
a1x + b1y = c1
3解
x和y为有理数。
2 限制
二元一次方程ppt
本演示介绍了二元一次方程的定义、一般形式、解法、应用以及与不等式组 的联系。
二元一次方程的定义
二元一次方程是指包含两个未知数的一次方程,形如ax + by = c,其中a、b和c 为已知数,a和b不同时为0。
二元一次方程的一般形式
形式
ax + by = c
限制
a和b不同时为0。
2
步骤二
解一次方程,求出该未知数的值。
3
步骤三
将求出的未知数的值代入到原方程中,求出另一个未知数Βιβλιοθήκη 值。常见的二元一次方程的例子
Example 1
2x +3y =6
Example 2
4x - 5y =12
Example 3
-3x +2y =-8
利用图像解二元一次方程
图像可以帮助我们直观地理解和解决二元一次方程。通过绘制方程的图像, 我们可以观察它们的交点,从而得出方程的解。
a1、b1、c1、a2、b2、c2...为已知数。
线性方程组的解法
1
高斯消元法
通过初等行变换将线性方程组化为阶梯型或行简化阶梯型,进而求解。
2
克莱姆法则
利用行列式的性质,通过求解行列式来求解线性方程组。

1二元一次方程 课件(共20张PPT)+一等奖创新教案

1二元一次方程  课件(共20张PPT)+一等奖创新教案

1二元一次方程课件(共20张PPT)+一等奖创新教案2.1二元一次方程浙教版七年级下册教学目标1.了解二元一次方程的概念2.了解二元一次方程的解和概念和解的不唯一性3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式教学重难点重点:二元一次方程及其解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程,这是本节难点新知导入一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又可以转化为方程问题,因此,一旦解决了方程问题,一切问题都将迎刃而解!笛卡尔新知讲解1.什么叫方程?含有未知数的等式叫做方程.2.什么叫一元一次方程?方程的两边都是整式,只含有一个未知数(一元),并且未知数的指数是1(一次),这样的方程叫做一元一次方程.2x+3=5, x+y=8.2x+3=5, y+6=8.3.什么是方程的解?一元一次方程的解如何表示?使方程左右两边相等的未知数的值叫做方程的解.回忆一下新知讲解请思考,并讨论下列问题:(1)小红到邮局寄挂号信,需要邮资3元8角. 小红有面额为6角和8角的邮票若干张,问这两种面额的邮票各需多少张?在这个问题中,要求的未知数有几个?能列一元一次方程求解吗?如果设需要面额为6角的邮票x张,面额为8角的邮票y张,你能列出方程吗?0.6x+0.8y=3.8新知讲解(2)在高速公路上,一辆轿车行驶2小时的路程比一辆卡车行驶3小时的路程还多20千米. 如果设轿车的速度为a千米/时,卡车的速度为b千米/时,你能列出怎样的方程?2a=3b+20新知讲解思考:上述方程有什么特点0.6x+0.8y=3.82a=3b+201.整式方程;2.未知数的个数为2个;3.含有未知数项的次数个数为1.你能给这样的方程取个名字吗新知讲解含有两个未知数,并且所含未知数的项的次数都为1的方程. 二元一次方程的一般形式:ax+by=c(a≠0,b≠0).二元一次方程的定义:思考:它与你学过的一元一次方程比较有什么区别新知讲解1.只有一个未知数;2.含未知数的项是一次;3.方程两边都是整式.含有一个未知数,且含有未知数的项的次数都是一次的方程叫做一元一次方程.一元一次方程含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程.二元一次方程1.含有两个未知数;.2含未知数的项是一次;3.方程两边都是整式.定义特点新知讲解使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.解的书写特征:一个解;一对值;一个大括号你还能说出其它解吗例题讲解例已知方程3x+2y=10.(1)用关于x的代数式表示y ;(2)求当x=-2,0,3时对应的y的值,并写出方程3x+2y=10的三个解.解:(1)移项,得2y =10-3x例题讲解例已知方程3x+2y=10.(1)用关于x的代数式表示y ;(2)求当x=-2,0,3时对应的y的值,并写出方程3x+2y=10的三个解.解:(2)当x =-2时,y=5-=8当x = 0时,y=5-=5当x = 3时,y=5-=由二元一次方程的解的意义,,课堂练习1.下列各式是二元一次方程的是( )A.x+3=πB.y=xC.x+=2D.x2-y=62.是下列哪个二元一次方程的解( )A.x-y=1B.2x+y=10C.2y-x=2D.-x+3y=1BB课堂练习3.某次知识竞赛共有20道题,规定:每答对一题得5分,每答错一题扣2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则下面所列方程中正确的是( )A.x-y=20B.x+y=20C.5x-2y=60D.5x+2y=605.已知是方程kx-y=2的一个解,则k= _.4.若3xm+2+y=5是关于x,y的二元一次方程,则m= _.-12.5C课堂练习6.已知方程2x-y=3.(1)用含x的代数式表示y;(2)用含y的代数式表示x.(3) 写出方程的两个正整数解.课堂总结1.二元一次方程的概念二元一次方程:含有_______个未知数,且含有未知数的项的次数都是______次的方程叫做二元一次方程.2.二元一次方程的一个解定义:使二元一次方程两边的值相等的__的值,叫做二元一次方程的一个解.两一一对未知数作业布置课本P34 作业题部分谢谢()中小学教育资源网站兼职招聘:https:///recruitment/home/admin浙教版七年级下册数学2.1 教学设计课题 2.1二元一次方程单元第二单元学科数学年级七教材分析方程是我们之前就已经学习过的内容,方程思想将伴随我们整个初中生涯,这个单元进一步学习方程,这节课我们将对二元一次方程进行学习,进一步加深学生对方程的认识,强化学生的方程思想。

