一次函数的应用知识点+例题

合集下载

(完整)一次函数章节知识点复习+典型例题,推荐文档

(完整)一次函数章节知识点复习+典型例题,推荐文档

o
x
A
B
C
D
ห้องสมุดไป่ตู้
x 2、确定自变量 取值范围的方法:
(1)关系式为整式时,自变量 x 的取值范围为全体实数;
(2)关系式有分母时,分母不等于零;
(3)关系式含有根号时,被开方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,自变量 x 的取值范围还要和实际情况相符合,使之有意义。
15、一次函数与实际问题-------将已知条件转化为点的坐标根据题意(图象)求出直线解析式,然后将问题转 化为求点的坐标
例①某种汽车油箱可储油 60 升,加满油并开始行驶,油
y(L)
箱中的剩余油量 y(升)与行驶的里程 x(km)之间的关系为 56
52 一次函数,如图:
(1)求 y 与 x 的函数关系式;
0
50 80
x(km)
(2)加满一箱油汽车可行驶多少千米?
图象与信息
y m
60

50

30
O2
图1
6 x h
例②甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度 y m与挖掘时间 x h 之间的关系如图 1 所示,
3 /3
10、一次函数 y=kx+b(k≠0)图像的平移-----按“上加下减,左加右减”进行(注:上、下在表达式尾部加减,
左右在 x 上加减)
向左平移 n 个单位 y=k(x+n)+b
向右平移 n 个单位 y=k(x-n)+b
向上平移 n 个单位 y =kx+b+n
向下平移 n 个单位
y =kx+b-n

《一次函数的应用》专题复习

《一次函数的应用》专题复习

《一次函数的应用》专题复习1.某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.2. 旅客乘车按规定可免费随身携带一定重量的行李,如果携带行李的重量超过规定重量,那么需购买行李票.设行李费y(单位:元)是行李质量x(单位:kg)的一次函数,其图象如图所示.(1)求y关于x的函数解析式.(2)旅客最多可免费随身携带行李多少千克?3.某学校计划购买若干台电脑,现在从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?4. 为了预防新冠肺炎,某药店销售甲、乙两种防护口罩,已知甲口罩每袋的售价比乙口罩多5元,小丽从该药店购买了3袋甲口罩和2袋乙口罩共花费115元.(1)求该药店甲、乙两种口罩每袋的售价分别为多少元?(2)根据消费者需求,药店决定用不超过10000元购进甲、乙两种口罩共500袋.已知甲口罩每袋的进价为23.4元,乙口罩每袋的进价为19元,要使药店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少?5. 某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?6.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.7. 5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?8. 2020年以来,新冠肺炎疫情肆虐全球,我市某厂接到订单任务,7天时间生产A、B两种型号的口罩不少于5.8万只,该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只.(1)试求出该厂每天能生产A型口罩或B型口罩多少万只?(2)生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元,且A型口罩只数不少于B型口罩.在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?9. 某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?10. 某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.11. 某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.12.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为______千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.13. 为了满足开展“阳光体育”大课间活动的需求,某学校计划购买一批篮球.根据学校的规模,需购买A、B两种不同型号的篮球共300个.已知购买3个A型篮球和2个B型篮球共需340元,购买2个A型篮球和1个B型篮球共需要210元.(1)求购买一个A型篮球、一个B型篮球各需多少元?(2)若该校计划投入资金W元用于购买这两种篮球,设购进的A型篮球为t个,求W关于t的函数关系式;(3)在(2)的条件下,若购买B型篮球的数量不超过A型篮球数量的2倍,则该校至少需要投入资金多少元?14. 现有下面两种移动电话计费方式:(1)以x(单位:分钟)表示通话时间,y(单位:元)表示通话费用,分别就两种移动电话计费方式写出y关于x的函数解析式.(2)求出如何选择这两种计费方式更省钱.15. 有一网络平台为7月份某品牌荔枝的销售设计了如下两种方案:A方案:购买量不超过2千克时按标价销售,超过2千克时超过的部分按标价打折销售;B方案:一律按标价的七折销售.设销售量为x千克(x≥0)时,A方案需要支付的费用为y1元(如图所示),B方案需要支付的费用为y2元.(1)该网络平台上这种品牌荔枝的标价为______元/千克;(2)A方案需要支付的费用y1关于x的函数图象如图所示,求y1关于x的函数表达式;(3)当购买量在什么范围内时,选择A方案更优惠,请说明理由.16. 有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:分)之间的关系如图所示:(1)求0≤x≤4时y随x变化的函数关系式;(2)当4<x≤12时,求y与x的函数解析式;(3)每分钟进水、出水各是多少升?17. 某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.18. 某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,请写出具体的租车方案?(2)若甲种货车每辆需付燃油费1400元,乙种货车每辆需付燃油费1000元,则应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?19. 猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?20. 暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费.请你帮他们选择一下,选哪家旅行社比较合算.21. 北京冬奥会开启了一场全球瞩目的精彩体育盛事,也让吉祥物“冰墩墩”成为新晋顶流,由于生产厂家产能不足,一度造成“一墩难求”的局面,售价直线上升,随着生产厂家全力协调产能配给,吉祥物“冰墩墩”的售价逐渐趋于正常.某玩具商家安排采购员小雷从厂家购进“冰墩墩”、“雪容融”两款毛绒玩具,这两款毛绒玩具的进价和售价如下表:(1)第一次小雷用8400元购进了“冰墩墩”“雪容融”共100个,求“冰墩墩”“雪容融”各购进多少个?(2)第二次小雷在进货时,厂家规定“冰墩墩”的进货数量不得超过“雪容融”进货数量的两倍,小雷计划购进两种毛绒玩具共150个,设小雷购“冰墩墩”m个,售完两款毛绒玩具共获得利润W元,问应如何设计进货方案才能获得最大利润并求出最大利润.22.“精准扶贫,暖心助力”.驻村书记通过某平台直播带货,帮助当地百姓脱贫致富.苹果成本价为每千克5元,销售价为每千克8元;蜜桔成本价为每千克6元,销售价为每千克10元.通过直播,两种水果共销售5000kg,苹果的销售量不少于2000kg.(1)若销售的苹果和蜜桔的总成本为27400元,则销售苹果______ kg,销售蜜桔______ kg.(2)当苹果的销量为多少时,两种水果的总利润最大?最大利润是多少?23.随着5G网络的覆盖,某通信公司推出了两种全国流量套餐业务.套餐一:使用者每月需缴50元月租费,流量按1元/GB收费.套餐二:当流量不超过50GB时,收取90元套餐费;当流量超过50GB时,超过的部分按0.5元/GB收取.设某人一个月内使用5G流量xGB.按照套餐一的费用为y1,按照套餐二所需的费用为y2.(1)分别写出y1,y2与x之间的函数关系式;(2)若每月使用70GB的流量,应选择哪种套餐更合适?24. 已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中DE、OC分别表示甲、乙离开A地的路程s(km)与时间t(ℎ)的函数关系的图象.(1)乙先出发,甲后出发,相差______ ℎ;(2)甲骑摩托车的速度为60km/ℎ,直接写出甲离开A地后s(km)与时间t(ℎ)的函数表达式及自变量t的取值范围;(3)当乙出发几小时后,两人相遇.25. 商家销售某种商品,每件成本50元.经市场调研,当售价为60元时,可销售300件;售价每增加1元,销售量将减少10件.为了提高销售量,当售价为80元时,网络主播直播带货,此时售价每增加1元,需支付给主播300元.物价局对此商品规定:售价最高不超过110元.如图中的折线ABC表示该商品的销售量y(单位:件)与售价x(单位:元)之间的函数关系.(1)求线段BC对应的函数表达式;(2)当售价为多少元时,该商家获得的利润最大?最大利润是多少?(3)直播带货后,售价至少为______ 元,该商家获得的利润不低于直播带货前的最大利润.26. 我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:(1)笼中鸡、兔各有多少只?(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?27. 我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量,应如何购买才能使总费用最少?并求出最少费用.的1228.北京时间2022年4月16日上午,神舟十三号载人飞船返回舱在东风着陆场预定区域着陆,航天员翟志刚、王亚平、叶光富安全顺利出舱,身体状态良好,神舟十三号载人飞行任务取得圆满成功,又一次引起了“宇航”热,某商场欲购进一批宇航员玩偶,其中黄色玩偶的批发价为每只a元,售价为每只20元,蓝色玩偶的批发价为每只b元,售价为每只30元.(1)该商场购进黄色玩偶10只和蓝色玩偶20只共需550元,购进黄色玩偶15只和蓝色玩偶10只共需425元,求a和b的值;(2)该商场决定每周购进两种玩偶共100只,且投入的资金不少于1890元又不多于1900元,设购进黄色玩偶x只,商场把这些玩偶全部销售完的利润为y元,写出y与x的关系式,并求出最大利润.29. 某公司计划组织员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人2000元.经过协商:甲旅行社表示可给予每位游客七五折(按报价75%)优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折(按报价80%)优惠.设该公司参加旅游的人数是x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元.请解答下列问题:(1)请分别写出y1,y2与x之间的关系式.(2)在甲、乙两家旅行社中,你认为选择哪家旅行社更划算?。

