管壳式换热器工作原理、分类及其特点

合集下载

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构一、管壳式换热器的基本概念管壳式换热器是一种常见的换热设备,其主要由管束和外壳两部分组成。

其中,管束是由许多平行排列的管子组成,而外壳则是将这些管子包裹在一起的结构。

通过这种结构,管壳式换热器可以实现两种介质之间的热量传递。

二、工作原理1. 热媒流动原理在管壳式换热器中,介质A和介质B分别通过内部的管子和外部的壳体进行流动。

其中,介质A通常为高温流体,而介质B则为低温流体。

当两种介质在内外两侧经过时,由于存在温度差异,会发生热量传递。

2. 热媒传递原理在介质A和介质B之间进行热量传递时,主要有三个过程:对流传热、传导传热和辐射传热。

其中,对流传热是最主要的一种方式。

3. 工作过程在工作过程中,高温流体通过内部的管子进入到换热器中,并沿着管子表面流动。

同时,低温流体从外部的壳体进入到换热器中,并沿着管子外表面流动。

在这个过程中,高温流体和低温流体之间进行了热量传递,使得高温流体的温度降低,而低温流体的温度升高。

三、结构特点1. 管束结构管束是管壳式换热器的主要组成部分之一。

在管束中,许多平行排列的管子被固定在两个端盖板上,并通过密封垫圈与外壳连接。

由于管子间距离较小,因此可以有效地增加热量传递面积。

2. 壳体结构外壳是管壳式换热器的另一个重要组成部分。

它通常由两个半球形或长方形壳体组成,并通过法兰连接。

在使用过程中,外壳起到保护内部管束不受损坏的作用。

3. 密封结构为了保证介质A和介质B之间不发生混合,在管壳式换热器中需要设置密封结构。

这种密封结构通常采用密封垫圈或波纹垫片等材料制成,可以有效地防止介质泄漏。

4. 清洗结构由于管壳式换热器在使用过程中会产生一定的污垢和腐蚀物,因此需要定期进行清洗。

为了方便清洗,管壳式换热器通常设置有进出口和排污口等结构。

四、应用领域管壳式换热器广泛应用于化工、石油、制药、食品等领域中。

在这些领域中,管壳式换热器可以实现高效的热量传递,提高生产效率,并减少能源消耗。

十三种类型换热器结构原理及特点(图文并茂)

十三种类型换热器结构原理及特点(图文并茂)

十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。

板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。

压紧板上有本设备与外部连接的接管。

板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。

人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。

并采用特殊结构,保证两种流体介质不会串漏。

板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。

它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。

结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。

螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。

列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。

广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。

特别是在石油炼制和化学加工装置中,占有极其重要的地位。

换热器的型式。

管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。

它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。

钢壳内衬铜的厚度一般为1.0mm。

钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。

此阀除非定期检修是绝对不能取消的。

部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。

管壳式换热器结构介绍

管壳式换热器结构介绍
下图为不同介质在不同设备类型中的允许压力降参考值:
3、管壳程流体的确定
主要根据流体的操作压力和温度、可以利用的压力降、结构和腐蚀 特性,以及所需设备材料的选择等方面,考虑流体适宜走哪一程。下面 的因素可供选择时考虑:
适于走管程的流体有水和水蒸气或强腐蚀性流体;有毒性流体;容易 结构的流体;高温或高压操作的流体等。
1、管壳式换热器结构介绍
管壳式换热器:是以封闭在壳体中管束的壁面作为传热面的间 壁式换热器,这种换热器结构较简单、操作可靠,可用各种结构材 料(主要是金属材料)制造,能在高温、高压下使用,是目前应用 最广的类型。(设计制造遵循标准:国外 TEMA ASME 国内 GB151、GB150)
换热器封头选取原则
换热器折流板
单弓形折流板:优点是可以达到最大的错流,缺点是压降较高,且窗口 的管束容易发生振动;设计要点是折流板圆缺率在17%-35%之间,折流 板间距在0.2-1.0倍的壳径。此种类型折流板适用于大部分场合。
NITW:该折流板窗口不布管,管少,需要的壳体直径大。设计要点:15%的 折流板圆缺率。适合的场合是气体振动和压降受限。
谢谢!
K型壳体:主要用于管程热介质,壳侧蒸发的工况,在废热回收条件下使 用。
X型壳体:冷热流体属于错流流动,其优点是压降非常小,当采用其他壳 体发生振动,且通过调整换热器参数无法消除该振动时可以使用此壳体 形式,其不足之处是流体分布不均匀,X型壳体并不经常使用。
在化工工艺手册中,I型壳体类型可EDR软件中的不是同一种壳体, 其形式见I1,它的使用方式仅有一种搭配,就是BIU,U型管换热器。
螺纹管性能特点
在管子类型中,螺纹管属于管外扩展表面的类型,在普通换热管外 壁轧制成螺纹状的低翅片,用以增加外侧的传热面积。螺纹管表面积比 光管可扩展1.6-2.7倍,与光管相比,当管外流速一样时,壳程传热热阻 可以缩小相应的倍数,而管内流体因管径的减小,则压力降会略有增大。 螺纹管比较适宜于壳程传热系数相当于管程传热系数1/3-3/5的工况。