二元一次方程ppt课件

二元一次方程ppt课件

04
二元一次方程的扩展知识
二元一次方程与不等式的关系
1 2 3
表达式形式
二元一次方程和不等式在表达式形式上具有相似 性,但不等式中可能包含“<”、“>”等符号 ,而方程中则以等号“=”为主。
解法
二元一次方程的解法通常包括代入法、消元法和 加减消元法等,而解不等式则需要使用区间估计 、数轴标根法等技巧。
二元一次方程
contents
目录
• 二元一次方程的定义 • 二元一次方程的解法 • 二元一次方程的应用 • 二元一次方程的扩展知识 • 总结与回顾
01
二元一次方程的定义
什么是二元一次方程
• 二元一次方程是指包含两个未知数,且未知数的最高次数为 1的方程。
如何定义二元一次方程
• 二元一次方程通常表示为 ax + by = c,其中 a、 b、c 是常数,且 a 和 b 不等于0。
扩展知识
二元一次方程的解法还可以推广到多 元一次方程和线性方程组,是数学中 重要的基础知识。
对学习二元一次方程的建议与指导
建议 1. 理解方程的意义和背景;
2. 熟悉解方程的基本步骤和方法;
对学习二元一次方程的建议与指导
01
3. 通过练习和实例掌握解题技巧 ;
02
4. 培养数学思维和逻辑推理能力 。
二元一次方程在微积分中的应用
微积分基本定理
微积分基本定理是微积分学的基础,它描述了函数改变量 与自变量改变量之间的极限关系。
二元一次方程与微积分
二元一次方程在微积分中有着广泛的应用,例如求解空间 曲线的一般方程、求解平面的一般方程等都需要用到二元 一次方程。
重要性
二元一次方程在微积分中扮演着重要的角色,它是连接初 等数学和高等数学的重要桥梁之一。