一次函数的应用(知识点+例题)

一次函数的应用(知识点+例题)

1.(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).一次函数的应用知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数b kx y +=的图象是经过(0,b )和(-kb,0)两点。

【典型例题】1.直线y=-x+2与x 轴的交点坐标是 ,与y 轴的交点坐标是 2.直线y=-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 3.函数y=x+1与x 轴交点为( )A .(0,-1)B .(1,0)C .(0,1)D .(-1,0)4.直线y=-32x+3与x 轴、y 轴所围成的三角形的面积为( ) A .3 B .6 C .34 D .325.直线y=-2x-4交x 轴、y 轴于点A 、B ,O 为坐标原点,则S △AOB = 。

6.若直线y=3x+b 与两坐标轴所围成的三角形的面积是6个单位,则b 的值是 。

7.如图所示,已知直线y=kx-2经过M 点,求此直线与x 轴交点坐标和直线与两坐标轴围成三角形的面积.2:面积问题面积:一次函数y=kx+b 与x 、y 轴所交的两点与原点组成的三角形的面积为2b k(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。

(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。

(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。

1. 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

专题20.3 一次函数的应用(第1课时)(解析版)

专题20.3 一次函数的应用(第1课时)(解析版)

第二十章一次函数专题20.3 一次函数的应用(第1课时)基础巩固一、单选题(共6小题)1.一辆货车与客车都从A地出发经过B地再到C地,总路程200千米,货车到B地卸货后再去C地,客车到B地部分旅客下车后再到C地,货车比客车晚出发10分钟,则以下4种说法:①货车与客车同时到达B地;②货车在卸货前后速度不变;③客车到B地之前的速度为20千米/时;④货车比客车早5分钟到达C地;4种说法中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【分析】①由函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,根据货车比客车晚出发10分钟就可以得出货车与客车同时到达B地;②分别求出货车卸货前后的速度并作比较就可以得出结论;③由路程÷时间=速度就可以得出结论;④由函数图象可以得出货车到达C地的时间是80分钟,客车到达C地的时间是85分钟就可以得出,但是客车先出发了10分钟,故货车比客车晚5分钟到达C地.【解答】解:①函数图可以得出货车到达B地用时30分钟,客车到达B地用时40分钟,∵车比客车晚出发10分钟,∴货车与客车同时到达B地.故正确②货车在卸货前的速度为:80÷0.5=160千米/时,货车在卸货后的速度为:120÷0.5=240千米/时.∵160≠240,∴货车在卸货前后速度不相等.故错误;③客车到B地之前的速度为:80÷=120千米/时≠20千米/时.故错误;④由函数图象可以得出货车到达C地所有时间是80分钟,客车到达C地所用时间是85分钟,∵客车先出发了10分钟,∴货车是客车出发90分钟后到达的C地,∴货车比客车晚5分钟到达C地.故错误.故选:A.【知识点】一次函数的应用2.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则下列说法错误的是()A.每分钟的进水量为5升B.每分钟的出水量为3.75升C.OB的解析式为y=5x(0≤x≤4)D.当x=16时水全部排出【答案】D【分析】根据题意和函数图象可以求得每分钟的进水量和出水量,从而可以解答本题.【解答】解:由题意可得,每分钟的进水量为:20÷4=5(L),∴OB的解析式为y=5x(0≤x≤4);每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L),30÷3.75=8(min),8+12=20(min),∴当x=20时水全部排出.故选:D.【知识点】一次函数的应用3.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h【答案】D【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.【知识点】一次函数的应用4.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶的路程是()A.0.5千米B.1千米C.1.5千米D.2千米【答案】A【分析】分别根据甲、乙的图象计算出各自的速度即可求出每分钟乙比甲多行驶的路程.【解答】解:由甲的图象可知甲的速度为:12÷24=0.5千米/分,由乙的图象可知乙的速度为:12÷(18﹣6)=1千米/分,所以每分钟乙比甲多行驶的路程是0.5千米.故选:A.【知识点】一次函数的应用5.小明和小亮在同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间x(秒)之间的函数关系如图所示,下列说法错误的是()A.小明的速度是4米/秒B.小亮出发100秒时到达终点C.小明出发125秒时到达了终点D.小亮出发20秒时,小亮在小明前方10米【答案】D【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图可得,小明的速度为8÷2=4(米/秒),故选项A正确;小亮出发100秒时到达终点,故选项B正确;小明出发500÷4=125秒时到达终点,故选项C正确;小亮出发20秒时,小明走的路程是8+4×20=88(米),小亮走的路程是500÷100×20=100(米),此时小亮在小明前方100﹣88=12米处,故选项D错误;故选:D.【知识点】一次函数的应用6.某市体育馆将举办明星足球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元).方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.则两种方案购票总价相同时,x的值为()A.80B.120C.160D.200【答案】D【分析】根据题意,可以分别求得方案一和方案二对应的函数解析式,然后令它们的函数值相等,即可得到两种方案购票总价相同时,x的值.【解答】解:设OA段对应的函数解析式为y=kx,12000=100k,得k=120,即OA段对应的函数解析式为y=120x,设AB段对应的函数解析式为y=ax+b,,得,即AB段对应的函数解析式为y=60x+6000,由题意可得,方案二中y与x的函数关系式为y=50x+8000,令50x+8000=120x,得x=,∵x为整数,∴x=应舍去,令60x+6000=50x+8000,得x=200,即当x=200时,两种方案购票总价相同,故选:D.【知识点】一次函数的应用二、填空题(共8小题)7.我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水20吨,则应交水费元.【答案】44【分析】根据函数图象中的数据,可以求得超出10吨水时,每吨水的价格,从而可以计算出某户居民4月份用水20吨,则应交水费多少元.【解答】解:由图象可知,超出10吨的部分,每吨水的价格是(31﹣18)÷(15﹣10)=2.6(元),当用水20吨时,应交水费:18+(20﹣10)×2.6=44(元),故答案为:44.【知识点】一次函数的应用8.某衬衣定价为100元时,每月可卖出2000件,受成本影响,该衬衣需涨价,已知价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式为.【答案】y=-5x+2500【分析】根据某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件,即可得到月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式.【解答】解:由题意可得,y=2000﹣×50=﹣5x+2500,故答案为:y=﹣5x+2500.【知识点】一次函数的应用9.空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=x+331;当x=22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离为m.【答案】1721【分析】根据题意,可以求得当x=22℃时,对应速度y的值,然后根据路程=速度×时间,即可得到当x =22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离.【解答】解:当x=22时,y=×22+331=344.2,则当x=22℃时,某人看到烟花燃放5s后才听到声音,则此人与燃放烟花所在地的距离为:344.2×5=1721(m),故答案为:1721.【知识点】一次函数的应用10.上海市居民用户燃气收费标准如表:年用气量(立方米)每立方米价格(元)第一档0﹣﹣﹣310 3.00第二档310(含)﹣﹣﹣520(含) 3.30第三档520以上 4.20某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是.【答案】y=3x(0≤x<310)【分析】根据该居民用户用气量在第一档,利用“总价=单价×数量.”即可求出该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式.【解答】解:根据题意得第一档燃气收费标准为3.00(元/立方米),∴该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是y=3x(0≤x<310).故答案为:y=3x(0≤x<310).【知识点】一次函数的应用11.“赛龙舟”是我国的一个传统运动项目.某天,甲乙两队在一个笔直的湖面进行“赛龙舟”比赛,全程300米.两队同时出发,刚出发,乙队就以明显优势领先,甲队发现形式不利,迅速调整比赛状态,把速度提升了,并以提升后的速度赛完全程,假设乙队全程是匀速比赛状态,甲队提速前和提速后也分别是匀速运动,甲、乙两队之间的距离y(米)与乙队行驶x(秒)之间的关系如图所示,则甲队到达终点时,乙队离终点还有米.【分析】根据题意和函数图象中的数据,可以先求出乙的速度,再根据图象中的数据,可以求出甲开始的速度,从而可以得到甲提速后的速度,再根据图象中的数据,可以得到甲到达终点的时间,从而可人计算出甲队到达终点时,乙队离终点的距离.【解答】解:由图可得,乙队的速度为300÷100=3(米/秒),设甲队开始的速度为a米/秒,15(3﹣a)=(45﹣15)×[a(1+)﹣3],解得a=2,∴甲队提速后的速度为2×(1+)=3.5(米/秒),∴甲队到达终点用的时间为:15+(300﹣15×2)÷3.5=15+=15+77=92(秒),∴甲队到达终点时,乙队离终点还有3×(100﹣92)=3×7=3×=(米),故答案为:.