锅炉整体热力计算和壁温计算
锅炉热效率计算
一、锅炉热效率计算10.1 正平衡效率计算10.1.1输入热量计算公式:Qr=Qnet,v,ar+Qwl+Qrx+Qzy式中: Qr__——输入热量;Qnet,v,ar ——燃料收到基低位发热量;Qwl ——加热燃料或外热量;Qrx——燃料物理热;Qzy——自用蒸汽带入热量。
在计算时,一般以燃料收到基低位发热量作为输入热量。
如有外来热量、自用蒸汽或燃料经过加热(例:重油)等,此时应加上另外几个热量。
10.1.2饱和蒸汽锅炉正平衡效率计算公式:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);B——燃料消耗量;Qr_——输入热量。
10.1.3过热蒸汽锅炉正平衡效率计算公式:a. 测量给水流量时:式中:η1——锅炉正平衡效率;Dgs——给水流量;hgq——过热蒸汽焓;hg——给水焓;γ——汽化潜热;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。
b. 测量过热蒸汽流量时:式中:η1——锅炉正平衡效率;Dsc——输出蒸汽量;Gq——蒸汽取样量;hgq——过热蒸汽焓;hgs——给水焓;Dzy——自用蒸汽量;hzy——自用蒸汽焓;hbq——饱和蒸汽焓;γ——汽化潜热;ω——蒸汽湿度;hbq——饱和蒸汽焓;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。
10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式式中:η1——锅炉正平衡效率;G——循环水(油)量;hcs——出水(油)焓;hjs——进水(油)焓;B——燃料消耗量;Qr——输入热量。
10.1.5电加热锅炉正平衡效率计算公式10.1.5.1电加热锅炉输-出饱和蒸汽时公式为:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);N——耗电量。
锅炉热力计算参数符号
锅炉热力计算参数符号D------- 锅炉的额定蒸发量(t/h)edT gs------- 给水温度(℃)P gs------- 出口蒸汽压力(绝对压力MPa)t lk---- 冷空气温度(℃)α------- 过量空气系数ρ----- 排污率(%)h0CO2------ CO2的显焓(1atm,25℃为参考状态)(KJ/mol)h0H20----- H2O的显焓(1atm,25℃为参考状态)(KJ/Nm3)h0O2------ O2的显焓(1atm,25℃为参考状态)(KJ/mol)h0N2------ N2的显焓(1atm,25℃为参考状态)(KJ/mol)H CO2------ 燃烧1Nm3DME生成的CO2的焓(KJ/Nm3)H H20------ 燃烧1Nm3DME生成的H2O的焓(KJ/Nm3)H O2------- 燃烧1Nm3DME生成的O2的焓(KJ/Nm3)H N2------ 燃烧1Nm3DME生成的N2的焓(KJ/Nm3)I yx-------- 燃烧1Nm3DME生成的烟气焓(KJ/mol)h0f,DME ------ DME生成热kJ/molC p,DME ----- DME的比热kJ/mol·KQ xr ------ DME的低位发热量KJ/Nm3V0 - ----- 理论空气量m3/Nm3V ------ 实际空气量m3/Nm3V O2------ 实际O2量m3/Nm3V N2 ----- 实际N2量m3/Nm3V CO2 -------实际CO2量m3/Nm3V H2O ----- 实际H2O量m3/Nm3V r------- 实际烟气量m3/Nm3r RO2 ------- RO2的容积份额r H2O ----- H2O的容积份额r n---------三原子气体容积份额三、热平衡参数及计算T lk ------- 冷空气温度℃C p,B-------冷空气比热KJ/mol·KI0B------冷空气理论热焓(以25℃为参考)KJ/Nm3T yx-----排烟温度℃排烟温度>饱和蒸汽温度,继续计算I yx------排烟热焓KJ/Nm3Q B,BH-----冷空气携带的热量KJ/Nm3 tτл------燃料温度℃iτл-------燃料的物理显热KJ/Nm3Q pp------进入锅炉机组的热量KJ/Nm3 q2--- -----排烟热损失%q3-------气体不完全燃烧热损失%q4-------固体不完全燃烧热损失%q5------散热损失%∑q------锅炉总热损失 %ηκ,a------锅炉的效率%φ------保热系数iп.B-----给水焓KJ/Kgiκип------饱和水焓KJ/Kgiп.п------饱和蒸汽焓 KJ/KgQκ,a-----锅炉有效利用热KJ/hB ----------总燃料消耗量Nm3/hB p----------计算燃料消耗量Nm3/h四、部件计算参数(一)、炉胆燃烧室d-------燃烧室直径mL------燃烧室长度md1-----波纹炉胆直径mL1-----波纹炉胆长度mh-----波纹炉胆波纹高度mVт------燃烧室容积 m3F------炉壁面积m2s-------有效辐射层厚度mHл-------辐射受热面积m2M--- -----火焰中心位置系数Q T-----燃烧室入炉热量KJ/Nm3T a------理论燃烧温度Kt"т------燃烧室出口烟气温度℃I"т------燃烧室出口烟气焓 KJ/Nm3V ccp------烟气平均热容量KJ/Nm3·K ψ-------水冷壁的热有效系数ψcp-------热有效系数的平均值△P-------炉胆内表压力PaP------炉胆内燃烧介质压力PaPп--------三原子气体总分压公斤力/cm2k-------三原子气体辐射减弱系数(=kг*rп)1/米·公斤力/cm2C