《二元一次方程与一次函数》PPT课件讲义

《二元一次方程与一次函数》PPT课件讲义
y 5 y=2x-2
4 3
进而作出 y 1 x 1的图象
2
2
1 P(2,2)
由(2)得 y=2x-2 由此可得 x=0 x=1
y=-2 y=0
进而作出Y=2X-2的图象
-4 -3 -2 -1 O 1 2 3 4 -1
x
y 1 x 1 2
-2 -3
-4
-5
x=2 所以方程组的解为:
y=2
(1)对应关系
二元一次方程与一次函数
(Suitable for teaching courseware and reports)
十七世纪法国
数学家笛卡尔有一次 生病卧床,看见屋顶 上的一只蜘蛛顺着左 右爬行,笛卡尔看到 蜘蛛的“表演”猛的 灵机一动。他想,可 以把蜘蛛看成一个点, 它可以上、下、左、 右运动,能不能知道 蜘蛛的位置用一组数 确定下来呢?
师生互动
在一次函数Y=5-X的图象上任取一个点 (0,5),它的坐标适合方程X+Y=5. (4)以方程X+Y=5的解为坐标的所有的点所组 成的图象与一次函数Y=5-X的图象相同吗 ?
过(0,5) 、(5,0) 两点的直线图象与一次函 数Y=5-X的图象相同.
知识源于悟 益智的“机会”
师:通过以上结论,你能分析研究出二元一次方程与一次 函数图象的关系吗?
生:二元一次方程的解就是一次函数图象的点的 坐标;一次函数图象上的点的坐标就是二元一次 方程的解.
二元一次方程与一次 函数的基本关系
做一做
x+y=5 x=0 y=5
2x-y=1 x=0 y=-1
x+y=5
2x-y=1
1) 在同一直角坐标系中分别作一 次函数Y=5-X和Y=2X-1的图象, 这两个图象有交点吗?

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题

二元一次方程(共25张PPT)

二元一次方程(共25张PPT)

练一练
2.已知二元一次方程4x+my=25 的一个解是 x=4 y=-1
(1)你能把方程变形为用x的代数式 表示y的形式吗?
解: 2x -y=-1 2x
y=1+2x 即 y=2x+1
3.已知方程 2x-y=-1
(2)当x=3时,y= ;
当x=-3时,y=
(2)若x=12,则y=4 。
(3)若有乙种物品8个,则甲种物 品有 5 个。
x 11 8 5 2 y1357
根据表格回答下列问题: (1)这个球员最多投进了多少个三分球? (2)这名球员最多投进了多少个球? (3)如果这名球员投中了10个球,那么他 投中了几个两分球?几个三分球?
根据下列语句,分别设适当的未知数,列出二 元一次方程.
.
(3) 你能写出方程的三组解吗?
例题:七年级(14)班为了奖励优秀学生,花
了60元钱购买了钢笔和笔记本作为奖品.每支 钢笔5元,每本笔记本3元.
如果设买钢笔x支,笔记本y本.
(1)你能列出关于x、y的方程吗? 解:根据题意,得 5x+3y=60
(2)请你写出方程的所有解.
书P107 1
P108 1
小结
本节课你学到了什么知识?
含有两个未知数,且含未知数的项的次数 都是 一次的方程叫做二元一次方程.
使二元一次方程两边的值相等的一对未 知数的值,叫做二元一次方程的一个解.
二元一次方程有无数个解.
P107-108 练一练 2, 本子上
习题10.1 : 2,3,4 评价P57-58 2,3
小明手里拿着一个装有1角与5角硬币的袋子 让小丽猜1角的有几枚、5角的有几枚.
x 10 9 8 7 6 5 4 3 2 1 0

二元一次方程组解法ppt课件

二元一次方程组解法ppt课件

x 1
所以原方程组的解是
y
1
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得:
5x=10
x=2
把x=2代入①,得: y=3
x 2
所以原方程组的解是
y
3
直接加减消元法
3x 5y 21 ① 2x 5y -11 ②
由①+②得: 5x=10
2x-5y=7

2x+3y=-1 ②
4、写出方程组的解
随堂练习: 你解对了吗?
1、用代入消元法解下列方程组

y=2x x=4 x+y=12 y=8
x=y—2-5

x=5 y=15
4x+3y=65
x+y=11
3x-2y=9

x=9 ⑷
x=3
y=2 x-y=7
y=0
x+2y=3
能 力 检 验 解二元一次方程组
(1)
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4y 2.
SUCCESS
THANK YOU
2024/10/21
1
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y
的二元一次方程,求m 、n 的值.
解: 根据已知条件可
列方程组:
2m + n = ①
13m – 2n = ②
由①得:1 n = 1 – ③
by ay
3 3
的解是
x 2
y
1
,则 a b 的值是