【知识点】一次函数的应用12.开学前夕,某服装厂接到为一所学校加工校服的任务,要求5天内加工完220套校服,服装厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲乙两车间各自加工校服数量y(套)与甲车间加工时间x(天)之间的关系如图①所示;未加工校服w(套)与甲加工时间x(天)之间的关系如图②所示,请结合图象回答下列问题:(1)甲车间每天加工校服套;(2)乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是.【答案】【第1空】20【第2空】y=35x-55【分析】(1)根据题意和函数图象中的数据,可以计算出甲车间每天加工校服数量;(2)根据函数图象中的数据,可以计算出乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式.【解答】解:(1)由图①可得,甲车间每天加工校服:(220﹣120)÷5=100÷5=20(套),故答案为:20;(2)由图象可得,a=(220﹣185)﹣20=35﹣20=15,设乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是y=kx+b,∵点(2,15),(5,120)在函数y=kx+b的图象上,∴,解得,即乙车间维修设备后,乙车间加工校服数量y(套)与x(天)之间函数关系式是y=35x﹣55,故答案为:y=35x﹣55.【知识点】一次函数的应用13.某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为元.【答案】30.8【分析】设超过3千米的函数解析式为y=kx+b,根据题意列出方程组,利用待定系数法求得解析式,然后把x=10代入即可求得.【解答】解:由图象可知,出租车的起步价是14元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2.4x+6.8,∴出租车行驶了10千米则y=2.4×10+6.8=30.8(元),故答案为30.8.【知识点】一次函数的应用14.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y(元)与用水量x(吨)之间的函数关系如图所示.按上述分段收费标准,小明家三、四月份分别交水费29元和18元,则四月份比三月份节约用水吨.【答案】4【分析】分别利用待定系数法求出y=2x(0≤x<10),y=3x﹣10(x>10),然后把y=29和y=18代入对应的函数关系式中求出对应的自变量x的值,再求差即可.【解答】解:设0≤x<10的函数解析式为y=mx,把(10,20)代入y=kx得20=10m,解得m=2,所以y=2x(0≤x<10),把y=18代入y=2x,得x=9,即四月份用了9吨水,设x>10的函数解析式为y=kx+b,把(10,20)和(20,50)代入y=kx+b得,解得,所以y=3x﹣10(x>10),当y=29时,把y=29代入y=3x﹣10得3x﹣10=29,解得x=13,即三月份用了13吨水,13﹣9=4(吨),即四月份比三月份节约用水4吨.故答案为:4.【知识点】一次函数的应用拓展提升三、解答题(共6小题)15.甲、乙两人开车匀速从同一地点到距离出发地480千米处的景点旅游,甲出发半小时后,乙以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)求甲车出发多长时间两车相距75千米.【答案】60【分析】(1)根据题意结合图象列式计算即可;(2)分别求出相应线段的两个端点的坐标,再运用待定系数法解答即可;(3)把y=80代入(2)的结论解答即可.【解答】解:(1)甲行驶的速度为:30÷0.5=60(千米/小时),故答案为:60.(2)如图所示:设甲出发x小时后被乙追上,根据题意得:60x=80(x﹣0.5),解得x=2,即甲出发2小时后被乙追上,∴点A的坐标为(2,0),480÷80+0.5=6.5(时),即点B的坐标为(6.5,90),设AB的解析式为y=kx+b,由点A,B的坐标可得:,解得,所以AB的解析式为y=20x﹣40(2≤x≤6.5);(3)根据题意得20x﹣40=75或60x=480﹣75,解得x=或答:甲车出发小时或小时两车相距75千米.【知识点】一次函数的应用16.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?【分析】(1)根据题意,可以先设出y与x的函数关系式为y=kx+b,然后再根据当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm,即可求得该函数的解析式;(2)将x=10代入(1)中的函数解析式,即可得到相应的身高.【解答】解:(1)设y与x之间的关系式为y=kx+b,,得,即y与x之间的关系式是y=7.5x+0.5;(2)当x=10时,y=7.5×10+0.5=75.5,答:当该动物腿长10dm时,其身高为75.5dm.【知识点】一次函数的应用17.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30时,求y与x之间的函数关系式;(2)若小李4月份上网35小时,他应付多少元的上网费用?【分析】(1)根据函数图象中的数据,可以得到当x≥30时,y与x之间的函数关系式;(2)将x=35代入(1)中的函数解析式,即可求得小李4月份上网35小时,他应付多少元的上网费用.【解答】解:(1)设当x≥30时,y与x之间的函数关系式是y=kx+b,,解得,,即当x≥30时,y与x之间的函数关系式是y=3x﹣30;(2)当x=35时,y=3×35﹣30=105﹣30=75,即小李4月份上网35小时,他应付75元的上网费用.【知识点】一次函数的应用18.表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…邮箱剩余油量Q(L)100948882…①根据上表可知,每小时耗油升;②根据上表的数据,写出用Q与t的关系式:;③汽车油箱中剩余油量为55L,则汽车行驶了小时.【答案】【第1空】6【第2空】Q=100-6t【第3空】7.5【分析】①根据表中数据即可得到结论;②由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;③求汽车油箱中剩余油量为55L,则汽车行使了多少小时即是求当Q=55时,t的值.【解答】解:(1)据上表可知,每小时耗油100﹣94=6 升;(2)关键题意得:Q=100﹣6t;(3)当Q=55时,55=100﹣6t,6t=45,t=7.5.答:汽车行使了7.5小时.故答案为:①6;②Q=100﹣6t;③7.5.【知识点】一次函数的应用19.某地长途汽车客运公规定旅客可随携带一定质量的行李,如果超过规定需要购买行李票,行李票费用y元是行李质量xkg的一次函数,如图所示.(1)求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量是多少?【分析】(1)利用待定系数法求一次函数解析式解答;(2)令y=0时求出x的值即可.【解答】解:(1)由图可知,函数图象经过点(60,6),(80,10),所以,,解得;所以解析式为:y=0.2x﹣6;(2)令y=0,则0.2x﹣6=0,解得x=30,所以,旅客最多可免费携带行李的质量为30kg.【知识点】一次函数的应用20.为了迎接疫情彻底结束后的购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,问该专卖店共有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式组,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【解答】解:(1)依题意得,,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解得95≤x≤100,∵x是正整数,100﹣95+1=6,∴共有6种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,W最大=22000﹣100a,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;W最大=16000;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,W最大=21700﹣92a;即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【知识点】一次函数的应用、一元一次不等式的应用、分式方程的应用。

沪科版八年级上册 12.4 一次函数的应用典型例题讲解 讲义(无答案)

沪科版八年级上册 12.4 一次函数的应用典型例题讲解 讲义(无答案)

一次函数的应用一、知识点复习1.一次函数的图像与性质2.一次函数)0kxby中k的实际意义:=k(≠+在行程问题中,k可以是指代单一物体的速度,也可指代速度和或速度差。

3.待定系数法求一次函数的解析式二、常考典型例题分析题型一:待定系数法在一次函数中的应用1.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是()A.9cm B.10cm C.10.5cm D.11cm2.大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数,如表是测得的指距与身高的一组数据:请你根据所给信息确定:某人身高为196cm,一般情况下他的指距应是。

题型2:分段函数问题3.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=-8t+25 B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升题型3:两直线相交问题4.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l、2l分别表示小敏、小聪离B地的距离y(km)与已用1时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/h C.4km/h和4km/h D.4km/h和3km/h5.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y千米与行驶时间x小时之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地B.客车速度为60千米/时,出租车速度为100千米/时C.两车出发后3.75小时相遇D.两车相遇时客车距乙地还有225千米题型4:利用一次函数解决购买方案问题6.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(2x)个羽毛球,供社区居民免费借用。