p/H p------碳氢含量的比值K c-------炭黑粒子的辐射减弱系数1/米·公斤力/cm2αг-----三原子气体黑度αcв-----发光火焰黑度q v-----炉膛容积热负荷大卡/小时·米3m-------平均系数αφ------火焰的有效黑度αт------炉膛黑度t"т-------炉胆出口烟气温度(公式一)℃t"т-------炉胆出口烟气温度(公式二)℃Qл-------燃烧室辐射吸热量KJ/Nm3q f-------炉内传热过程的热流密度W/m2tφ-------炉内介质有效温度(公式一)℃tφ--------炉内介质有效温度(公式二)℃tφ-------炉内介质有效温度(公式三)℃q-----沸腾热流密度W/m2g------重力加速度m/s2c pl-------饱和水的比定压热容 J/kg·Kr------汽化潜热J/kgP rl-------饱和水的普朗特数ηl-------饱和水的动力粘度Pa·sρl-------饱和水密度kg/m3ρv-------饱和蒸汽密度kg/m3σ--------水—水蒸气界面的表面张力N/m △t------ 壁面过热度℃t’w,т-------炉胆外壁温度℃δ--------Q-234板材厚度mλ--------Q-334的导热系数w/m·Kt w,т------炉胆内侧平均壁温℃αW------炉胆内壁黑度(二)、第一锅炉管束N a --------烟管根数D a--------烟管外径mΔa--------烟管壁厚mL--------管子长度mp-------螺纹管节距mε----------螺纹管槽深mF--------烟气流通截面积m2H -------- 管束传热面积m2D---------当量直径mt'θ,1-------管束进口烟温℃I'θ,1-------管束进口烟焓KJ/Nm3t"θ,1-------管束出口烟温℃I"θ,1-------管束出口烟焓KJ/Nm3Q rp--------烟气侧放热量KJ/Nm3△t---------平均温压℃t pj--------烟气计算温度℃wг----------烟气平均流速m/sμ--------烟气的动力粘性系数Pa·sν--------烟气的运动粘性系数m2/sλ--------烟气的导热系数W/m·KP r-------烟气的普朗特数Re--------烟气雷诺数Cl--------烟管入口段效应修正系数ακ------对流传热系数ακ(公式一)W/m2·K ακ------对流传热系数ακ(公式二)W/m2·K V-------单根管子的容积m3F cτ-------单根管子的外界面积m2s------有效辐射层厚度mtэ--------管子积灰层表面温度℃Pп-------三原子气体的总分压公斤力/cm2k ----------三原子气体辐射减弱系数(=kг*rп) 1/米·公斤力/cm2α-------烟气黑度αэ-------已污染的管壁的黑度αл--------烟气辐射放热系数W/m2·Kψ--------热有效系数k-------传热系数W/m2·KQ--------传热量KJ/Nm3(二)、第二锅炉管束N a-------烟管根数D a--------烟管外径mδa---------烟管壁厚mL-------管子长度mp--------螺纹管节距mε--------螺纹管槽深mF-------烟气流通截面积m2H------管束传热面积m2D--------当量直径mt'θ,1-------管束进口烟温℃I'θ,1--------管束进口烟焓KJ/Nm3t"θ,1--------管束出口烟温℃I"θ,1---------管束出口烟焓KJ/Nm3Q rp----------烟气侧放热量KJ/Nm3△t---------平均温压℃T pj---------烟气计算温度℃wг------烟气平均流速m/sμ--------烟气的动力粘性系数Pa·sν--------- 烟气的运动粘性系数m2/sλ-------烟气的导热系数W/m·KP r-------烟气的普朗特数R e--------烟气雷诺数C l---------烟管入口段效应修正系数ακ--------对流传热系数ακ(公式一)W/m2·K ακ--------对流传热系数ακ(公式二)W/m2·KV---------单根管子的容积m3F cτ------单根管子的外界面积m2s--------有效辐射层厚度mtэ--------管子积灰层表面温度℃Pп--------三原子气体的总分压公斤力/cm2k--------三原子气体辐射减弱系数(=kг*rп)1/米·公斤力/cm2α--------烟气黑度αэ-------已污染的管壁的黑度αл-------烟气辐射放热系数W/m2·Kψ------热有效系数k-------传热系数W/m2·KQ------传热量KJ/Nm3理论空气量的计算1m3标准状况下气体燃料按燃烧反应计量方程式完全燃烧所需的空气量(指干空气)称为气体燃料的理论空气量(m3/m3)。
哈锅650℃高效超超临界锅炉技术介绍
技术预可行性研究》,深 度 参 与 6 5 0 1 材料解决方
案 、锅炉关键技术研究、机组热力性能分析、机组
系统集成优化等工作。 2017 ~ 2 0 1 8 年 ,哈锅承担中国电力工程顾问
集 团 有 限 公 司 等 级 660MW高效超超临界
燃 煤 发 电 技 术 研 究 》,哈 锅 参 与 完 成 660MW
1)
掀 开 锯 夹 具 压 板 ,将 两 端 已 车 好 螺 纹 的 直连 接 板 ,焊 接 直 管 和 斜 管 为 “Y ”型 接 头 。
管放在“V”型槽 中 ,此时应将直管的下端紧贴钜 4 结束语
炉 膛 条 件 下 ,主 汽 流 量 降 低 ,水 冷 壁 吸 热 比 例 相 对