热交换器原理与设计第2章 管壳式热交换器

热交换器原理与设计第2章 管壳式热交换器
浮头式热交换器中,由于安装浮头法兰需要,圆筒内有一 圈较大没有排列管子的间隙,使部分流体由此间隙短路,使 主流速度及换热系数下降。而旁路流体未经换热就达出口, 与主流混合必使流体出口温度达不到预期数值。挡管和旁路 挡板就是为了防止流体短路而设立的构件。
☆挡管是两端堵死的管子,安置在相应于分程隔板槽后面的 位置上,每根挡管占据一根换热管的位置,但不穿过管板, 用点焊的方法固定于折流板上。通常每隔3~4排管子安排一 根挡管,但不应设置在折流板缺口处,也可用带定距管的拉 杆来代替挡管。
优点:结构简单,制造成本低,规格范围广,工程中应用广泛。 缺点:壳侧不便清洗,只能采用化学方法清洗,检修困难,对较脏
或有腐蚀性介质不能走壳程。当壳体与换热管温差很大时, 可设置单波或多波膨胀节减小温差应力。
管壳式换热器结构名称
单程管壳式换热器
1 —外壳,2—管束,3、4—接管,5—封头 6—管板,7—折流板
图2.25 折流板的几何关系
2.2.4 进出口连接管直径的计算
进出口连接管直径的计算仍用连续性方程, 经简化后计算公式为:
D 4M1.13M
πρw
ρw
2.3 管壳式热交换器的传热计算
1) 选用经验数据:根据经验或参考资料选用工艺条 件相仿、设备类型类似的传热系数作为设计依据。 如附录 A。 2) 实验测定:实验测定传热系数比较可靠,不但可 为设计提供依据,而且可以了解设备的性能。但实 验数值一般只能在与使用条件相同的情况下应用。
焊在换热管上)。
图2.23 防冲板的形式
a) 内导流筒 图2.24 导流筒的结构
b) 外导流筒
★导流筒
❖ 在立式换热器壳程中,为使气、液介质更均匀地流入管间, 防止流体对进口处管束段的冲刷,而采用导流筒结构。

完整版HTRI管壳式换热器设计基础教程讲解

完整版HTRI管壳式换热器设计基础教程讲解

市场前景
随着科技的不断进步和工业的快速发展,管 壳式换热器的应用领域将不断扩大。同时, 随着环保意识的提高和节能减排政策的实施, 高效、节能、环保的管壳式换热器将成为未
来市场的主流产品。
02
HTRI软件简介及功能
HTRI软件发展历程
01
初始开发阶段
HTRI软件最初由美国Heat Transfer Research Inc.公司开发,专注于管
04
HTRI在管壳式换热器设 计中的应用
工艺流程模拟与优化
工艺流程建模
使用HTRI软件对管壳式换热器工艺流程进行 建模,包括输入工艺参数、物性数据和设备尺 寸等。
模拟计算
通过软件内置的算法和模型,对工艺流程进行模拟计 算,得出各物流的温度、压力、流量和物性变化等关 键参数。
优化设计
根据模拟结果,对换热器的结构、尺寸和布局 等进行优化设计,以提高换热效率和降低能耗。
换热器类型选择依据
传热方式
根据工艺要求选择合适的传热方式,如并流、逆 流或错流。
操作条件
根据操作压力、温度、流量等条件选择合适的换 热器类型。
ABCD
流体性质
考虑流体的物理性质(如密度、粘度、比热容等) 和化学性质(如腐蚀性、结垢性等)。
经济性
在满足工艺要求的前提下,考虑换热器的制造成 本、运行费用和维修费用等因素。
壳式换热器的热工水力设计计算。
02
逐步完善阶段
随着技术的发展和用户需求的变化,HTRI软件逐步增加了新的功能模
块,如振动分析、腐蚀预测等,并不断优化算法以提高计算精度和效率。
03
广泛应用阶段
目前,HTRI软件已成为全球范围内广泛应用于石油、化工、制冷等领

管壳式换热器毕业设计简介

管壳式换热器毕业设计简介

管壳式换热器(过热蒸汽0.65MPa,295℃;水0.8MPa,50℃)摘要本设计说明书是关于固定管板是换热器的设计,设计依照GB151-1999《钢制管壳式换热器》进行,设计中对换热器进行化工计算、结构设计、强度计算。