一次函数的应用问题归纳总结

一次函数的应用问题归纳总结

一次函数的应用问题归纳总结一、求表达式:1、已知两点坐标例:在平面直角坐标系中,已知直线经过点A(4,4),B(﹣2,1).求直线AB所对应的函数表达式。

2、通过文字叙述例:从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)3、通过图像(表格)例:去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准.若某户居民每月应缴水费y(元),用水量x(吨)的函数,其图象如图所示,(1)分别写出x≤5和x>5的函数解析式.(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准.(3)若某户居民该月用水3.5吨,则应交水费多少元?若某户居民该月交水费9元,则用水多少吨?二、求面积例1、已知一次函数y=kx+b的图象平行于直线y=﹣3x,且经过点(2,﹣3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.例2、如图:已知一次函数的图象与x轴交于点A,与y轴交于点B(0,2),且与正比例函数y=x的图象交于点C(m,4)(1)求m的值;(2)求一次函数表达式;(3)求这两个函数图象与x轴所围成的△AOC的面积.例3、如图,一次函数y=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异于点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.例4、如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.三.求两直线的交点例:如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.四.性质的应用例1、已知一次函数y=kx+b的图象平行于直线y=﹣3x,且经过点(2,﹣3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.例2、在平面直角坐标系中,已知一次函数y=1-x的图象经过P1(2,y1)、2+P2(4,y2)两点,则y1y2(填“>”或“<”).例3、如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.一次函数在近3年中考中的应用2019年成都考点:求两个一次函数的交点,求一次函数和反比例函数的交点,求三角形的面积。

一次函数的应用练习题及答案

一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。

在现实生活中,我们经常会遇到一次函数的应用场景。

本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。

练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。

已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。

求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。

根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。

因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。

a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。

b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。

练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。

已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。

求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。

根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。

一次函数经典例题大全

一次函数经典例题大全

一. 定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

一次函数的应用专项练习30题(有答案)ok

一次函数的应用专项练习30题(有答案)ok

一次函数的应用专项练习30题(有答案)ok一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________米3;(2)水池最大蓄水量是_________米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到黄山去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达黄山天都峰时测得当时的气温是29.24°C.求黄山天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市范围内每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月内使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________先到达终点;(2)第_________秒时,_________追上_________;(3)比赛全程中,_________的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________.11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段内,挖掘速度为每小时_________米;乙队在2≤x≤6的时间段内,挖掘速度为每小时_________米;请根据乙队在2≤x≤6的时间段内开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段内,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段内,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________支龙舟队处于领先位置(填“甲”或“乙“);(2)_________支龙舟队先到达终点(填“甲“或“乙”),提前_________分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值范围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.陈褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和陈褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________m,他途中休息了_________min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足20≤x≤40,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月内通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需交纳行李费,已知行李费y(元)是行李质量x(千克)的一次函数.现在黄明带了60千克的行李,交了行李费5元,王华带了78千克的行李,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行李?21.某长途汽车客运站规定,乘客可免费携带一定质量的行李,但超过该质量则需要购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行李?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________(h)后,小明与小聪相遇,此时两人距离B地_________(km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动电话计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月内某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月内本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值范围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.11∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣180(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣180=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格内容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与陈褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷180=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,12∴当x=23时,w有最大值,是105800,当采购量为23吨时,张家在这次买卖中所获的利润w 最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行李.答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行李21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行李.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,13从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y 最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月内本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b ,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.14。

原创:“一次函数”知识点梳理及典型例题

原创:“一次函数”知识点梳理及典型例题

一、函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例1:圆的周长C 与半径r 的关系式r c π2=,常量是 ,变量是 。

2、函数的定义?判断y 是否为x 的函数关键看什么? 例1:下列各图象中,y 不是x 函数的是( ).3、自变量取值范围 4、函数值 5、确定函数自变量取值范围的方法: (1)必须使关系式成立。

①当关系式为整式时,自变量取值范围为全体实数;②当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零; ③关系式含有二次根式时,自变量取值范围必须使被开方的式子不小于零;(2)当函数关系表示实际问题时,自变量的取值范围还要符合实际情况,使之有意义。

例1.函数112++--=x x x y 的自变量x 的取值范围为 . 例2. 盛满10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y (千克)与时间t (时)之间的函数关系式是______________,自变量t 的取值范围是_________ ,函数的值得取值范围是_________ 6、函数的图像例1. 小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,最后停下.下面可以近似地刻画出以上情况的一副图是( ).7、函数解析式:用含有表示自变量的字母的代数式表示函数的式子叫做解析式。

例1. 有一棵树苗,刚栽下去时树高为2.1米,以后每年张0.3米.(1)写出树高y (米)与年数x (年)之间的函数关系式;(2)求3年后的树高;(3)多少年后树苗的高度达到5.1米?8、描点法画函数图形的一般步骤: 9、函数的表示方法:B C D A二、一次函数1、正比例函数及性质(1) 解析式: (2)必过点: (2) 走向: (3) 增减性: (4) 倾斜度:例1:若正比例函数y =(2m -1)22m x -中,y 随x 的增大而减小,则m=_______。

例2.若正比例函数y =(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ). A .m <0 B .m >0 C .m <12 D .m >12例3.已知正比例函数y =kx (k ≠0)的图象经过第二、四象限,则( ).A. y 随x 的增大而减小 B . y 随x 的增大而增大C .当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小D .无论x 如何变化,y 不变. 例4.若函数y =2283m x m -+-是正比例函数,则常数m 的值为________.例5.在函数①y =13x ;②y =2x -3;③y =12x +;④y =22x ;⑤y =3(2-x );⑥y =3x π中,正比例函数有____________例6.已知y 与x 成正比例,若y 随x 的增大而减小,且其图象经过点A (1,-m )和B (m ,-1),求y 与x 之间的函数关系式. 2、一次函数及性质(1)解析式: (2)必过点: (3)走向: (4)增减性: (5)倾斜度:(6)图像的平移:练习:1.如果一次函数y =kx +b 的图象经过第一、三、四象限,那么( ).A.k >0,b >0B.k >0,b <0C.k <0,b >0D.k <0,b <0 2.函数y =-ax +b (a >0,b <0)的图象不经过( ).A.第一象限B.第二象限C.第三象限D.第四象限3.过点P (8,2)且与直线y =x +1无交点的直线的解析式是( ).A .y =x +10B .y =x -10C . y =x -6D . y =x -2( ).5.已知一次函数y =kx +b 的图象如图2所示,则k 、b 的符号是( )A. k <0,b <0 B.k >0,b <0 C.k <0,b >0 D. k >0,b >03、一次函数y=kx +b 的图象的画法. 例1.画出y =2x -3的图象。

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

例1 从2014年起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注.据了解大多数市民还不了解此新标准,小明对新旧鞋号的标注变化进行了对比研究,发现新标准鞋子毫米数y与旧鞋号x之间存在着一次函数关系,并得到相关数据如下:旧鞋号 x 36 38 40新标准毫米数y230 240 250(1)请你帮助小明根据上述数据归纳出新标准毫米数与旧鞋号标注之间的换算关系式,并用一句简明的数学语言来表示;(2)如果小明的爸爸穿的一双42号凉鞋坏了,准备买一双同样尺寸的新凉鞋,那么应买一双多少毫米数的新凉鞋?例2 某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?知识点2 图像法解决实际问题注:读图时一定要明确横纵坐标表示的量所代表的意义。

例3 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求yl 与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案.二、典型例题题型1 运用一次函数的关系解决生活中的实际问题例 1 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数表达式;(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度;(3)若桌面上有若干个饭碗,整齐叠放成一摞,已测得它的高度为37.5cm,你能求出此时有多少个饭碗吗?题型2利用图表信息解决实际问题例2 某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?题型3 建立一次函数模型解决实际问题例3 某下岗职工购进一批苹果到农贸市场零售,已知买出的苹果数量x(kg)与收入y(元)的关系如下表:在平面直角坐标系中描点,观察点的分布情况,探求收入y(元)与买出数量x(kg)之间的函数关系式。