增 加 ,受 制 于 现 场 工 艺 条 件 ,水冷壁可选材料有 限 ,T23/T24/T9 1 新材料的使用带来的焊接、热处
理等工艺难题。
3 ) 高温受热面壁温上升,高温部件出口管接
头不平衡蒸汽温度已达到670T
炉内受
掌握了 650t :~700T;重点材料 HR6W、617B 等大口径管焊接工艺,可 用 于 6 5 0 1 〜700丈锅炉 集箱和管道。
5 下一步工作安排
研究现有成熟铁素体耐热应用6 5 0 1 集箱和 管 道 可 行 性 ,以 及 镍 基 材 料 应 用 于 集 箱 、管道的可 加 工 性 、焊 接 性 等 。
道材料的选取研究。
4)
水冷壁候选材料工艺性能和母材性能优
化 ,研究现有成熟铁素体耐热应用650丈集箱和管
道可行性,以及镍基材料应用于集箱、管道的可加
图 2 650T 高效超超临界二次再热锅炉技术方案
工性、焊接性等,选择出适用于650T 机组的材料。
第9章 锅炉热力计算
(6) 连续排污量; (7) 过热蒸汽及再热蒸汽的调温方式,当用喷水减温时,应 给出减温水的压力和温度;当采用表面式减温器时,应给出 减温水的连接系统;不论哪种减温方式,都应给出减温器在 过热蒸汽系统中的位置; (8) 当采用煤粉燃烧方式时,应给出煤粉制备系统的计算数 据,包括:煤粉空气混合物的总量、一次空气量、为干燥燃 料而抽取的烟气量、煤粉制备系统的漏风量等; (9) 锅炉使用地的气象条件和海拔高度。 在具备了上述数据资料时,方能正确进行锅炉设计传热性 能计算。当进行设计传热性能计算时,锅炉的排烟温度、热 风温度都是指定的,或者按照设计的具体条件,根据经验或 有关推荐选用适当的数值。
校核计算:根据已有各受热面结构参数及传热面积 和热力系统的型式,在锅炉参数,燃料种类或局部 受热面积发生变化时,通过热力计算确定各个受热 面交界处的水温、汽温、烟温及空气温度的值,确 定锅炉热效率和燃料消耗量等。 校核计算的可能情形: ① 锅炉已经存在、已经要安装或已经安装好,需更 换燃料,想知道将达到何值,能否保证过热蒸汽温 度,受热面要不要修改等。 ② 接到定货后,发现燃料与设计的某型锅炉相近 (容量参数相同),需判断能否用这一型式锅炉, 在设计上要不要修改。
第9章 锅炉热力计算
9.1 锅炉热力计算的类型和方法 9.1.1 热力计算的任务和类型
热力计算
已 知 条 件 和 计 算 目 的 不 同
设计计算 校核计算
设计计算:在给定的给水温度和燃料特性的前 提下确定保证达到额定蒸发量、选定的经济指 标及给定的蒸汽参数所必需的各受热面的结构 尺寸,并为选择辅助设备和进行其它计算提供 原始资料。 设计计算是设计新锅炉采用的方法 设计一个好的锅炉,须遵循:实践—认识— 再实践—再认识。
第七章锅炉本体的热力计算
1.炉膛容积Vl
炉子火床表面到炉膛出口烟窗之间 的容积。 底部是火床表面;四周以及顶部为 水冷壁中心线表面(如水冷壁覆盖 耐火材料,则为耐火材料向火表 面) ;没有布置水冷壁的部分为炉 墙内表面 ;炉膛出口界面为出口烟 窗第一排管子中心线界面。 炉排上的燃料层厚度一般取 为150毫米。 如果装有老鹰铁,则炉排长 度计算到两者的接触点的垂 直平面,如没老鹰铁,则到 炉排末端。
Vy—对应αl''的每kg燃料燃烧后的烟气容积,Nm3/kg cpj—烟气从0到ll温度范围内的平均容积比热,kJ/Nm3· ℃。
五、火焰平均温度及水冷壁管外积灰层表面温度
事实上,燃烧是一个动态过程, 烟气温度的变化取决于燃烧放热 与辐射换热之间的平衡。
Q f 0 al H f Th4 Tb4
(7-21)
或查图
h
Aar a fh 100G y
* * k kq k g kq rq kh h C
ah 1 e
kp
2. 燃用气体或液体燃料时
分发光部分和不发光部分的黑度合成.
四、炉膛有效放热量与理论燃烧温度
炉膛有效放热量,也称入炉热量,是相应于1kg真正参与燃烧的 燃料所进入炉膛的热量,它计及了随它一起加进炉膛的其他 热量,即
解决关键
K
1 1
1
1
K
1
2
h 1 1 h 2
1
1
h 1 1 1 h 2
工业试验解决缺Βιβλιοθήκη 灰污系数值另外方法:有效系数
燃用固体燃料的错列管束,在烟气横向冲刷时,其灰污 系数与烟气的流速、管子的节距和直径以及烟气中灰粒 的分散度等因素有关。
锅炉本体热力计算11
B’—每秒燃料消耗量,kg/s。
5
七、锅炉本体热力计算
6.2 对流传热面传热计算
6.2.1基本方程式
以燃烧1kg燃料为计算基础: KHt kJ / kg 传热方程式: Qcr Bj ' 热平衡方程式: 烟气侧: Qrp (I 'I "I k0 ) kJ / kg 工质侧: Q D' (i"i' ) Q kJ / kg
式中
Fbi、χi —为某一区段的炉壁面积和其相应的有效角系数; Hff —对于覆盖有耐火层的水冷壁其辐射受热面面积; Fl—炉膛周界总面积,m2; R—火床面积,m2。 0
七、锅炉本体热力计算
7.1.2炉膛传热的基本方程及炉膛黑度
火焰与炉壁之间的辐射换热量:
Qf Qhy Qby 0al H f (Th4 Tb4 ) (四次方温差公式)
炉膛系统黑度:室燃炉 层燃炉
al
al
1 1 ab (1 ah 1)
1 (1 ah )(1 ) 1 ab 1 (1 ah )(1 )
火床与炉壁面积之比: R Fbz
式中 Qhy —火焰有效辐射; Qby —炉壁有效辐射; ab —水冷壁的表面黑度,可取0.8; ah —火焰黑度。 Th —火焰的平均温度,K;T b —水冷壁表面温度,K。
3
七、锅炉本体热力计算
6.1.5火焰平均温度及水冷壁管外积灰层表面温度
4 4(1n ) "4 n 火焰平均温度:Th Tll Tl
K K
n——燃烧工况对炉膛内火焰温度场的影响。
锅炉热力计算方法