设计第一步是对换热器进行化工计算,主要根据给定的设计条件估算换热面积,初定换热器尺寸,然后核算传热系数,计算实际换热面积,最后进行阻力损失计算。

设计第二步是对换热器进行结构设计,主要是根据第一步计算的结果对换热器的各零部件进行设计,包括管箱、定距管、折流板等。

设计第三步是对换热器进行强度计算,并用软件SW6进行校核。

最后,设计结果通过图表现出来。

关键词:换热器,固定管板,化工计算,结构设计,强度计算。

AbtractThe design statement is about the fixed tube sheet heat exchanger .In the design of the heat exchanger ,the chemical calculation,the structure design and the strength calculation must according to GB151-1999“Steel System Type Heat exchanger ”.The first step of the design is the chemical calculation .Mainly according to the given design conditions to estimate the heat exchanger area and select heat exchanger size.Then check the heat transfer coefficient, calculate the actual heat transfer area,and finally calculate the resistance loss.The second step of the design of heat exchanger is the structural design of the heat exchanger. The design of heat exchanger parts mainly according to the first step of calculation.such as tube boxes , the distance control tube, baffled plates .The third step of the design of heat exchanger is the strength calculation and using SW6 software to check. Finally, the design results are shown in figures.Key words: heat changer, fixed tude plate, chemical calculation,structure design, strength calculation.一、前言管壳式换热器是目前应用最广的换热设备,它具有结构坚固、可靠性高、适用性强、选材广泛等优点。