一次函数的应用举例-

一次函数的应用举例-

一次函数的应用举例一次函数是最简单,最基本的函数之一,它有着极为广泛的应用.现以近几年的一些中考题为例说明一次函数的应用.一、用于解决现实生活中的问题例1 “五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s (千米)与时间t (时)的关系可用图中的曲线来表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时? (2)求出返程途中,s (千米)与时间t (时)的函数关系式并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总量为35升,汽车每行驶1千米耗油 升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议(加油所用时间忽略不计).分析:(1)可直接从图象上看出来;(2)设函数关系式为=s b kt +,再用代点入式法求解即可; (3)是个开放性问题,答案不唯一,只要所提建议合理即可. 解:(1)由图象可看出,小明全家在旅游景点游玩了4小时.(2)设=s b kt +,代入点(14,180)和(15,120),得1418015120k d k d +=⎧⎨+=⎩解得60-=k ,1020=b ,故=s 102060+-t . 令=s 0,得17=t ,即小明全家到家是当天下午5时.(3)合理化建议:①9时30分前必须加一次油;②若8时30分前加满油箱,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量不得少于25升.点评:这是一道贴近生活实际的函数图象的“审读—理解—应用”问题,将行程问题91与一次函数的图象有机结合起来,构思巧妙,设计新颖.由于本题的信息由图象结出,故应仔细审视图象并在此基础上建立数学模型,进而运用相关的数学基础知识和数学基本思想进行解决.二、用于解决“方案设计型”问题例2 东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了两种优惠方法.甲:买一支毛笔赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法小组购买这种毛笔10支,书法练习本x (x ≥10)本.(1)写出每种优惠方法实际付款金额y 甲(元)、y 乙(元)与x (本)之间的函数关系式.(2)若商场允许可任选一种优惠方法购买,也可同时用两种优惠方法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.分析:读懂题意是解决本题的基础,在此基础上建立数学模型——一次函数模型是解决本题的关键.解:(1)由题意,得y 甲=2005+x ,y 乙=2255.4+x .(2)当x =60时,y甲=500,y 乙=495,故任选一种优惠方法购买时,乙方法省钱.当同时选用两种方法购买时,设用甲方法购买m 支毛笔,获赠m 本练习本;用乙方法购买(10-m )支毛笔,(60-m )本练习本,则付款金额4952%90)]60(5)10(25[25+-=⨯-+-+=m m m m y . 由题意知m ≤10,故当=10时,y 有最小值,y最小495475495102<=+⨯-=,故用甲方法购买10支毛笔,用乙方法购买50本练习本最省钱.点评:这是一道实际应用题,首先要进行数学抽象,把它转化为一次函数问题,然后利用一次函数的性质及自变量的取值范围来解决.一次函数b kx y +=本没有最大值或最小值,但当自变量x 的取值受某种条件制约(如本例中m 只能取不超过10的整数)时,一次函数就有最大值或最小值了.三、用于解决“决策型”问题例3 某果品公司急需将一批不易存放的水果从A 市运到B 市销售,现有三家运输公司可供选择,它们提供的信息见下表.解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A 、B 两市的距离(精确到个位);(2)若A 、B 两市的距离为s 千米,且这批水果在包装与装卸及运输过程中的损耗为300元/小时,则要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)包装与装卸及运输费用与A 、B 的距离有关.设距离为x 千米,分别写出三家公司的费用,利用所给等量关系列方程可求出x .(2)由题意知总费用是距离s 的函数,故应分别求出选各公司所需总费用与s 的函数关系式,然后通过比较来判断应选哪家公司.解:(1)设A 、B 两市的距离为x 千米,则各公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司(10x +700)元, 由题意,得(8x +1000)+(10x +700)=2(6x +1500), 故x ≈217,即A 、B 两市的距离约为217千米. (2)设选择各公司所需总费用分别为y 甲、y 乙、y 丙, 由表格信息可知各公司包装与装卸及运输所需时间分别为: 甲公司(60s +4)小时,乙公司(50s+2)小时,丙公司(100s +3)小时, 故y 甲=6s +1500+(60s+4)×300=11s +2700,y 乙=8s +1000+(50s+2)×300=14s +1600, y 丙=10s +700+(100s+3)×300=13s +1600. 因s >0,故y 乙>y 丙恒成立,故只需比较y 甲与y 丙的大小. 因y 甲-y丙= -2s +1100=0时,s =550,故:①当s <550千米时,y 甲>y 丙,又y 乙>y 丙,故此时可选丙公司较好; ②当s =550千米时,y 甲=y 丙,又y 乙>y 丙,故此时可选甲公司或丙公司; ③当s >550千米时,y 乙>y 丙>y 甲,故此时选甲公司较好.点评:这又是一道利用一次函数解决实际问题的应用题.其中根据题意和表格信息建立一次函数模型是解题关键.从以上几题可看出,一次函数是解决实际问题的重要数学模型之一,善于读懂图象、表格并从图象的形状、位置、发展变化趋势等信息中获取相关的数据、性质、规律,再将其转化为数学问题加以解决是解决此类问题的关键.。

一次函数的应用 练习题(带答案

一次函数的应用 练习题(带答案

一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。

一次函数的应用知识点梳理及经典例题讲解.doc

一次函数的应用知识点梳理及经典例题讲解.doc

一次函数的应用知识点梳理及经典例题讲解知识梳理10 min.1、一次函数的概念若两个变最X、y间的关系式可以表示成y二kx+b (k、b为常数,kHO)的形式,则称y是x的一次函数(x 为自变量,y为因变量)特别地,当b二0时,称y是x的正比例函数。