锅炉热力计算方法一、热力计算的任务开发一台新型锅炉产品时首先要做好设计工作,设计中要对锅炉的性能、结构、经济性和可靠性等各方面进行各种计算,以有定量的了解。
这些计算包括锅炉热力计算、水循环或水动力计算、空气动力计算、烟气阻力计算、管子金属壁温计算、强度计算、炉墙和构架计算等,而热力计算则是这些计算中最主要和基础的计算,并为其他计算提供所需的数据资料。
设计新锅炉时的热力计算称为设计热力计算(也称设计计算)。
其任务是在给定的给水温度和燃料特性的前提下,为达到额定蒸发量和蒸汽参数以及选定的经济指标,计算、确定锅炉机组的炉膛尺寸及各个受热面的结构和尺寸,并确定锅炉的热效率和燃料消耗量、各受热面进出口处的烟温和工质温度、吸热量以及烟速和工质流速等,为选择辅机设备和进行上述其他各项计算提供原始资料。
设计计算是在锅炉的额定负荷下进行的,为了预计锅炉在其他负荷下的工作特性,以及锅炉在燃用非设计燃料时的热力特性,都要重新进行热力计算,称之为校核热力计算(也称校核计算)。
其任务是在已定的锅炉结构和受热面积条件下,对锅炉负荷、燃料、运行工况或某些结构变化时,求取各受热面进出口处的工质温度和速度、烟气温度和速度、锅炉热效率、燃料消耗量、空气和烟气量等。
目的是为了得到锅炉在非设计工况条件下运行的经济指标,为锅炉结构改进、选择辅机设备和其他各项计算提供原始数据和资料。
设计计算和校核计算所用的计算方法基本相同,即计算时所依据的传热原理、计算公式和图表都是相同的,其差别仅仅是计算任务和所求数据不同。
但做校核计算时,不仅烟气的中间温度和内部介质温度是未知数,而且排烟温度、预热空气温度,甚至有时连过热蒸汽出口温度都是未知数,因此,校核计算时要预先假定这些未知数,然后用逐步逼近法去最后确定之。
二、热力计算的顺序设计计算和校核计算的目的不同,而在进行具体计算时都采用校核计算的方法。
即使对新锅炉做设计计算时,也是预先布置好受热面,然后用校核计算的方法计算。
锅炉整体热力计算和壁温计算
一、锅炉整体热力计算1 计算方法本报告根据原苏联73年颁布的适合于大容量《电站锅炉机组热力计算标准方法》,进行了锅炉机组的热力计算和中温再热器及低温过热器出口垂直段管壁金属温度计算,计算报告中所选取的有关计算参数和计算式均出自该标准的相应章节。
对所基于的计算方法的主要内容简述如下。
锅炉的整体热力计算为一典型的校核热力计算,各个受热面及锅炉整体的热力计算均需经过反复迭代和校核过程,全部热力计算过程通过计算机FORTRAN5.0高级语言编程计算完成。
管壁温度计算分别通过EXCEL 和FORTRAN5.0完成。
1.1锅炉炉膛热力计算所采用的计算炉膛出口烟气温度的关联式为:式中,M —考虑燃烧条件的影响,与炉内火焰最高温度点的位置密切相关,因此,取决于燃烧器的布置形式,运行的方式和燃烧的煤种; T ll —燃煤的理论燃烧温度,K ; Bj —锅炉的计算燃煤量;kg/h 。
1.2锅炉对流受热面传热计算的基本方程为传热方程与热平衡方程除炉膛以外的其它受热面的热力校核计算均基于传热方程和工质及烟气侧的热量平衡方程。
计算对流受热面的传热量Q c 的传热方程式为:式中,CV B T F M T cpjj a ︒--+ψ⨯=2731)1067.5(6.031111111"11ϕϑKgKJ Bjt KH Q c /∆=H —受热面面积;⊿t —冷、热流体间的温压, 热平衡方程为:既:烟气放出的热量等于蒸汽、水或空气吸收的热量。
烟气侧放热量为:工质吸热量按下列各式分别计算。
a .屏式过热器及对流过热器,扣除来自炉膛的辐射吸热量Q fb .布置在尾部烟道中的过热器、再热器、省煤器及直流锅炉的过渡区,按下式计算:2 计算煤种与工况2.1 计算煤质表1 设计煤质数据表(应用基)2.2 计算工况本报告根据委托合同书的计算要求,分别计算了两种不同的工况。
计算工况一 —— 设计工况计算(100%负荷)根据表1中的设计煤质数据,各设计和运行参数均按《标准》推荐的数据选取。
过热器运行问题-热偏差及壁温计算备课讲稿
过热器运行问题-热偏差及壁温计算收集于网络,如有侵权请联系管理员删除第二节过热器壁温计算锅炉过热器、再热器爆管是造成火电机组非正常停机的重要原因之一,严重影响了火电机组的安全、经济运行,而且过热器、再热器管的失效在大型电站中具有一定的普遍性。
过热器的失效类型主要有短期超温、长期超温、氧化减薄、高温腐蚀等,诸多失效形式均与过热器壁温状况有着直接或间接的关系。
对于工作在高温状态下的过热器、再热器而言,控制其管壁超温是运行中的首要任务。
一、温度计算公式过热器和再热器受热面管子能长期安全工作的首要条件是管壁温度不能超过金属最高允许温度。
过热器和再热器管壁平均温度的计算公式为:max q t t t gz g b β112式中b t —管壁平均温度,o C ;gz t —管内工质的温度,o C ;gz t —考虑管间工质温度偏离平均值的偏差,o C ;—热量均流系数;β—管子外径与内径之比;m ax q —热负荷最大管排的管外最大热流密度,kw/m 2;2α—管子内壁与工质间的放热系数,kw/m 2.o C ;δ—管壁厚度,m ;λ—管壁金属的导热系数,kw/m..o C 。
二、壁温影响因素(1)工质温度:过热器和再热器任何部位的管壁超温都会威胁到整台机组的安全,为了使整台机组的过热器、再热器壁温不超温,运行中整体汽温的保持是非常重要的。
除此之外,各平列出口的工质温度差别越小对过热器、再热器的壁温安全越有利;(2)热偏差:壁温最高的位置是热偏差最大的位置。
当过热器、再热器温度处于正常水平时,但整个区域存在诸多不均匀因素,也会造成过热器、再热器局部壁温过高,影响过热器、再热器的安全性;第二节过热器热偏差一、热偏差概念从上式可,管内工质温度和受热面热负荷越高,管壁温度越高;工质放热系数越高,管壁温度越低。