换热器类型及相关特点说明

换热器类型及相关特点说明

换热器类型及相关特点说明化工工业中不同介质之间存在有大量热交换, 其中很大部分的热交换是通过换热器来完成的。

换热设备是化肥,化工,炼油工业及其他许多工业部门应用最广泛的设备, 在化工企业的建设中换热设备占总投资很大比重。

因此保证换热设备安全运行对其维护和检修质量是非常重要的。

1 管壳式换热器的类型特点常用的管壳式换热器有固定管饭式、浮头式和“U ”型管式。

(1)固定管板式换热器是将两端管板直接与壳体焊接在一起。

主要由外壳、管板、管束、封头等主要部件组成。

壳体中设置有管束,管束两端采用焊接、胀接或胀焊并有的方法将管子固定在管板上,管板外周围和封头法兰用螺栓紧固。

固定管板式换热器的结构简单、造价低廉、制造容易、管程清洗检修方便,但壳程清洗困难,管束制造后有温差应力存在。

当换热管与壳体有较大温差时,壳体上还应设有膨胀节。

(2)浮头式换热器一端管板固定在壳体与管箱之间, 另一端管板可以在壳体内自由移动,也就是壳体和管束热膨胀可自由。

故管束和壳体之间没有温差应力。

一般浮头可拆卸,管束可以自由地抽出和装入。

浮头式换热器的这种结构可以用在管束和壳体有较大温差的工况。

管束和壳体的清洗和检修较为方便, 但它的结构相对比较复杂,对密封的要求也比较高。

(3)U形管式换热器是将换热管炜成U形,两端固定在同一管板上。

由于壳体和换热管分开,换热管束可以自由伸缩,不会由于介质的温差而产生温差应力。

U形管换热器只有一块管板,没有浮头,结构比较简单。

管束可以自由的抽出和装入,方便清洗,具有浮头式换热器的优点,但由于换热管做成半径不等的U形弯,最外层换热管损坏后可以更换外,其它管子损坏只能堵管。

同时,它与固定管板式换热器相比,由于换热管受弯曲半径的限制它的管束中心部分存在空隙,流体很容易走短路,影响了传热效果。

2 管壳式换热器的失效形式换热器常见的损坏形式是腐蚀而泄露,壳体减薄。

腐蚀的部位主要在换热管、换热管与管板的连接处及壳体。

四种管壳式换热器的结构特点

四种管壳式换热器的结构特点

四种管壳式换热器的结构特点管壳式换热器是一种常见的换热设备,广泛应用于工业生产和能源领域。

根据不同的结构特点,可以将管壳式换热器分为四种类型:固定管板式、浮动管板式、固定管束式和浮动管束式。

固定管板式换热器是最常见的一种结构类型。

它由一个壳体和多个平行排列的管板组成。

管板上开有管孔,通过这些管孔将管子固定在板上。

流体通过管子流动,进行换热。

固定管板式换热器的主要优点是结构简单、制造成本较低,适用于一般的换热任务。

然而,由于管子固定在板上,清洗和维修时比较困难。

浮动管板式换热器是在固定管板式换热器的基础上改进而来的。

它的管板不再固定,而是可以上下浮动。

这样,在清洗和维修时,可以通过松开法兰螺栓,将管板抬起,方便清理管道内部。

浮动管板式换热器的结构稍复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。

固定管束式换热器是将管子固定在壳体内部的一个管束上的换热器。

管束通常由多个平行排列的管子组成,管束两端通过管板与壳体连接。

流体在管束内流动,进行换热。

固定管束式换热器的优点是结构紧凑,热效率高,适用于对换热效果要求较高的场合。

然而,由于管束固定在壳体内部,清洗和维修时比较困难。

浮动管束式换热器是在固定管束式换热器的基础上改进而来的。

它的管束可以上下浮动,方便清洗和维修。

浮动管束式换热器的结构复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。

四种管壳式换热器的结构特点分别是:固定管板式换热器结构简单、制造成本低;浮动管板式换热器清洗和维修方便;固定管束式换热器热效率高;浮动管束式换热器清洗和维修方便。

每种结构类型都有其适用的场合,选择合适的换热器结构可以提高换热效率,降低维护成本,确保设备的正常运行。

换热器工作原理

换热器工作原理

管壳式换热器的三种分类管壳式换热器按照应力补偿的方式不同,可以分为以下三个种类:1、固定换热器管板式换热器固定管板式换热器是结构最为简单的管壳式换热器,它的传热管束两端管板是直接与壳体连成一体的,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。

固定管板式换热器的热应力补偿较小,不能适应温差较大的工作。

2、浮头式换热器浮头式换热器是管壳式换热器中使用最广泛的一种,它的应力消除原理是将传热管束一段的管板放开,任由其在一定的空间内自由浮动而消除热应力。

浮头式换热器的传热管束可以从壳体中抽出,清洗和维修都较为方便,但是由于结构复杂,因此浮头式换热器的价格较高。

3、U 型管换热器U 型管换热器的换热器传热管束是呈 U 形弯曲换热器,管束的两端固定在同一块管板的上下部位,再由管箱内的隔板将其分为进口和出口两个部份,而完全消除了热应力对管束的影响。

U 型管换热器的结构简单、应用方便,但很难拆卸和清洗。

管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。

管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特殊是在高温高压和大型换热器中的应用占领绝对优势。

通常的工作压力可达 4 兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。

普通壳体直径在1800 毫米以下,管子长度在 9 米以下,在个别情况下也有更大或者更长的。

工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。

A 流体从接管 1 流入壳体内,通过管间从接管 2 流出。

B 流体从接管 3 流入,通过管内从接管 4 流出。

如果 A 流体的温度高于 B 流体,热量便通过管壁由 A 流体传递给 B 流体;反之,则通过管壁由B 流体传递给 A 流体。

壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A 流体)。

管壳式换热器原理

管壳式换热器原理

管壳式换热器原理嘿,朋友们!今天咱来聊聊管壳式换热器原理,这玩意儿可有意思啦!你可以把管壳式换热器想象成是一个特别的“热魔法盒”。

它有个长长的壳子,就像一个大口袋,里面装着好多管子。

这管子啊,就像是一条条小路,热的流体和冷的流体就沿着这些小路走。

热流体大摇大摆地从一些管子里通过,它身上带着好多热量呢。

而冷流体呢,则在壳子和管子之间的缝隙里悄悄溜达。

这时候神奇的事情就发生啦!热流体的热量就会透过管子壁,传递给冷流体。

哎呀呀,这不就像是热流体很大方地把自己的热量分了一些给冷流体嘛!你说这像不像在一个热闹的集市上,大家互相交换东西?热流体把热量这个“宝贝”给了冷流体,自己慢慢变凉了,冷流体呢,就变得暖和起来了。

这样不就实现了热量的交换嘛!那这其中的原理到底是咋回事呢?其实啊,就是因为有温差呀!热的东西总是想把热量散发出去,冷的东西总是想吸收热量,这是自然规律呀!管壳式换热器就是利用了这个规律,让热流体和冷流体在合适的地方相遇,然后完成热量的传递。

你想想看,要是没有这种换热器,我们的生活得少了多少便利呀!比如在一些工厂里,需要把热量从一个地方转移到另一个地方,要是靠人工去搬,那得累成啥样呀!有了管壳式换热器,就轻松多啦。