7.已知关于x,y方程组
2x 3x
3y 5y

二元一次方程的课件

二元一次方程的课件

03 二元一次方程的应用
代数问题中的应用
代数方程组的求解
二元一次方程是代数方程组的重要组成部分,通过消元法、代入法等方法,可以 求解代数方程组,得出未知数的值。
代数不等式的求解
将代数不等式转化为等式形式,再利用二元一次方程的求解方法,可以求解代数 不等式。
几何问题中的应用
面积和体积的计算
利用二元一次方程表示几何图形,可以方便地计算面积和体 积等几何量。
坐标系中的轨迹问题
在平面直角坐标系中,二元一次方程表示一条直线,通过研 究直线的性质,可以解决一些轨迹问题。
实际生活问题中的应用
购物问题
在购物时,常常需要比较不同商品的 价格和优惠活动,利用二元一次方程 可以建立数学模型,帮助消费者做出 最优选择。
交通问题
在交通领域中,如路线规划、时间安 排等方面的问题,也可以通过建立二 元一次方程进行求解。
详细描述:基础练习题主要针对二元一次方程的基本概念和解题方法进行训练, 包括方程的建立、解的求解以及实际应用等。这些题目难度较低,适合初学者进 行练习,以加深对基础知识的理解和掌握。
提升练习题
总结词:能力提升
详细描述:提升练习题是在基础练习题的基础上,进一步提高解题难度和能力要求。这些题目可能涉 及到更复杂的方程组、更灵活的解题技巧以及更多的实际应用场景。通过这些题目的练习,可以提高 学生的解题能力和思维灵活性。
二元一次方程的课件
汇报人:
2024-01-06
目录
CONTENTS
• 二元一次方程的定义和形式 • 二元一次方程的解法 • 二元一次方程的应用 • 二元一次方程的解的讨论 • 练习与巩固
01 二元一次方程的定义和形 式
二元一次方程的定义

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT
详细描述
代入法的基本步骤是先将一个方程中的变量用另一个方程中 的变量表示出来,然后将其代入另一个方程中,消去一个变 量,得到一个简单的一元一次方程,最后求解这个一元一次 方程即可。
消元法
总结词
通过对方程进行加、减、乘、除等运 算,消去一个变量,得到一个简单的 一元一次方程。
详细描述
消元法的基本步骤是先将两个方程进 行加、减、乘、除等运算,消去一个 变量,得到一个简单的一元一次方程 ,然后求解这个一元一次方程即可。
二元一次方程组的实际应用
应用场景
二元一次方程组在日常生活和生 产中有着广泛的应用,如路程问 题、价格问题、工作效率问题等 。
示例
一个工人加工零件,x小时加工了 y个零件,已知x+y=10, 2x-y=5 ,求该工人加工零件的效率。
02
二元一次方程组的解法
代入法
总结词
通过将一个方程中的变量用另一个方程中的变量表示出来, 从而消去一个变量,得到一个简单的一元一次方程。
详细描述
在距离问题中,我们常常需要计算两地之间的距离、速度和时间等参数。例如,一辆汽车从A地开往B 地,已知速度和时间,需要求出两地之间的距离。通过设立二元一次方程组,我们可以方便地解决这 类问题。
分配问题
总结词
分配问题是二元一次方程组在经济领域的应用,主要涉及到资源的合理分配和最大化利 用。
详细描述
示例
x+y=10, 2x-y=5
二元一次方程组的解法
解法
通过消元法或代入法,将二元一 次方程组转化为一个或两个一元 一次方程,然后求解得到未知数
的值。
消元法
通过加减或代入的方式消去一个未 知数,将二元一次方程组转化为一 元一次方程。

二元一次方程组课件(共31张PPT)

二元一次方程组课件(共31张PPT)