由于过热器和再热器中工质的温度高,受热面的热负荷高,而蒸汽的放热系数较小,因此过热器和再热器是锅炉受热面中金属工作温度最高、工作条件最差的受热面,管壁温度接近管子钢材的最高允许温度,必须避免个别管子由于设计不良或运行不当而超温损坏。
锅炉受热面传热及计算
Q
Bj
Ql
I
'' l
—保温系数, 1 q5 q5
B j —计算燃料消耗量 若烟气在Tll 和Tl" 温度之间的比热容量,
可以用某一平均值VCPj 表示,最后得到:
Q B jVC pj Tll Tl''
2.辐射换热方程式 ① 直接计算辐射换热量,Stephan-Boltzmann 把火焰和炉壁看成两个无限大的平行平面,则
Q axt Fl 0 Th4y Tb4
axt
—系统黑度 ,
axt
1
1 1 1
ahy ab
Thy , Tb 火焰炉壁的平均温度
F ahy , ab —火焰炉壁的黑度; l —炉壁面积
② 根据有效辐射计算换热量 如果火焰对炉壁的有效辐射为 q yx1 ,炉壁对火焰 的有效辐射为 q yx2 ,则单位面积上火焰和炉壁间的 换热量为 q yx1 q yx2 。该热量与火焰对炉壁的有效辐
③火焰与烟气温度在其行程上变化剧烈 对于一般的煤粉炉
原因: 火焰根部,燃料燃烧生成 的热量大于辐射传热量, 火焰温度升高。 火焰继续上升,可燃物逐 渐燃烬,燃烧生成的热量 小于辐射传热量,因而, 火焰温度下降。 于是,存在一点在该点火 焰温度最高,称该点火焰 中心。
④火焰在炉膛内的换热是一种容积辐射。 辐射换热量与整个炉膛的形状和尺寸等有 关。容积越大,炉内换热器量越多,炉膛 出口烟气温度越低。反之炉膛内换热量越 小,炉膛出口烟气温度越高。 ⑤运行因素影响炉内传热过程,例如,运 行过程中,污染发生,污染后的受热面表 面温度升高,导致炉膛换热量降低。
二维模型:适用于轴对称的圆柱型炉膛。
WGZ670/13.7-7型锅炉对流受热面壁温计算及安全性分析
第 4期
阎维平 ,等 :WG 6 0 1 . —7型锅炉对 流受 热面壁温计算及安全性 分析 Z 7/37
4 3
将采 用 低 温 再 热 器 面积 增 加 60m 0 2及 减 少 卫 燃 带 的方法 对锅 炉进 行改 造 ,本 文对 拟 改 造后 各 工 况进 行详 细 的壁温 计算 。
如图 1所 示 ,将 L】 L 与 2两 直 管 段 分 别 平 均分 为 4段 ,L 分 为2段 ;图 2中 ,也 将 L】 3 与 L 两直 管段 分别 平均 分 为 4段 。对 这 l 分 别 0段 进 行 热负荷 计 算 ,以计 算各 点壁 温 ,最 后 比较 得 出管 壁最 高点 温度 。 在进行 壁 温计算 时 所 必需 的条 件包 括 :管 组
随着我 国 电 力 的发 展 和 火 电机 组 的大 型 化 , 大容量 锅炉 超温爆 管 事故 经常 发生 。在大 容 量 电 站锅 炉 中 ,过热 器和 再 热器 的管 壁 温度 非 常 接近 钢材 所受 应力 水平 下 的容许 温 度 。如 何对 管 壁温
度进 行 准确计 算是 目前 锅炉 设计 及 事故 改造 中 的
影 响 ;制造 工艺 、安装 及 检修 工 艺 的影 响 。 由此
看 出 ,设计原 因 是 造 成 超 温 爆 管 的 主 要 原 因之
一
般 是 同一管 组 中热力 、水 力 最 不利 条 件 的局部
最大 壁 温 。 一 般 可 以 认 为最 大 热 负荷 管 的位 置
。
许 多 电厂 在发 现过 热器 、再 热 器超 温 爆 管后
低温再热器壁温进行 了计算 ,并对结果进行 了对 比分 析 ,验证其 改造的 可行 性。对锅 炉的运行 具有 重
浅谈有关锅炉的校核计算
浅谈有关锅炉的校核计算作者:陈文远来源:《科技创新导报》 2011年第14期陈文远(河北华信锅炉集团有限公司河北高碑店 074000)摘要:为了方便锅炉设计的计算,在这里浅谈了有关锅炉校核计算的事项,从煤的特性到锅炉的设计结构和外界等综合因素校锅炉参数。
关键词:锅炉校核计算;参数;因素;综合中图分类号:TK225 文献标识码:A 文章编号:1674-098X(2011)05(b)-0000-001引言锅炉机组的热力计算,一般都从燃料的燃烧和热平衡计算开始,然后按烟气流向欧陆机组的各个受热面(炉膛、过热器等等)进行计算,锅炉热力计算分为设计计算和校核计算,两者计算方法差不多,其区别在于计算任务和所求的数据不同。
校核计算的任务是在给定的锅炉负荷和燃料特性的前提下,按锅炉机组已有的结构和尺寸,去确定各个受热面交界出的水温、汽温、空气和烟气温度、锅炉热效率、燃料消耗量以及空气和烟气的流量和流速。
进行校核计算是为了估计锅炉机组按指定燃料运行的经济指标,寻求必需的改进锅炉结构的措施,选择辅助设备以及空气动力、水动力、壁温和强度等计算提供原始资料。
2 概述对锅炉机组做校核计算时,不仅烟气的中间温度是未知数,而且排烟温度和热空气温度,有是连过热蒸汽的温度也是未知数。
因此在计算时,上述温度需先假定,然后用渐进法去确定,所谓逐渐接近法就是当一个参数未知而用已知量直接求解又条件不足时,可以先假设一个目标参数的值,将其带入进行运算。
并求出另一参数的值。
然后用求出的参数值对目标参量进行校核。
如果误差合格,则假设值便可作为问题的解,而如果校核不合格,则应把进行校核时得到的目标参数值作为已知,重新代入计算,直到校核误差达到要求为止。
根据锅炉基本结构和燃料特性(收到基、挥发分、灰熔点特性、可磨度、低位发热量),锅炉设计参数有锅炉额定蒸发量、过热蒸汽参数、汽包蒸汽压力、给水参数、排污率、排烟温度、与热空气温度、冷空气温度、空气中含水蒸气量。
第七章锅炉本体的热力计算
第一节 炉膛传热计算
在炉膛内火焰与管内介质的换热主要依靠辐射换热,一 般将对流换热忽略。计算辐射换热的公式是斯蒂芬-波 尔茨曼定律。 我们主要以层燃炉的传热计算为主。
要计算的问题: 确定炉膛出口烟温? 炉膛换热量?
炉膛布置的水冷壁管数量是否合适?