2、一次函数的图象①一次函数尸kx+b的图象是一条经过(0,b)(-bk, 0)的直线,正比例函数y=kx的图象是经过原点(0, 0)的一条直线。

②在一次函数y = kx + b中当£〉0时,y随兀的增大而增大,当Z?>0时,直线交歹轴于正半轴,必过一、二、三象限; 当bvO时,直线交y轴于负半轴,必过一、三、四象限.y随无的增大而减小,当kvO时,当b〉0时,直线交y轴于正半轴,必过一、二、四象限;当Z?vO时,直线交歹轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图彖是一条直线,并且讨论了£、b的正负对图彖的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.典例精讲27 min.例1 •已知函数y = 2x-l的图象如图所示,请根据图象回答下列问题:(1)当x = 0时,y的值是多少?(2)当y = 0时,兀的值是多少?(3)当兀为何值时,y>0?(4)当兀为何值时,yvO?答案:解:(1) ^x = 0时,y = -l; (2)当y = 0时,x二一;2(3)当丄时,y>0; (4)当xv丄时,y<0.2 2例2、如图,直线对应的函数表达式是(3 y=-x+322答案:A例3、(2008江苏常州)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行吋间t(h)之间的函数关系如图所示,给出下列说法:[]20a tin)⑴他们都骑行T 20km;(2) 乙在途中停留了 0. 5h;(3) 甲、乙两人同吋到达目的地;(4) 相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有A. 1个B. 2个C. 3个 答案:B 例4.某产品的生产流水线每小时可生产100件产品.生产前没有产品积压,生产3h 后安排 工人装箱,若每小时装产品150件,未装箱的产品数量(y )是时间(?)的函数,那么这 个函数大致图象只能是( )答案:A例5.如图所示,是某企业职工养老保险个人月缴费y (元)随个人月工资兀(元)变化的D. 4个图象.请你根据图象回答下列问题:(1) 张总工程师五月份工资是3 000元,这个月他应缴个人养老保险费—元;(2) 小王五月份工资为500元,他这个月应缴纳个人养老保险费 _________ 元.(3) 当月工资在600〜2 800元之I'可,英个人养老保险费y (元)与月工资兀(元)之间的 函数关系式为 ________ .例6.已知A 、B 两市相距80km.甲乙两人骑自行车沿同一公路各自从A 市、B 市出发, 相向而行,如图所示,线段EF 、CD 分别表示甲、乙两人离B 市距离5(km) 和所用去时间/(h)之间的函数关系,观察图象回答问题:(1) 乙在甲出发后几小时才从3市岀发?(2) 相遇吋乙走了多少小吋?(3) 试求出各自的$与/的关系式.(4) 两人的骑车速度各是多少?(5) 两人哪一个先到达目的地?答案:(1) 200(2) 40 4 40 —X --------- 55 11(4) v 甲=14.4km/h,吃=22.5 km/h ;72 72(5) ------------------ 在 s 甲— ---------------------- 1 + 80 中,—| £甲=0 时,0 — 1 + 8050t — ,9 答案:解:(1)乙在甲出发后lh,才从B 市发出;7 7 7(2) 2一―1 = 1 一(h),即相遇时,乙走了 l-h ;9 9 9(3) 设甲的函数关系式为讪="+勺,将(0,80)(2彳,40 19 1 1k =_72 解得]1_540 叫 h = 80. 甲的函数关系式为叶 -—^ + 805 设乙的函数关系式为s 乙=屮"•解得< b 2 _45— ,2__45__T乙的函数关系式为吃 45 45-- 1 ----2 241~9在s L=-t-—中,当吃=80时,即80 = —Z- —乙2 2 乙2 250 41••• 一 > ——,9 9•••乙先到达目的地.例7、已知两条直线yl =2x-3和y2 = 5・x・(1) 在同一坐标系内做出它们的图像;⑵求出它们的交点A 坐标;(3)求出这两条直线与x 轴围成的三角形ABC 的面积;(4) k 为何值时,直线2k+ 1 =5x+4y 与k=2x+3y 的交点在每四彖限.分析(1)这两个都是一次函数,所以它们的图像是直线,通过列表,取两点,即可画出 这两条直线.(2) 两条直线的交点坐标是两个解析式组成的方程组的解.(3) 求出这两条直线与x 轴的交点坐标B 、C,结合图形易求出三角形ABC 的面积.(4) 先求出交点坐标,根据第四象限内的点的横坐标为止,纵坐标为负,可求出k 的取值Swc =-BCxAE = -x-x- = — MBC 2 2 2 3 122k + 1 = 5x + 4y, k — 2无 + 3y.2k + 3x = ------(4)两个解析式组成的方程组为 范围.7 “k-2解这个关于X、y的方程组,得I 7由于交点在第四象限,所以x>0,y<0.(2£ + 3 n即彳/ 解得k — 2 2------ < 0.7例8:旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量尤(千克)的一次函数为j ・画岀这个函数的图像,并求旅客最多可以免费携带多少千克的行李?分析求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x轴的交点横坐标的值.即当y=0时,无=30.由此可知这个函数的口变量的取值范围是x>30.解函数y = — x — 5(x>30)S像为:当y=0时,兀=30.所以旅客最多可以免费携带30千克的行李.例9:今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y (元)是用水量兀(吨)的函数,当0工5时,>=0.72兀,当x>5时,y = 0.9兀・0.9・(1)画出函数的图像;(2)观察图像,利用函数解析式,回答自来水公司采取的收费标准.分析画函数图像时,应就自变量0仝5和x>5分别画出图像,当0仝5时,是正比例函数,当x>5是一次函数,所以这个函数的图像是一条折线.解(1)函数的图像是:(2)自來水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元例10.如图所示的曲线表示一辆自行车离家的距离与时间的关系,骑车者9点离开家,15 点冋家,根据这个曲线图,请你冋答下列问题:(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时I'可?(3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00〜10:00和10:00〜10:30的平均速度各是多少?(6)他在何时至何时停止前进并休息午餐?(7)他在停止前进后返回,骑了多少千米?(8)返冋时的平均速度是多少?(9)11:30禾口13:30时,分别离家多远?(10)何时离家22km?答案:解:(1)到达离家最远地方的时间是12点到13点,离家30km.(2)10点半开始第一次休息,休息了半小时.(3)第一次休息时离家17km.(4)11:00 到12:00,他骑了13km.(5)9:00〜10:00的平均速度是10km/h; 10:00〜10:30的平均速度是14km/h.(6)从12点到13点间停止前进,并休息午餐较为符合实际情形.(7)返回骑了30km.(8)返回30km共用了2h,故返回时的平均速度是15km/h.(9)设直线DE所在直线的解析式为:s = M + b・将£>(11,17)、£(12,30)的坐标代入,得(lbt + b = 17, 仏= 13,\ 解得彳所以s = 13/ — 126.[12jt + Z? = 30. [b = -n6.当t = 11.5时,s = 23.5 ,故11:30时,离家23.5km.(在用样的方法求出13:30,离家22.5km Z后,你是否能想出更简便的方法?)(10)由(9)的解答可知,直线DE的解析式为5 = 13/-126,将5 = 22代入得/ = 11.3 ,即11点]8分时离家22km,在FG上同样应有一点离家22km,Q 下血可以这样考虑:13点至15点的速度为15km/h,从F点到22km处走了8km,故需一15h (即32min),故在13点32分时间同样离家22km.例11..假定甲、乙两人一次赛跑中,路程S (m )与时间f (s )的关系如图所示,那么可以知道:(1) __________________ 这是一次 米赛跑; y (m )(2) ___________________________________ 甲、乙两人中先到达终点的是 ;(3) ______________________________ 乙在这次赛跑屮的速度为 ・例12.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q 吨,加油飞机的加油油箱余油量0吨,加油 时间为/分钟,Q 、@与/之间的函数图象如图所示,结合图象回答下列问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 全加油过程中,求运输飞机的余油量Q (t )与时间r (min )的函数关系式.(3) 运输飞机加完油后,以原速继续飞行,需10h 到达冃的地,油料是否够用?说明理 由.答案:(1) 100(2)甲(3) 8m/s答案:解:(1)由图象知,加油飞机的加油油箱中装载了30t油.全部加给运输飞机需lOmin.(2)设Q、=kt + b,把(0,40)和(10,69)代入,= S人解得¥ = 29 69 = 10R + b. [b = 40.・・・Q = 29 + 40(0 W/W 10);(3)由图象可知运输飞机的耗油量为O.lt/min./. 1 Oh 耗油址为:10X60X0.1 = 60t<69t.故油料够用.例13:.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2h时血液屮含药量最高,达6ug/ml (lug=10_3mg),接着逐渐衰减,10h 时的血液中含药量为每毫升3ug,每毫升血液中含药量y(ug)随时间/(h)的变化如图.当成人按规定剂量服药后:(1)分别求出xW2和兀$2时,y与兀Z间的函数关系式;(2)如果每毫升血液中含药量为4ug或4ug以上时在治疗疾病时是有效的,那么这个有效时间多长?当兀$ 2时,设y = k 2x + h.27 b = — • 43 27••• y =——x + ——; - 8 4 4(2)当 xW2 时,即 3兀三4,33 27 22当兀22时,y 2 4 ,即——兀 -------- 2 4, xW ——.‘ 8 4 322 4•••有效治疗时间为: -- =6 .3 3即这个有效治疗时间为6h.例14:.两个物体A 、B 所受的压强分别为匕,P l }(都为常数)它们所受压力F 与受力面 积S的函数关系图象分别是射线/4, l R 如图所示,则()A. P A <P BB. P A = P RC. P A >P,D. W P BF I丁先+?解得.3 = 10怠 +b.由题意得答案:A例15.如图是某固体物质在受热熔解过程中物质温度T(°C)与时间f(s)的关系图,其屮A阶段物质为固态,B阶段为固液共存,C阶段为液态.(1)________________________________ 物质温度上升温度最快的是阶段,最慢的是阶段;(2)_____________________________________________ 物质的温度是60°C,那么时间f的变化范围是___________________________________________ .答案:(1) C B (2) 20W/W50例16.某图书出租店,有一种图书的租金y (元)与出租天数兀(天)之间的关系如图所示, 则两天后,每过一天,累计租金增加答案:0.5例17 甲、乙两辆汽车同时从相距280km的A、B两地相向而行,£(km)表示汽车与A地的距离,/(min)表示汽车行驶的时间,如图所示,厶、厶分别表示两辆汽车的$与/的关系.(1)/,表示哪辆汽车到A地的距离与行驶时间的关系;(2)汽车乙的速度是多少?(3)lh后,甲、乙两辆汽车相距多少千米?(4)行驶多长时间,甲、乙两辆汽车相遇?答案:解:(1)厶表示汽车乙到4地的距离与时间Z间的关系;(2)汽车乙的速度是80km/h;(3)lh后,甲、乙两辆汽车相距140km;(4)2804-(60 + 80) = 2,即行驶2h,甲、乙两辆汽车相遇.例18:.水库的库容通常是用水位的高低來预测的.下表是某市一水库在某段水位范围内的库容与水位高低的相关水文资料,请根据表格提供的信息回答问题.水位高低兀(单位:米)10203040• • •库容y (单位:万立方米)3000360042004800• • •(1 )将上表中的各对数据作为坐标(兀,y),在给11!的坐标系中用点表示11!来:(2)用线段将(1 )中所画的点从左到右顺次连接.若用此图象来模拟库容y与水位高低兀的函数关系.根据图彖的变化趋势,猜想丿与兀间的函数关系,求出函数关系式并加以验证;(3 )由于邻近市区连降暴雨,河水暴涨,抗洪形势十分严峻,上级要求该水库为其承担部分分洪任务约800万立方米.若该水库当前水位为65米,且最高水位不能超过79米.请根据上述信息预测:该水库能否承担这项任务?并说明理由.(笫25题)答案:(1)描点如图所示.(2 )连线如图所示.猜想:y与兀具有一次函数关系.设其函数解析式为y二d + b伙工0).把(10,3000)、(20,3600)代入得:{3000 = 10/: + /?,[3600 = 20^+/?.仏= 60,解得:t[b = 2400./. y = 60x + 2400将(30,4200)、(40, 4800)分别代入上式,得:4200 = 60x30 + 2400,4800 = 60x40 + 2400.所以(30,4200)、(40, 4800)均在3^ = 60x4-2400 的图象上.(3 )能承担.・.•当x = 79时,y{ = 79x60 + 2400 ・当x = 65时,y2 =65x60 + 2400.必 _% = 60(79-65) = 60x14 = 840.・・・840 > 800 .・•・该水库能接受这项任务.例19:•种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.(1)若一部分草莓运往省城批发给零售筒,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省城直接批发零售商的草裁量兀(吨)之间的函数关系式;(1)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.答案:解:(1)所求函数关系式为y = 1200x +2000(22-%)即y =-800%+ 44000(2)由于草莓必须在10天内售完X则有一 + 22—兀W104解之,得兀216在函数〉,= _800x + 44000中,-800<0・•・y随兀的增人而减小・••当x = 16时,y有最大值31200 (元)22-16 = 6, 16-4 = 4, 6-1 = 6答:用4天时间运往省城批发,6天时间在本地零售.(回答销量也可)才使获利润最大,最大利润为31200元.例20.已知一次函数y = ax + b(a. b是常数),x与y的部分対应值如下表:那么方程ax + b = 0的解是________________ ;不等式ax + b>0的解集是__________ 答案:x = l; x<\.。