1.二元一次方程及二元一次方程组 篮球联赛中,每场比赛都要分出胜负,每队 胜一场得2分,负一场得1分.某队在10场比 赛中得到16分,那么这个队胜负分别是多少?
问题1 依据问题如何列一元一次方程?
解:设胜x场,则负(10-x)场. 2x+(10-x)=16.
1.二元一次方程及二元一次方程组
篮球联赛中,每场比赛都要分出胜负, 每队胜一场得2分,负一场得1分.如果某队 为了争取较好名次,想在全部10场比赛中 得16分,那么这个队胜负场数应分别是多 少?
含有两个未知数,每个未知数的项的次数 都是1,并且一共有两个方程,像这样的 方程组叫做二元一次方程组.
判断下列方程组哪些是二元一次方程组?
A.
x 2 y 5 3x 1 0 1B.x 3y 0 C.x 4 y 5
x y 0 3x 1 5 D.3y z 0E.2 y 3 0
x 0 1 2 3 4 5 6 7 8 9 10 y 10 9 8 7 6 5 4 3 2 1 0
使二元一次方程两边的值相等的两个未知数的值,叫
做二元一次方程的解。
X Y
2.二元一次方程、二元一次方程组的解
你能告诉 追还问可1以取如哪果些不值考?虑这方些程值表是示有的限实的际吗意?义,大检家验如它何们
相 1:未知数的个数都是2 同 2:含有未知数的项最高次数是1次 点 3:含有未知数的项是整式(即分母不含
有未知数)
➢含有两个未知数,并且所含未知数的项
的次数都是1的方程叫做二元一次方程.
请判断下列各方程中,哪些是二元 一次方程,哪些不是?并说明理由。
(1)2x+5y=10 (2) 2x+y+z=1
y y
8,的解: 10

人教版初一数学 8.8.1 二元一次方程组PPT课件

人教版初一数学 8.8.1  二元一次方程组PPT课件

当堂训练
4.二元一次方程组ቊ2xx++2yy==−22, 的解是Hale Waihona Puke B )A.ቊyx==−22,
B.ቊxy==−22,
C.ቊxy==02,
D.ቊxy==20,
课后作业
1. 教材第90页习题第1,2,3,4题. 2.七彩作业.
通常记作ቊxy==ba., 像ቊx=y=64,这样,二元一次方程组的两个方程的公共 解,叫做二元一次方程组的解.
探究新知
学生活动三【典例精讲】
例1 判别下列各方程组是不是二元一次方程组,并说明理由.
(1)ቊxx−+32yy==−53,; (2)ቊmn+=an=+75;,
(3)ቊ2ppq+=q1=;6, (4)ቊxy−+32==15.,
探究新知
x+y=10, 2x+y=16, 上面两个方程中,每个方程都含有两个未知数( x 和 y ), 并且未知数的指数都是1,像这样的方程叫做二元一次方程. 把两个方程合在一起,写成ቊx2+xy+=y1=01,6.①②
像这样,把两个二元一次方程合在一起,就组成了一个 二元一次方程组.
探究新知
学生活动二【一起探究】
第八章 二元一次方程组
8.1 二元一次方程组
单元内容结构图
学习目标
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
当堂训练
2.下列方程组是不是二元一次方程组?为什么? (1)ቊ3xx+−22yy=3=13, ; 解:不是二元一次方程组,因为方程3x-2y3=3中含y的 项的次数不是1,所以它不是二元一次方程组;

二元一次方程-PPT课件

二元一次方程-PPT课件

设他投中了x个两分球、y个三分球,那么 2x+3y=35-10,

2x+3y=25.
5
请你设计一张表格,列出这名球 员投中的两分球和三分球的各种 可能情况.
根据你所列的表格,回答下列问题: (1)这名球员最多投中了多少个三分球? (2)这名球员最多投中了多少个球? (3)如果这名球员投中了10个球,那么 他投中了几个两分球?几个三分球?
14
变式:把下列方程写成用含y的代数式表 示x的形式: (1)2x+y=20; (2)2x+3y=25
15
小结与回顾
16
当堂反馈
1、二元一次方程2x-y=3中,当x=2时,
y=
;
二元一次方程
x=
;
1 x y 中 1,当y=-2时,
2
x 2
2、已知 则a=
y.
1
是方程2x+ay=5的解,
10
二元一次方程的解
适合二元一次方程的一对未知数 的值,叫做这个二元一次方程的 一个解.
如x=8,y=3就是方程
x 8
2x+3y=25的一个解,记作
y
3
一个二元一次方程有多少个解?
若在上述两个具体情境中呢?
11
例1、下列方程中,哪些是二元一次
方程?不是的说明理由.
(1) x 2 y 1 3
该队赢了x场,输了y场,那么
2x+y=20
哇!太简单了, 赢5场,输十
场.
3
动动脑筋?你能列出 输赢的所有可能情况
吗?
2x+y=20
0 1 2 3 4 5 6 7 8 9 10 20 18 16 14 12 10 8 6 4 2 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则m=
,n=