一、炉膛的几何特性
包括炉膛容积、炉膛周界面积、有效辐射面积等等
六、炉膛出口烟温
炉膛出口烟温一般指防渣管前,进对流管束时的烟气温度。
七、炉膛换热计算
对每kg计算燃料而言
从炉膛烟侧热平衡公式可得:
Qf
qf
0 al H f
Bj
Hf
Th4
Tb4
kJ / kg
Q f Ql Il Vy c pj Tll Tl kJ / kg
1
室燃炉炉膛的系统黑度:
al
1 1 ab 1 ah 1
层燃炉而言,用 ah 1 ah 层燃炉炉膛的系统黑度:
al 1 1 1 1 ab ah 1 ah
代替上式中的ah
1 1 ah 1 1 ab 1 1 ah 1
3.有效辐射受热面积Hf
炉膛内换热是借辐射受热面即水冷壁管辐射 来完成(如图)。但水冷壁的辐射受热面积并 不等于水冷壁的表面积,水冷壁管边靠炉墙 布置,只有向火面直接受到炉内火焰的辐射, 而其背火面只受到炉墙反射辐射。 设火焰向炉墙总的投射热量为Qhy,而一次投 落到管子壁面上的热量为Q′,则能量投射的 分额(即传热学中的辐射角系数)为:
火焰本身辐射:
Qh 0 ah FbzTh4
对比Qf 的表达式,可以得到炉膛的系统黑度为:
锅炉受热面金属壁温计算
2t 1 t 1 2t 0
r 2 r r r 2 2
边界条件为:
r
dw 2
,
t r
q
r
dn 2
, t r
2
t tgz
8
壁温计算基本公式的推导
利用分离变量方法解之得:
t
tgz
G 2
Gdw ln 2r dnGn 2 dn n1 2n
qrj, trj
假设热负荷沿管子圆周分布状况如图所示。 假设另外有一热负荷沿圆周均匀分布的情况,其热负荷值等于
qw,max,此时θ=0 处的壁温容易求出。 设法将这两种情况在θ=0 处的壁温联系起来。
10
讨论沿管壁周向热负荷最大处的壁温
Qw,max均匀加热,全部径向传递时, qrj
rwqw,max r
计算方法 受热面种类 亚临界锅炉蒸发受热面
校核线工质平均温度 tpj的计算方法
取工质平均温度为该压力 下的饱和温度
亚临界锅炉其他受热面和 根据计算截面处的工质平
超临界锅炉所有受热面
均焓和压力确定
19
辐射受热面管组中的工质平均焓增计算
• 从水冷壁计算管组进口到计算截面区段中工质的 平均焓增计算式为:
17
壁温计算基本公式的推导
• 鳍根温度也是圆管上相应位置的温度,根据前 述圆管外壁温度计算方法确定,即:
tg
tgz
g qmax
1
2
2
(
1)
至此,若已知管外最大热流强度和工质温度, 就可以计算出相应位置的管壁温度。
1t蒸汽锅炉热力计算书
50 tbq+dt 0.1 rH2O rH2O+rRO2 (1-0.37(vpj+273)/1000)x(2.47+5.06rH2O)/rq
rH2O
1/(MPa.m) 1/(MPa.m) 1/(MPa.m)
ps
0.079502382 0.07642418 0.601423488 0.005091838 0.85
2
1.5 2.65 0.5 1.79 0.9 0.46 (π /4). Dn12.L1+(π /4).Dn22.L2 0.6438 4.6226 螺纹管 Φ 53x5 45 2.10 12.5565 0.0672 φ 53x5 27 2.75 9.840507856 0.05133025
mm 根 m m2 m2 mm 根 m m2 m2
θ
3
'
℃ kJ/Nm
3
325 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 27 28 29 30 31 32 33 34 35 36
出口烟温 出口烟焓 烟气侧放热量 最大温差 最小温差 平均温差 平均烟温 烟气流速 烟气动力粘性系 数 平均成分烟气导 热系数 烟气平均普郎系 数 当量直径 螺纹管节距 螺纹管槽深 节径比 深径比 雷诺数 螺纹管理论放热 系数 工质温度与管壁 温差 管壁温度 烟气压力 水蒸汽体积份额 三原子气体体积 份额 三原子气体辐射 减弱系数 飞灰辐射减弱系 数 气体介质吸收力 烟气黑度 温度比 烟气辐射放热系 数 热有效系数 af kh kq rq dt tb P
烟气动力粘性系 数 平均成分烟气导 热系数 烟气平均普郎系 数 当量直径 螺纹管节距 螺纹管槽深 节径比 深径比 雷诺数 螺纹管理论放热 系数 工质温度与管壁 温差 管壁温度 烟气压力 水蒸汽体积份额 三原子气体体积 份额 三原子气体辐射 减弱系数 飞灰辐射减弱系 数 气体介质吸收力 烟气黑度 温度比 烟气辐射放热系 数 热有效系数 传热系数 主受热面传热量 热平衡相对误差 允许相对误差 第三回程传热计 算 进口烟温 进口烟焓 af kh kps ay τ kq rq dt tb P
余热锅炉热力计算
ξ2=0.3164/(ρi*uc*dc/ui)^0.25
λ △pf1=λ*Lb*ρi*uc^2
2*Dc △pf2=λ*(L-Lb)*ρi*u^2
2*Di
△pf=△pf1+△pf2
进口管箱局部阻力系数 换热管入口阻力系数 保护套管突然缩小 阻力系数 入口局部阻力 换热管出口阻力系数 出口管箱阻力系数 出口局部阻力
z1=(Ti-Tb)/(To-Tb) △tm=ti-to/lnz1 Qq=3.6*K*A*△tm η=(Qq-Q)/Q x1=Hg-Hs x2=Hl-Hs
D=Q/(x1+w*x2)
三 阻力计算 1 换热管沿程阻力系数
ξ1=0.3164/Re^0.25
管口部分沿程阻力系数 2 换热管内沿程阻力降
套管沿程阻力降
Ah*Po*3600*273.16 pr=Cp*μ*1000/λ
Re=ρuDi/μ αi=0.023*E*Re^0.8*Pr^0.4
Di αo=3*(Q/A)^0.7*Ph^0.15
y1=1/αiΒιβλιοθήκη y2=Eiy3=Eo*Di/Do y4=Di/(αo*Do)
y5=δ*Di/(λ1*Dm) K=1/(y1+y2+y3+y4+y5)
产汽压力
Pq
饱和温度
Tb
饱和水的焓
HL
饱和水蒸气的焓
Hg
排污率 二 、 热力计算