一次函数的应用(知识总结)[1]

一次函数的应用(知识总结)[1]

一次函数知识点精析1、一次函数与一元一次不等式的关系解一元一次不等式ax+b>0(或<0)可以归结为以下两种认识:(1)从函数值的角度看,就是寻求使一次函数y=ax+b的值大于0(或小于0)的自变量x的取值范围;(2)从函数图象的角度看,就是确定直线y=kx+b在x轴上方(或下方)部分所有的点的横坐标所构成的集合。

2、用画函数图象的方法解不等式ax+b>0(或<0)的一般步骤(1)画y=ax+b的图象;(2)观察图象与x轴的交点坐标。

图象在x轴上方时对应的x的范围是不等式ax+b>0的解集,图象在x轴下方时对应的x的范围是不等式ax+b<0的解集。

解题方法指导考查知识点一次函数与一元一次方程、一元一次不等式的关系。

预测题型填空题、选择题、解答题。

解题思路观察一次函数的图象,利用图象求解。

考查知识点用图象法解不等式预测题型解答题解题思路先将不等式化为ax+b>0(或<0)的形式,再画出函数y=ax+b的图象,观察图象求解。

考查知识点一次函数与一元一次不等式的关系预测题型填空题、选择题、解答题解题方法利用图象求解难点指津探究一元一次不等式的关系在实际问题中的应用。

【问题】如图2-3-24,l1反映某公司产品的销售收入与销售量的关系,l2反映该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时的销售量()图2-3-24A、小于4件B、大于4件C、等于4件D、大于或等于4件综合延伸考查知识点一次函数与一元一次不等式在实际问题中的应用预测题型填空题、选择题、解答题解题思路运用图象或一次函数解析式、一元一次不等式求解。

经典例题【例1】已知一次函数的图象经过P(4,1)和Q(-2,4),求此函数的解析式,并画出图象,且根据图象回答:当x为何值时y>0,y=0,y<0。

【例2】用图象法解不等式6x+3>2x+7。

【例3】如图2-3-15所示,平面直角坐标系中画出了函数y=kx+b的图象:(1)根据图象,求k、b的值;(2)在图中画出函数y=-2x+2的图象;(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值。

一次函数的应用含答案

一次函数的应用含答案

一次函数的应用1.如图,是某工程队修路的长度y(单位:m)与修路时间t(单位:天)之间的函数关系.该工程队承担了一项修路任务,任务进行一段时间后,工程队提高了工作效率,则该工程队提高效率前每天修路的长度是()米.A.150B.110C.75D.702.早上9点,甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图,下列描述不正确的是()A.AB两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达A地D.甲车与乙车在早上10点相遇3.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘更多4.学过一次函数的知识后,某数学兴趣小组通过实验估计某液体的沸点,经过几次测量,得到如下数据当加热80s时,该液体沸腾,则其沸点温度是()时间t(单位:S)0102030液体温度y(单位:°C)15253545A.100°C B.90°C C.85°C D.95°C5.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过2千米但不超过5千米时,每千米的费用是()A.1元B.1.1元C.1.2元D.2.5元6.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg7.王老师一家自驾游去了离家170千米的黄山,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,他们出发2小时时,离目的地还有()千米.A.40B.60C.110D.1308.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,之后只出水不进水,每分的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图.则下列说法正确的是( )A .进水管每分钟的进水量为4LB .当4<x ≤12时,y =54x +12 C .出水管每分钟的出水量为54LD .水量为15L 的时间为3min 或16min9.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s (m )与时间t (min )之间的函数关系,已知小明购物用时30min ,返回速度是去商场的速度的1.2倍,则a 的值为( )A .46B .48C .50D .5210.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (℃)满足一次函数的关系(如表格所示),则下列说法错误的是( )温度t /℃ … ﹣20 ﹣10 0 10 20 30 … 声速v /(m /s )…318324330336342348……A .温度越高,声速越快B .当空气温度为20℃时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为v =35t +330 D .当空气温度为40℃时,声速为350m /s11.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)间有下表的关系.下列说法不正确的是()x/kg01234y/cm1517192123A.因变量y是自变量x的一次函数B.当弹簧长度为18cm时,所挂物体的质量为0.5kgC.随着所挂物体重量的增加,弹簧长度逐渐变长D.所挂物体的重量每增加1kg,弹簧长度增加2cm12.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是()A.整个进行过程花了40分钟B.整个进行过程共跑了2700米C.在途中停下来休息了5分钟D.返回时休息后的速度比去的时候小60米/分13.某校增设了多种体育选修课来锻炼学生的体能,小颖从教学楼以1米/秒的速度步行去操场上乒乓球课,她从教学楼出发的同时小华从操场以5米/秒的速度跑步回教学楼拿球拍,再立刻以原速度返回操场上乒乓球课.已知小颖、小华之间的距离y(米)与出发时间x (秒)的部分函数图象,则下列说法错误的是()A.点C对应的横坐标表示小华从操场到教学楼所用的时间B.x=30时两人相距120米C.小颖、小华在75秒时第二次相遇D.CD段的函数解析式为y=﹣4x+40014.如图1是某湖最深处的一个截面图,湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=ah+P0,其图象如图2所示,其中P0为湖水面大气压强,a为常数且a>0,点M的坐标为(34.5,342),根据图中信息分析,下列结论正确的是()A.湖水面大气压强为76.0cmHgB.函数解析式P=ah+P0中P的取值范围是P<342C.湖水深20m处的压强为256cmHgD.P与h的函数解析式为P=8h+66(0≤h≤34.5)15.声音在空气中传播的速度v(简称声速)与空气温度t的关系(如下表所示),则下列说法错误的是()温度t/℃﹣20﹣100102030声速v/(m/s)318324330336342348 A.温度越高,声速越快B.在这个变化过程中,自变量是温度t,t是v的函数C.当空气温度为20℃,声速为342m/sD.声速v与温度t之间的关系式为v=35t+33016.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度ycm与鞋子的码数x之间满足一次函数关系,下表给出y与x的一些对应值:码数x26303442长度ycm18202226根据小明的数据,可以得出该品牌38码鞋子的长度为()A.24cm B.25cm C.26cm D.38cm17.美美在研究物体吸热与放热知识时,用相同的电加热器分别对质量为0.2kg的水和0.3kg的另一种液体进行加热,得到实验数据如图所示.下列说法错误的是()18的关系,并画出图象(AC是线段,射线CD平行于x轴),下列说法错误的是()19.李强一家自驾车到离家500km的九寨沟旅游,出发前将油箱加满油.如表记录了轿车行驶的路程x(km)与油箱剩余油量y(L)之间的部分数据:下列说法不正确的是()轿车行驶的路程x/km0100200300400…油箱剩余油量y/L5042342618…A.该车的油箱容量为50L B.该车每行驶100km耗油8LC.油箱剩余油量y(L)与行驶的路程x(km)之间的关系式为y=50﹣8xD.当李强一家到达九寨沟时,油箱中剩余10L油20.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm)与所挂物体质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg01234…y/cm88.599.510…A.y与x的函数表达式为y=8+0.5xB.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式中一次项系数表示“所挂物体质量每增加1kg弹簧伸长的长度”D.挂30kg物体时,弹簧长度为23cm一次函数的应用参考答案一.选择题(共20小题)1.C; 2.D; 3.D; 4.D; 5.A; 6.A; 7.A; 8.D; 9.D; 10.D;11.B;12.B;13.D;14.D;15.B;16.A;17.C;18.B;19.C;20.D;。