4.如果方程mx+(n-1)y+2=0是关于x、y的二 元一次方程,求有理数m,n的范围.
5.已知方程 ( k 2 4 ) x 2 ( k 2 ) x ( k 8 ) y k 7 ,当
k=
时,方程为一元一次方程;当
k=
时,方程为二元一次方程。
学以致用
下列各式是二元一次方程的
2a-3b=20
观察它们有什么共同点?
0.5x+0.8y=7.4 2a - 3b=20
含有两个未知数,且含未知 数的项的次数都是. 二元一次方程与同桌交流.
2.它们是二元一次方程吗?
(1) 3-2x =1 不是
(2) x2 y 0 不是
(3)你能写出方程3个解吗?
想一想:你能找到方程3x+2y=10的其 它的解吗?有多少个?
议一议
二元一次方程的解和一元一次方程的解 有什么区别?
一元一次方程的解 二元一次方程的解
一个
无数个
一个未知数的值 一对未知数的值
判断下列各组数是不是方程 2a=3b+20 的解:
(1) a=4 (2) a=5
(3) x y 2y 0 是 3
(4)
y
1 2
x
不是
(5) x 2 1 不是 y
(6) 3 - 2xy =1 不是
选一选
下列各式是二元一次方程的是
.
(1) a+b+c=1 (2) mn=3
(3)4x+ =0
(4)2x=1-3y
1.根据题意列出方程:
(1)买5kg苹果和3kg梨共需23.6元,分 别求苹果和梨的单价.设苹果的单价 为x元/kg,梨的单价为y元/kg;
(2) b=3
b =103
(3) a=100 b=60
你能写一个二元一次方程,使它 的一个解是 x=2
y=3
1.已知 x=-2,是方程2x+3y=5的一个 解, y=a
求a的值.
2.已知方程
x y 5 23
,用关于x的代
数式表示y,并写出方程的三个解.
3.若方程 2x2m 13(n2)yn17是二元一次方程,
c 是( )
A、x2 y 0 C、xy 2y 0
3
BD、、xy2y1x1
2
试 一
把下列各对数代入二元一次方程
试 3x+4y=19
⑴ ⑵ ⑶ x 0
y
1
x 1
y
4
x 5
y
1
哪些能使方程两边的值相等?
已知二元一次方程2x+3y=2。
(1)用含y的代数式表示x;
(2)根据给出的y(x)值,求出对应x(y)的值,填
5x+3y=23.6
使二元一次方程两边的值相等的一 对未知数的值,叫做二元一次方程的 一个解。
你能快速写出方程3x+4y=19 的三个解吗? 你是怎么求出来的?
(1)用关于x的代数式表示y;
(2)你能用关于y的代数式表示x吗?


已知方程3x+2y=10。
(1)用关于x的代数式表示y;
(2)求当x=-2,0,3时,对应的y的值
入表内;
2x+3y=2
x
1
-3
4
1 2
0
y0
2 -2
1
2 3
(3)写出方程的5个解
1.如果是花了7元4角,买了票 额为5角和8角的邮票若干张, 问这两种面额的邮票各买了 多少张?
思考
这个问题中,有几个未知数?
能列一元一次方程求解吗?
如果设需要票额为5角的邮票x张,8角 的邮票y张,你能列出方程吗?
0.5x+0.8y=7.4
(2)在高速公路上,一辆轿车行驶2时的路 程比一辆卡车行驶3时的路程还多20千米.如 果设轿车的速度是a千米/时,卡车的速度是b 千米/时,你能列出怎样的方程?
相关文档
最新文档