1 管程气体的总放热量 有效放热量
2 换热管内径 换热管中径 管口内径 换热管流通面积 管口流通面积 换热面积
3 工艺气体的平均温度 工艺气体的平均压力 管程气体的平均比热 管程气体的平均黏度 管程气体的平均密度 管程气体的导热系数
锅炉进出口烟道保温计算,膜式壁保温结构计算,灰斗保温结构计算(带公式,可编辑)
第二层内 ℃ 205
第三层内 ℃
205.000
金属壁温 ℃
29.104
保温层外表面温度 ℃
29.104
三、灰斗保温结构计算
导热系数计算
层数 (从内向外)
第一层 第二层 第三层 第四层 第五层 壁温计算
参数
热阻
热流密度 w/m2
计算温度 从外向内计算
材料
耐火浇注料 保温浇注料
陶瓷纤维 外壳金属 陶瓷纤维
厚度 (mm)
平均导热系数 w/m.℃
使用温度上限 ℃
使用工况判定
第一层 第二层 第三层 第四层 第五层 壁温计算
参数
热阻
热流密度 w/m2 计算温度
从外向内计算
耐火浇注料
/
保温浇注料
/
陶瓷纤维
/
外壳金属
/
陶瓷纤维
/
/
50
0.22
1200
/
94
0.17
1000
/
0
0.083
1100
/
6
250
/
0
0.083
第一层 (w/m2.℃)-1
0 97.329 第一层内
℃ 205
常温导热系数 导热系数方程中 w/m.℃ 导热系数增长率
/
/
/
/
/
/
/
/
/
/
厚度 (mm)
0 0 150 0.5 0
平均导热系数 w/m.℃ 0.22 0.17 0.083
0.083
使用温度上限 ℃
1200 1000 1100 250 1100
使用工况判定
TRUE TRUE TRUE TRUE TRUE
锅炉基础知识
1、锅炉额定蒸发量:蒸汽锅炉在额定蒸汽参数,额定给水温度,使用设计燃料并保证效率时所规定的蒸汽产量。
2、锅炉最大连续蒸发量:蒸汽锅炉在额定蒸汽参数,额定给水温度和使用设计燃料长期连续运行时所能达到的最大蒸发量。
3、锅炉额定蒸汽参数:过热器出口处额定蒸汽压力和额定蒸汽温度。
4、锅炉事故率:锅炉事故率=[事故停用小时数/(运行小时数+事故停用小时数)]×100%5、锅炉可用率:锅炉可用率=[(运行总小时数+备用总小时数)/统计期间总时数]×100%6、锅炉热效率:锅炉每小时的有效利用热量占输入锅炉全部输入热量的百分数。
7、锅炉钢材消耗率:锅炉单位蒸发量所用钢材的吨数。
8、连续运行小时数:两次检修之间运行的小时数。
1、发热量:单位质量或容积的燃料完全燃烧时所放出的热量。
2、高位发热量:单位量燃料完全燃烧,而燃烧产物中的水蒸汽全部凝结成水时所放出的全部热量,称为燃料的高位发热量。
3、低位发热量:单位燃料完全燃烧,而燃烧产物中的水蒸汽全部保持蒸汽状态时所放出的全部热量.4、折算成分:指燃料对应于每4190kJ/kg收到基低位发热量的成分5、标准煤:规定收到基低位发热量Qarnet=29270kJ/kg的煤。
6、煤的挥发分:失去水分的煤样在规定条件下加热时,煤中有机质分解而析出的气体。
7、油的闪点:在一定条件下加热液体燃料,液体表面上的蒸汽与空气的混合物在接触明火时发生短暂的闪火而又随即熄灭时的最低温度.8、煤灰熔融性:在规定条件下随加热温度的变化灰的变形、软化、流动等物理状态的变化特性。
1、燃烧:燃料中可燃质与氧在高温条件下进行剧烈的发光放热的化学反应过程。
2、完全燃烧:燃烧产物中不再含有可燃物的燃烧.3、不完全燃烧:燃烧产物中仍然含有可燃质的燃烧。
4、理论空气量:1kg收到基燃料完全燃烧而又没有剩余氧存在时,燃烧所需要的空气量.5、过量空气系数:燃料燃烧时实际供给的空气量与理论空气量之比.即α=VK/V06、漏风系数:相对于1kg收到基燃料漏入的空气量ΔVK与理论空气量V0之比。
锅炉设计文件鉴定中有关问题及探讨
2021年第7期550 引言为保证锅炉安全、节能及环保要求,根据《中华人民共和国特种设备安全法》、《特种设备安全监察条例》、《锅炉安全技术监察规程》中均要求锅炉设计文件应当经国务院特种设备安全监察管理部门核准的检验检测机构鉴定后,方可用于制造。
随着市场经济日益变化、环保要求不断提高以及《锅规》《节规》第一号修改单的实施。
锅炉制造单位加快了对锅炉新产品研发及老产品优化,随着设计文件数量日渐增多,发现的问题也愈来愈多。
以下例举一些近几年在锅炉设计文件鉴定过程中,发现具有代表性的问题与大家一起分析与探讨。
1鉴定中发现的问题及探讨1.1 提供送审资料不全TSG G1001-2004《锅炉设计文件鉴定管理规则》附件1“申请单位提供的锅炉设计文件”规定,申请单位送审应提交设计说明文件、设计图样、计算文件等三大类文件,但申请单位提供送审资料不全问题,具体如下:(1)锅炉设计文件鉴定申请书、锅炉设计文件节能申请书缺申请单位相关人员签名、未填写设计属性、未填写节能申请文件清单等。
(2)缺主要支撑、吊挂件图、锅炉检查(修)门(孔)类、厂标人孔装置、手孔装置等相关图纸。
(3)加盖设计文件鉴定专用章图纸、资料中缺批准人签字。
1.2 锅炉结构设计及设计图样中出现的问题1.2.1 燃烧器选型质检总局办公厅下发关于燃气锅炉风险警示的通告(2017年第2号)之前,未要求在锅炉出厂技术资料中注明燃烧器配置技术要求,制造单位往往根据本单位合作的燃烧器品牌配置燃烧器,在选型过程中只考虑燃烧器功率、背压是否与锅炉相匹配,忽视了燃烧器火焰长度与直径是否与锅炉相匹配的问题。
自通告要求制造单位补充配置要求后,发现90%以上制造单位所配置燃烧器火焰直径大于燃烧室直径,不满足GB/T16508.6第4.4.1条规定燃烧器的火焰不能与锅炉燃烧室壁面或炉管直接接触的要求。
因此在燃烧器选型时不能只考虑燃烧器功率和背压是否满足要求,燃烧器火焰长度与直径是否与锅炉相匹配也是选型的重要参数之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锅炉整体热力计算
1 计算方法