《一次函数》经典例题剖析(附练习及答案)

《一次函数》经典例题剖析(附练习及答案)

《一次函数》复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图11-18(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③如图11-18(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图11-18(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.知识点3 正比例函数y=kx (k ≠0)的性质 (1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小. 知识点4 点P (x 0,y 0)与直线y=kx+b 的图象的关系(1)如果点P (x 0,y 0)在直线y=kx+b 的图象上,那么x 0,y 0的值必满足解析式y=kx+b ; (2)如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点P (1,2)必在函数的图象上.例如:点P (1,2)满足直线y=x+1,即x=1时,y=2,则点P (1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ; (2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交;当b=0时,即-kb=0时,直线经过原点;当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。

八年级上数学人教版《一次函数的应用》课堂笔记

八年级上数学人教版《一次函数的应用》课堂笔记

《一次函数的应用》课堂笔记一、知识点梳理1.一次函数的定义:形如y=kx+b(k≠0)的函数称为一次函数。

其中,k为斜率,b为截距。

2.一次函数的图象:一条直线。

当k>0时,函数图象呈上升趋势;当k<0时,函数图象呈下降趋势。

3.一次函数的应用:实际问题中,很多情况下可以用一次函数来表示两个量之间的关系,例如路程、时间、速度之间的关系等。

二、例题解析1.例题一:某城市出租车收费标准如下:起步价8元,3千米以内(含3千米)按起步价收费。

3千米以上时,每增加1千米收费1.8元。

写出乘车费用y(元)与乘车距离x(千米)之间的函数关系式。

解析:根据题意,当x≤3时,y=8;当x>3时,y=8+1.8(x-3)。

因此,乘车费用y与乘车距离x之间的函数关系式为分段函数。

1.例题二:某公司推销一种产品,付给推销员的月报酬有两种方案:方案一:不论推销多少都有600元基本工资,每推销一件产品增加推销费2元;方案二:不付基本工资,每推销一件产品给推销费5元。

若小明一个月推销产品达到x 件,分别计算两种方案下小明一个月应得的报酬。

解析:方案一下小明的月工资为:600+2x元;方案二下小明的月工资为:5x元。

因此,两种方案下小明一个月应得的报酬分别为600+2x元和5x元。

三、课堂小结1.通过本节课的学习,我们掌握了一次函数的定义、图象以及应用。

2.通过例题的解析,我们学会了如何将实际问题转化为数学问题,并利用一次函数解决。

3.通过本节课的学习,我们提高了自己的抽象思维和推理能力,培养了应用意识和解决问题的能力。

四、作业布置1.复习本节课所学知识点,并完成相关练习题。

2.预习下一节课所学内容,做好预习笔记。

五、教学反思通过本节课的教学,我发现学生在理解一次函数的应用方面还存在一定的困难。

在今后的教学中,我应该加强实际问题的引入和解析,帮助学生更好地理解一次函数的应用。

同时,我也应该注重培养学生的抽象思维和推理能力,提高他们的数学素养和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).一次函数的应用知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数b kx y +=的图象是经过(0,b )和(-kb,0)两点。

【典型例题】1.直线y=-x+2与x 轴的交点坐标是 ,与y 轴的交点坐标是 2.直线y=-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 3.函数y=x+1与x 轴交点为( )A .(0,-1)B .(1,0)C .(0,1)D .(-1,0)4.直线y=-32x+3与x 轴、y 轴所围成的三角形的面积为( ) A .3 B .6 C .34 D .325.直线y=-2x-4交x 轴、y 轴于点A 、B ,O 为坐标原点,则S △AOB = 。

6.若直线y=3x+b 与两坐标轴所围成的三角形的面积是6个单位,则b 的值是 。

7.如图所示,已知直线y=kx-2经过M 点,求此直线与x 轴交点坐标和直线与两坐标轴围成三角形的面积.2:面积问题面积:一次函数y=kx+b 与x 、y 轴所交的两点与原点组成的三角形的面积为2b k(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。

(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。

(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。

1. 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

2. 已知一个正比例函数与一个一次函数的图象交于点A (4,3),且OA=OB (1)求两个函数的解析式;(2)求△AOB 的面积;3. 已知:m x y l +=2:1经过点(-3,-2),它与x 轴,y 轴分别交于点B 、A ,直线b kx l +=:2经过点(2,-2),且与y 轴交于点C (0,-3),它与x 轴交于点D (1)求直线21,l l 的解析式;(2)若直线1l 与2l 交于点P ,求ACD ACP S S ∆∆:的值。

4. 如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP 的面积为6; (1)求△COP 的面积;(2)求点A 的坐标及p 的值;(3)若△BOP 与△DOP 的面积相等,求直线BD 的函数解析式。

5. 如图1,在平面直角坐标系中,O 为坐标原点,直线l :m x y +-=21与x 、y 轴的正半轴分别相交于点A 、B ,过点C (-4,-4)画平行于y 轴的直线交直线AB 于点D ,CD=10.(1)求点D 的坐标和直线l 的解析式; (2)求证:△ABC 是等腰直角三角形;(3)如图2,将直线l 沿y 轴负方向平移,当平移适当的距离时,直线l 与x 、y 轴分别相交于点A′、B′,在直线CD 上存在点P ,使得△A′B′P 是等腰直角三角形.请直接写出所有符合条件的点P 的坐标.(不必书写解题过程)知识点二:一次函数应用题一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式; (3)利用一次函数的有关知识解题。

题型1:一次函数图象的应用例1:甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1)分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量t 的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?例2:为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度) 0<x≤140(2)小明家某月用电120度,需交电费元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.【同步训练】1. 甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2分)(2)求乙组加工零件总量a的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)题型2:表格信息类例1:为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费情况如下表:(1)求该市每吨水的基本价和市场价.(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?例2:小明练习100米短跑,训练时间与100米短跑成绩记录如下:(1)请你为小明的100米短跑成绩y(秒)与训练时间x(月)的关系建立函数模型;(2)用所求出的函数解析式预测小明训练6个月的100米短跑成绩;(3)能用所求出的函数解析式预测小明训练3年的100米短跑成绩吗?为什么?【同步训练】1. 湿地公园计划在园内坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2 000棵,种植A,B两种树苗的相关信息如下表:设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式及x的取值范围.(2)假设这批树苗种植后刚好成活1980棵,则造这片林的总费用需多少元?题型3:实际问题中的一次函数【典型例题】例1:小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?例2:如图,某花园的护栏是用直径80cm的条形刚组制而成,且每增加一个半圆形条钢,半圆护栏长度增加acm,(a>0)设半圆形条钢的个数为x(x为正整数),护栏总长为ycm(1)当a=60时,y与x之间的函数关系式为;(2)若护栏总长度为3380cm,则当a=50时,所用半圆形条钢的个数为;(3)若护栏总长度不变,则当a=60时,用了n个半圆形条钢,当a=50时用了(n+k)个半圆形条钢,请求出n,k之间的关系式.题型4:文字信息类例1:某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式。

(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本。

例2:某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【同步训练】1. 我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?题型5:一次函数最优化问题例1:库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.【同步训练】1. 现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?【巩固训练】1. 某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1和y2分别与x之间的函数关系图象(两条射线)如图4,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租那家的车合算2. 我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x 的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五•一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?3. 工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.海豚教育错题汇编1. 均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.海豚教育个性化作业1. 某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式;(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本?2. 某公司市场营销部的营销员的个人月收入与该营销员每月的销量成一次函数关系,其图象如图所示. 根据图象提供的信息,解答下列问题:(1)求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式:(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.3. 如图是某汽车行驶的路程S(km)与时间t(min) 的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式.4. 在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与.B.港的距离....分别为1y、2y(km),1y、2y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.Oy/km9030a0.5 3P甲乙x/h160x(万件)y(元)0 14002。

相关文档
最新文档