而且哦,管壳式换热器还有很多不同的类型呢,就像人有不同的性格一样。

有的适合处理高温的流体,有的适合处理腐蚀性的流体,各有各的特点和用处。

咱再说说它的优点吧。

它结构相对简单,容易制造和维护,这多好呀!就像一个老实可靠的朋友,不会给你找麻烦。

而且它的换热效率也不错呀,可以在很多场合大显身手。

当然啦,它也不是完美无缺的。

它可能会占比较大的空间,有时候还会有一些泄漏的问题。

但这也不能掩盖它的光芒呀!总之呢,管壳式换热器原理虽然看起来有点复杂,但只要你用心去理解,就会发现其实也不难。

它就像我们生活中的一个好帮手,默默地为我们服务着。

让我们的生活变得更加舒适和便利。

所以呀,可别小看了这个“热魔法盒”哦!原创不易,请尊重原创,谢谢!。

管壳式热交换器(PPT课件)

管壳式热交换器(PPT课件)

管外纵流条件下,管外传热系数为光管的1.6倍.
传递热量相同,泵功率相同,取代光管,节约材 料30%-50%
螺旋槽

主要用于强化管内气体或液体的传热,强化管内液
体的沸腾或管内外蒸气的冷凝,管内传热系数为光管 传热系数的1.5-2.0倍;管外传热系数为光管传热系数 的1.5倍.
缩放管
波纹管


波纹管优点
(4)填料函式换热器
填料函式换热器 1.纵向隔板;2.浮动管板;3.活套法兰;4.部分剪切环;5.填 料压盖;6.填料;7.填料函
填料函式密封
缺点:填料处易泄漏。 优点:结构简单,加工制造方便,造价低,管内和管
间清洗方便 适用场合:4MPa 以下,且不适用于易挥发、易燃、易 爆、有毒及贵重介质,使用温度受填料的物性限制。

带膨胀节的固定管板式换热器 图7-3 带补偿器的固定管板式换热器
(2) U形管式换热器
U形管式换热器 1.中间挡板;2.U形换热管;3.排气口;4.防冲板;5.分程隔板
U形管式换热器
U型管式换热器 图7-6 U形管式换热器 优点:结构简单,价格便宜,承受能力强,不会产生热应力。 缺点:布板少,管板利用率低,管子坏时不易更换。 适用场合:特别适用于管内走清洁而不易结垢的高温、高压、 腐蚀性大的物料。
第二章 管壳式热交换器
间壁式热交换器

管式热交换器
管壳式、套管式、螺旋管式等

板式热交换器


延伸表面热交换器
蓄热式热交换器
管壳式换热器
2.1 管壳式换热器的分类
基本类型 固定管板式换热器
U形管式换热器 浮头式换热器 填料函式换热器
(1)固定管板式换热器

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构(山东华昱压力容器有限公司,济南250305)随着今天快速发展的科技,换热器已广泛运用于我国各个生产区域,换热器跟人们生活一脉相连。

用来热交换的机械设备就是所谓的换热器。

本文综述了管壳式换热器的工作原理及结构。

标签:管壳式换热器;工作原理;结构1 管壳式换热器的工作原理属于间壁式换热器的就是管壳式换热器,其换热管内组成的流体通道称为管程,换热管外组成的流体通道称为壳程。

管程以及壳程分别经过2个不一样温度的流体时,温度相对高的流体经过换热管壁把热量传递给温度相对低的流体,温度相对高的流体被冷却,温度相对低的流体被加热,进而完成两流体换热工艺的目标。

(工作原理和结构见图1)管壳式换热器关键由管箱、管板、管子、壳体以及折流板等组成。

一般圆筒形为壳体;直管或U形管为管子。

为把换热器的传热效能提高,也能使用螺纹管、翅片管等。

管子的安排有等边三角形、正方形、正方形斜转45°以及同心圆形等几种方式,最为常见的是前面三种。

依照三角形部署时,在一样直径的壳体内能排列相对多的管子,以把传热面积增加,但管间很难用机械办法清洗,也相对大的流体阻力。

在管束中横向部署一些折流板,引导壳程流体几次改变流动目标,管子有效地冲刷,以把传热效能提高,同时对管子起支承作用。

弓形、圆形以及矩形等是折流板的形状。

为把壳程以及管程流体的流通截面减小、流速加快,以把传热效能提高,能在管箱以及壳体内纵向安排分程隔板,把壳程分为二程以及把管程分为二程、四程、六程以及八程等。

管壳式换热器的传热系数,水换热在水时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;气体用水冷却时,为10~280W/(m(℃);水蒸汽用水冷凝时,为570~4000W/(m(℃)。