本报告根据原苏联73年颁布的适合于大容量《电站锅炉机组热力计算标准方法》,进行了锅炉机组的热力计算和中温再热器及低温过热器出口垂直段管壁金属温度计算,计算报告中所选取的有关计算参数和计算式均出自该标准的相应章节。
对所基于的计算方法的主要内容简述如下。
锅炉的整体热力计算为一典型的校核热力计算,各个受热面及锅炉整体的热力计算均需经过反复迭代和校核过程,全部热力计算过程通过计算机FORTRAN5.0高级语言编程计算完成。
管壁温度计算分别通过EXCEL 和FORTRAN5.0完成。
1.1锅炉炉膛热力计算所采用的计算炉膛出口烟气温度的关联式为:
式中,
M —考虑燃烧条件的影响,与炉内火焰最高温度点的位置密切相关,因此,取决于燃烧器的布置形式,运行的方式和燃烧的煤种; T ll —燃煤的理论燃烧温度,K ; Bj —锅炉的计算燃煤量;kg/h 。
1.2锅炉对流受热面传热计算的基本方程为传热方程与热平衡方程
除炉膛以外的其它受热面的热力校核计算均基于传热方程和工质及烟气侧的热量平衡方程。
计算对流受热面的传热量Q c 的传热方程式为:
式中,
C
V B T F M T cpj
j a ︒
--+ψ⨯=
2731
)1067.5(
6.03
11
11111
"
11ϕϑKg
KJ Bj
t KH Q c /∆=
H —受热面面积;
⊿t —冷、热流体间的温压, 热平衡方程为:
既:烟气放出的热量等于蒸汽、水或空气吸收的热量。
烟气侧放热量为:
工质吸热量按下列各式分别计算。
a .屏式过热器及对流过热器,扣除来自炉膛的辐射吸热量Q f
b .布置在尾部烟道中的过热器、再热器、省煤器及直流锅炉的过渡区,按下式计算:
2 计算煤种与工况
2.1 计算煤质
表1 设计煤质数据表(应用基)
2.2 计算工况
本报告根据委托合同书的计算要求,分别计算了两种不同的工况。
计算工况一 —— 设计工况计算(100%负荷)
根据表1中的设计煤质数据,各设计和运行参数均按《标准》推荐的数据选取。
计算工况二 ——设计工况计算(70%负荷)
根据表1中的设计煤质数据,各设计和运行参数均按《标准》推荐的数据选取。
Kg
KJ
I I Q T
f d )
(0
1"'-∆+-=αϕKg
KJ Q i i B D
Q f j
d --=
)'"(Kg
KJ
i i B D
Q j
d )'"(-=
d
c Q Q =
3 热力计算结果
计算结果表明:
(1)工况一:按设计煤种和设计条件进行的的计算结果与原设计计算的结果比较接近。
(2)工况二:当负荷为70%时,计算结果与原设计计算的结果比较接近。
各工况的详细计算过程见本报告的《整体热力计算结果附表1—19》
二、锅炉高温过热器和高温再热器壁温计算结果
1 壁温计算方法
锅炉管壁金属温度的计算亦是根据原苏联73年锅炉机组热力计算标准方法推荐的计算方法进行。
壁温计算中引用的管圈进口蒸汽温度、进口烟气温度等热力计算数据均取自以上热力计算结果。
管子外壁温度的计算式为:
管子内外壁的平均温度的计算式为:
计算截面的焓值:
当需要校核管组中偏差管圈的某一截面处的管壁温度时,首先应计算该点的工质的平均温度,按下式计算的焓值计算:
式中,
i'—组件进口处的工质焓,KJ/kg
⊿i x —组件进口到计算截面处的工质平均焓增,KJ/Kg
进口到计算截面区段的工质焓增可表示为:
式中,
C
q t t t wb ︒
+++∆+=)112(
2
max αβλ
δμβC
q t t t b ︒
+++∆+=)
1
11(
2
max αβλδμβKg
KJ i i i X
∆+='Kg
KJ
D Q B i zj
qd
j K X η=
∆
ηk—计算组件沿烟道宽度的吸热不均匀系数,
Q qd—计算区段每公斤燃料的吸热量,
计算区段每公斤燃料的吸热量由下式计算:
式中,
Q d qd—计算区段的对流吸热量和管间辐射吸热量,kJ/kg;
Q f qd—计算区段从炉膛或相邻气室的辐射吸热量,其中包括布置在管组之前的屏间气室以及在管组后的气室,kJ/kg。
a.计算管段从炉膛、屏间气室或空气室的辐射吸热量由下式计算:
式中,
q f—辐射热负荷,KW/m2
H f—计算管段的辐射受热面,m2
b.计算管段对流和管间辐射的吸热量由下式确定:
计算偏差管时,需考虑的修正因素:
a.计算管校核点处的工质温度t max按焓值i max计算:
式中,
ηx1—热力不均匀系数;
ηjg—结构不均匀系数,按偏差管受热面与管组平均受热面之比确定,如在确定偏
差的吸热量时考虑了它的结构差别,则ηjg =1;
η
s1—水力不均匀系数。
Kg
KJ
B
H
q
Q
j
f
f
f
qd
=
Kg
KJ
B
t
KH
Q
j
qd
j
d
qd
∆
=
Kg
KJ
i
i
i x
s
jg
r∆
-
+
=)1
(
1
1
maxη
η
η
Kg
KJ
Q
Q
Q f
qd
d
qd
qd
+
=
b .屏和对流受热面壁温校核计算截面处最大热负荷的计算:
式中,
ηk —计算组件沿烟道宽度的热负荷不均匀系数; ηrl —偏差管的热力不均匀系数; q 0—校核管在计算截面的平均热负荷。
3 中温再热器壁温计算结果
最外层管圈最危险截面壁温计算结果汇总(工况一的详细计算数据见附表)
2低温过热器出口垂直段壁温计算结果
最外层管圈最危险截面壁温计算结果汇总.(工况一的详细计算数据见附表)
4 计算结果分析
2
max /m kw q q rl k ηη=
(1)在原设计工况(100%负荷)并考虑吸热不均匀超出平均值30%的计算条件下(综合了工质侧的流量偏差和烟气侧偏差的影响),中温再热器管圈的最高壁温位于弯头下端(最危险截面处),温度值640.4℃,低温过热器出口垂直段管圈的最高壁温为443.55℃。
(2)在设计工况(70%负荷)运行, 中温再热器管圈的最高壁温位于弯头下端(最危险截面处),温度值670℃,低温过热器出口垂直段管圈的最高壁温为451℃。
(3)在设计工况100%和70%负荷下运行,中温再热器最外圈的壁温已经超过102钢的允许极限温度600℃,最外圈的下弯头处向火面管壁较薄,在长期超温的情况下运行,容易造成爆管现象。
低温过热器出口垂直段始终处于安全状态。