④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件.
其中真命题的序号为 .
13. 已知命题:p R x ∈∃,0122
≤++ax ax .若命题p 是假命题,则实数a 的取值范围是 .
三、解答题
14. 已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m
范围。
15.已知命题p :方程2220a x ax +-=在[-1,1]上有解; 命题q :只有一个实数x 满足不等式
2220.x ax a ++≤若命题"",p q ∨是假命题 求实数a 的取值范围.
16 (1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?
(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?
一、选择题
B A
C C A
D D B
8曲线与y 轴焦点在(0,1),所以只要开口向下就能确定有负根——不管对称轴在x 正半轴还是负半轴。 但是 至少有一个负根不能推出开口向下即a<0 因为有可能对称轴在x 负半轴且开口向上,那样有两个负根。综上 a>0 可以推出 至少有一个负根,但是至少有一个负根不能的推出a>0. 所以答案是:充分不必要条件
二、填空题
9. (1)01,2≥+-∈∀x x R x (2)∃x ∈R ,x 2-x +3≤0 (3)∃x ∈{x|-2=3
(4) “∃x ,y ∈R ,有x ²+ y ² < 0” (5)若x 23≤-≥x 且,则x 2
+x-60≤ (6) ∀a ,b ∈R ,如果ab ≤0,则a ≤0 )否定形式:△ABC 中,若∠C=90°,则∠A 、∠B 不都是锐角”
否命题:△ABC 中,若∠C 90°,则∠A 、∠B 不都是锐角”
10. ①②③④
11.(1)既不充分也不必要条件(2)必要不充分条件(3) 充分不必要条件(4) 充分不必要条件 12①②.③ 13. [)0,1
三、解答题
14. 解:化简条件得A={1,2},A 是B 的必要不充分条件,即A ∩B=B ⇔B ⊆A
根据集合中元素个数集合B 分类讨论,B=φ,B={1}或{2},B={1,2}
当B=φ时,△=m 2-8<0∴ 22m 22<<-
当B={1}或{2}时,⎩⎨
⎧=+-=+-=∆02m 2402m 10或,m 无解 当B={1,2}时,⎩⎨
⎧=⨯=+221m 21∴ m=3综上所述,m=3或22m 22<<- 15. 解:由2220a x ax +-=,得(2)(1)0ax ax +-=210,.a x x a a
≠∴=-=或 []211,1,111x a a a
∈∴≤≤∴≥或,. “只有一个实数x 满足2220.x ax a ++≤” 即为抛物线222y x ax a =++与x 轴只有一个交点,
2480a a ∴∆=-= 0a a ∴=或=2.∴命题
p q ∨“”为真命题时, 1a ≥或0a =. 命题p q ∨“”为假命题,∴实数a 的取值范围是()()-1,01⋃0,
16 (1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?
(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?
解:(1)欲使得2x +m <0是x 2-2x -3>0的充分条件,则只要⎩
⎨⎧⎭⎬⎫x |x <-m 2⊆{x |x <-1或x >3},则只要- m 2
≤-1,即m ≥2,故存在实数m ≥2,使2x +m <0是x 2-2x -3>0的充分条件. (2)欲使2x +m <0是x 2-2x -3>0的必要条件,则只要⎩⎨⎧⎭⎬⎫
x |x <-m 2⊇{x |x <-1或x >3},这是不可能的,故不存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件.