2 管壳式换热器依据结构特征能分为下面2类2.1 刚性构造的管壳式换热器:固定管板式是这种换热器的另一个名称,一般能可分为单管程以及多管程2种。

在两块管板上换热器的管端以焊接、胀接、胀焊并用的办法固定,而管板则以焊接的办法以及壳体相连。

管壳式换热器与板式换热器选型参考

管壳式换热器与板式换热器选型参考

目前我国的换热器在化工、冶金、石油、电力及机电等行业应用非常广泛。

而目前我国现有的换热器类型主要有两大类,一类是管壳式换热器,另一类是板式换热器。

本文针对管壳式换热器及板式换热器对应特点的比较,提出选型的参考意见。

1.管壳式换热器及板式换热器结构特点1.1管壳式换热器管壳式换热器:又称列管式换热器。

是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。

结构由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。

管壳式换热器作为一种传统的标准换热设备主要应用在化工、炼油、石油化工、动力、核能和其他工业装置中,特别是在高温高压和大型换热器中的应用占据绝对优势。

通常的工作压力可达4兆帕,工作温度在300℃以下,在个别情况下还可达到更高的压力和温度。

充分表现其结构坚固,能选用多种材料制造,适应性极强等特点。

1.2板式换热器板式换热器:它由板片、密封垫片、固定压紧板、活动压紧板、压紧螺柱和螺母、上下导杆、前支柱等零部件所组成。

其零部件之少,通用性之高,是任何换热器所不能比拟的。

板式换热器的使用范围很广泛,介质从普通水到高粘度的非牛顿型液体;从含固体小颗粒的物料到含少量纤维的物料;从水蒸汽到各种气体;从无腐蚀性的到具有强腐蚀性的各种介质均能处理。

其特点是传热效率高,使用安全可靠,占地小易维护,阻力损失小,热损失小,冷却水量小,投资运行费用低等。

2.换热器设计条件以电厂为例换热器设计应满足电厂从起动到最大出力时各种负荷下的运行需要,并留有一定的裕量,保证换热器在最大负荷、最高进水温度和最大污垢热阻时,在规定的检修周期内,仍能完成给定的冷却任务。

现有国产引进型300MW燃煤机组,各冷却设备要求冷却水进水温度不大于37.5℃,从冷却设备出来被加热过的冷却水最高温度约为42.8℃,其基本参数如下:被冷却水盐水设计压力 1.0Mpa流量1800m3/h进出水温度42.8/37.5压降~0.06MPa冷却水海水(海水与河水交替变化)设计压力0.5Mpa进水温度33℃压降0.05~0.06Mpa3.管壳式换热器及板式换热器的性能比较3.1设计参数比较根据换热器的设计条件分别作了如下2个方案:方案1:2台100%容量的管壳式换热器;盐水量1800m3/h;安装2台,运行1台;每台冷却面积1023m2;盐水入、出口温度分别为42.8℃和37.5℃;循环水入、出口温度分别为33℃和36.5℃;循环水流量约3000m3/h;材质为钛管,复合钛板;外形尺寸φ1800mm×9800mm;重量27002kg。

管壳式换热器优缺点

管壳式换热器优缺点

管壳式换热器按照其结构特点可分为以下几类:1、固定管板换热器1.1结构:管束连接在管板上,管板与壳体相焊;1.2优点:结构简单紧凑,能承受较高压力,造价低,管程清洗方便,管子损坏时方便堵管或更换。

排管数比U形管换热器多。

1.3缺点:管束与壳体的壁温或材料的线胀系数相差较大时,壳体和管束中将产生较大热应力,为此应需要设置柔性组件(如膨胀节)。

不能抽芯无法进行机械清洗。

不能更换管束,维修成本较高。

1.4使用范围:壳程侧介质清洁、不易结垢,不能进行清洗,管程与壳程两侧温差不大或温差较大但壳侧压力不高的场合。

2、浮头换热器2.1结构:两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。

浮头由浮头管板,钩圈和浮头盖组成,是可拆连接,管束可从壳体中抽出。

管束与壳体的热形变互不约束,不会产生热应力。

2.2优点:可抽式管束,当换热管为正方形或转角正方形排列时,管束可抽出进行机械清洗,适用于易结垢及堵塞的工况。

一端可自由浮动,无需考虑温差应力,可用于大温差场合。

2.3缺点:结构复杂,造价高,设备笨重,材料消耗大。

浮头端结构复杂影响排管数。

浮头密封面在操作时易产生内漏。

2.4适用范围:适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。

浮头换热器在炼油行业或乙烯行业中应用较多,由于内浮头结构限制了使用压力和温度,一般情况下Pmax≤6.4MPa,Tmax≤400℃。

3、U形管换热器3.1结构:只有一块管板,管束由多根U形管组成,管的两端固定在同一块管板上,换热管可以自由伸缩。

3.2优点:以U形管尾部的自由浮动解决了温差应力的问题。

结构简单,价格便宜,承压能力强。

3.3缺点:由于受管弯曲半径的限制,布管较少。

壳程流体易形成短路。

坏一根U形管相当于坏两根管,报废率较高。

3.4适用范围:是换热器中唯一可用于高温、高压、高温差的换热器。

适用于管壳壁温差较大或壳程介质结垢需要清洗,又不适宜采用浮头式和固定管板的场合。

常见管壳式换热器的结构及其分类特点

常见管壳式换热器的结构及其分类特点

实验一管壳式换热器的认知实验实验目的:(1)熟悉管壳式换热器的整体结构及其类型;(2)熟悉主要零部件的作用及适用场合;(3)熟悉膨胀节的功能及其设置条件。

实验内容管壳式换热器又称列管式换热器,是一种通用的标准换热设备。

它是实现热流体和冷流体进行热量交换的一种化工行业常用化工设备,两种流体经过换热器后,热流体温度降低,冷流体温度升高,实现热量的传递。

它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。

管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。

管内的通道及与其相贯通的管箱称为管程(tube-side);管外的通道及与其相贯通的部分称为壳程(shell-side)。

一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。

管壳式换热器的主要零部件:壳体、换热管、接管、法兰连接装置、支座、管箱、折流板、管板、膨胀节等。

换热主要元件是换热管,通常换热管排布形式由正方形和正三角形,换热管与管板的连接方式通常有胀接、焊接、胀焊并用三种方式。

膨胀节的作用是减小管板的温差应力。

折流板是作用为了造成壳程流体扰动,使壳程流体呈“S”形流动,提高壳程介质流速,强化传热;对于卧式换热器,还有支撑管束的作用。

折流板结构形式:弓形和圆环形。

管壳式换热器的分类:1、固定管板换热器其由壳体、管束、封头、管板、折流挡板、接管等部件组成。

结构特点为:两块管板分别焊于壳体的两端,管束两端固定在管板上。

换热管束可做成单程、双程或多程。

它适用于壳体与管子温差小的场合。

优点:结构简单、紧凑。

在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。

缺点:壳程不能进行机械清洗;当换热管与壳体的温差较大(大于50℃)时产生温差应力,需在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高。

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构一、引言管壳式换热器作为一种常见的换热设备,在工业生产和能源领域得到广泛应用。

它能够将热量从一个介质传递到另一个介质,实现能量的转移。

本文将深入探讨管壳式换热器的工作原理及结构。

二、工作原理管壳式换热器的工作原理可以概括为传导、对流和辐射三种方式的能量传递。

2.1 传导传热传导是指由于不同温度物体之间的热运动,热量通过颗粒的碰撞和传递实现。

在管壳式换热器中,传导传热主要发生在管壳内部。

热源通过传导方式将热量传递给管壳内的管道,然后通过管道的传导传递给另一介质。

2.2 对流传热对流传热是指热源通过流体的对流方式将热量传递给另一介质。

在管壳式换热器中,热源和另一介质通过管道分别进入管壳内部,热源通过管壁将热量传递给管道内的流体,流体再通过对流方式将热量传递给另一介质。

2.3 辐射传热辐射传热是指热源通过辐射方式将热量传递给另一介质。

辐射传热不需要介质的介入,可以在真空中传递热量。

在管壳式换热器中,热源通过辐射方式将热量传递给管道内壁,然后再通过传导或对流方式将热量传递给另一介质。

三、结构管壳式换热器由管壳和管束两部分组成,具有复杂的结构设计。

3.1 管壳管壳是管壳式换热器的外壳,起到固定管束和流体的作用。

常见的管壳材料有碳钢、不锈钢和铜等。

管壳主要由头盖、壳体、管板和尾盖等部分组成。

3.2 管束管束是管壳式换热器中的核心部件,由管子和管板组成。

管子通常采用无缝钢管或螺旋钢管制成,根据换热要求可以采用不同的布管方式,如并列布管、单列布管和交叉布管等。

管板用于固定管子,保证管子之间的间距。

3.3 流体分流器流体分流器位于管束的进出口处,起到将流体引导到相应的管子中去的作用。

流体分流器的设计关系到换热效率和流体的流动状态。

3.4 密封装置密封装置用于防止热源和另一介质之间的交叉污染,同时保证换热过程中的密封性。

四、工作过程管壳式换热器的工作过程可以分为进料、加热和出料三个阶段。

各种换热器工作原理和特点,值得收藏

各种换热器工作原理和特点,值得收藏

各种换热器工作原理和特点,值得收藏一、换热器1、U形管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了除去热应力。

性能特点:(1)优点此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压本领强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。

(2)缺点是管内清洗不便,管束中心部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。

此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。

这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。

2、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。

依据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。

(1)优点这是一种古老的换热设备。

它结构简单,制造、安装、清洗和维护和修理便利,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。

(2)缺点由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。

为提高传热系数,容器内可安装搅拌器。

3、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。

性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

管壳式换热器ppt课件

管壳式换热器ppt课件

类型与结构
类型
根据结构特点和使用要求,管壳式换热器可分为固定管板式 、浮头式、U形管式、填料函式等类型。
结构
主要由壳体、管束、管板、封头等组成,其中管束是换热器 的核心部件,通过两端固定在管板上,与壳体形成封闭空间 。
02
管壳式换热器的工作原理
传热原理
热传导
管壳式换热器中的传热过程主要 以热传导为主,热量从高温介质 传递到低温介质,通过管壁和壳
适用范围与限制
适用范围
管壳式换热器适用于高温高压的工况, 以及需要承受较大压力和温度变化的场 合。此外,由于其结构简单、可靠性强 ,管壳式换热器也常用于工业生产中的 加热、冷却和冷凝等操作。
VS
限制
管壳式换热器的传热效率较低,因此不适 用于需要高效传热的场合。此外,由于其 体积较大,管壳式换热器也不适用于空间 受限的场合。
在石油化工领域,管壳式换热器的优点包括高可靠性、耐高温高压、良好的热效 率以及适应性强等,使其成为该领域不可或缺的设备之一。
能源工业领域
能源工业是另一个管壳式换热器得到广泛应用的重要领域。在火力发电、核能发电、水力发电等过程中,管壳式换热器都扮 演着重要的角色。
在能源工业中,管壳式换热器被用于加热和冷却各种流体,如水、蒸汽、油等,以实现能量的转换和回收。其高效可靠的运 行对于提高能源利用效率和降低能源成本具有重要的作用。
维护方便
管壳式换热器的结构简单,拆装方便,便于进行维修和清 洗。
缺点
01
02
03
传热效率较低
相比于其他类型的换热器 ,管壳式换热器的传热效 率相对较低。这是由于其 结构特点所决定的。
体积较大
管壳式换热器的体积较大 ,需要占用较多的空间。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管壳式换热器工作原理、分类及其特点
管壳式换热器(shell and tube heat exchanger)又称列管式换热器。

是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。

这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。

1.1管壳式换热器工作原理
管壳式换热器一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。

壳体多为圆筒形,内部装有管束,管束两端固定在管板上。

进行换热的冷热两种流体,一种在管内流动,称为管程流体(图1中蓝色箭头示意);另一种在管外流动,称为壳程流体(图1中红色箭头示意)。

为提高管外流体的传热分系数,通常在壳体内安装若干挡板。

挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。

换热管在管板上可按等边三角形或正方形排列。

等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。

流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。

为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。

这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。

同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。

多管程与多壳程可配合应用。

图1管壳式换热器工作原理示意图
1.2管壳式换热器分类
1.2.1 固定管板式换热器
固定管板式换热器的两端管板,采用焊接与壳体联成一体,结构简单。

由于两个管
板被换热管互相支撑,与其他管壳式换热器相比,管板最薄。

当管束与壳体之间的温差太大而产生不同的膨胀时,常会使管子与管板的接口脱开,发生介质泄漏,因此当只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。

当温度差稍大而壳程压力又不太高时,可在壳体上安装膨胀节,以减小热应力。

1.2.2 浮头式换热器
浮头式换热器的两断管板只有一端管板与壳体焊接固定,另一端的管板可在壳体内自由浮动,完全消除了热应力,该端成为浮头。

整个管束可从壳体中抽出,便于机械清洗和检修。

浮头式换热器的应用较广,但结构比较复杂,造价较高。

1.2.3 U型管换热器
U型管换热器的每根换热管皆弯成U形,管子的两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。

此种换热器由于壳体和管子分开,管束可以自由伸缩,热补偿性能好,结构比浮头式简单,但管程不易清洗。

U型管式换热器一般用于高温高压的情况下,尤其当压力较高时,在弯管段壁厚要加厚,以补偿弯管后管壁的减薄。

1.2.4 填料函式换热器
填料函式换热器的管板一端与壳体固定,另一端采用填料函密封。

它的管束也可以自由膨胀,热补偿性能好,且管程和壳程都能清洗,加工制造比浮头式换热器方便,造价较低。

但由于填料密封处易于泄露,故壳程压力不能过高,也不能用于壳程内易挥发、易燃、易爆和有毒介质的场合。

1.3 流道的选择
进行换热的冷热两流体,按以下原则选择流道:
1)不洁净和易结垢流体宜走管程,因管内清洗较方便;
2)腐蚀性流体宜走管程,以免管束与壳体同时受腐蚀;
3)压力高的流体宜走管程,以免壳体承受压力;
4)饱和蒸汽宜走壳程,因蒸汽冷凝传热分系数与流速无关,且冷凝液容易排出;
5)若两流体温度差较大,选用固定管板式换热器时,宜使传热分系数大的流体走壳程,以减小热应力。

表 1 四种不同形式的管壳式换热器特点
4。

相关文档
最新文档