高二数学三角函数的应用PPT教学课件

合集下载

5.7 三角函数的应用 课件(共26张PPT)

5.7 三角函数的应用 课件(共26张PPT)

5.7 三角函数的应用课件(共26张PPT)(共26张PPT)5.7三角函数的应用第五章学习目标学科素养1.了解三角函数是描述周期变化现象的重要函数模型;2.会用三角函数模型解决简单的实际问题1.数学建模2.逻辑推理1自主学习函数y=Asin(ωx+φ),A>0,ω>0中参数的物理意义Aωx+φφ2经典例题题型一三角函数在物理中的应用解列表如下:2t+0 π 2πts 0 4 0 -4 0描点、连线,图象如图所示.(2)小球上升到最高点和下降到最低点时的位移分别是多少?解小球上升到最高点和下降到最低点时的位移分别是4 cm和-4 cm.(3)经过多长时间小球往复振动一次?解因为振动的周期是π,所以小球往复振动一次所用的时间是π s.跟踪训练1已知电流I与时间t的关系为I=Asin(ωt+φ).∴ω≥300π>942,又ω∴N*,故所求最小正整数ω=943.题型二三角函数在生活中的应用解三角函数应用问题的基本步骤跟踪训练2健康成年人的收缩压和舒张压一般为120~140 mmHg 和60~90 mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg为标准值.记某人的血压满足函数式p(t)=115+25sin(160πt),其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.解p(t)max=115+25=140(mmHg),p(t)min=115-25=90(mmHg),即收缩压为140 mmHg,舒张压为90 mmHg.此人的血压在血压计上的读数为140/90 mmHg,在正常值范围内.3当堂达标√√√4.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin +k.据此函数可知,这段时间水深(单位:m)的最大值为A.5B.6C.8D.10√解析根据图象得函数的最小值为2,有-3+k=2,k=5,最大值为3+k=8.【课后作业】对应课后练习。

三角函数的应用ppt课件

三角函数的应用ppt课件
D 系,在转动一周的过程中,H 关于 t 的函数解析式为( )
A.
H
55
sin
π 15
t
π 2
,
x 0, 30
C.
H
55
sin
π 15
t
π 2
55 ,
x 0, 30
B.H
55
sin
π 15
t
π 2
,
x 0, 30
D.H
55
sin
π 15
t
π 2
65,
x 0, 30
解析:因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min ,所 以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要15min , 又因为摩天轮最高点距离地面高度为120m ,所以t 15 时, H 120 ,
i
Asin
t
来刻画,其中

表示频率,A
表示振幅,
表示初相.
解:
(1)由图可知,电流最大值 5A,因此 A=5;电流变化的周期为 1 s,频率为 50Hz, 50
即 50 ,解 得 100π ;再 由初始状 态( t=0)的 电流约为 4.33A,可 得

sin
0.866
,因此
约为
π 3
.所以电流 i
解析:设角速度
k
sin (k
0)
,故旋转一周所用的时间t
k
2
sin
.当
90
2
时,
t
24
,故
k
12
,所以
t
24
sin
.故当“傅科摆”处于北纬
40
时,

5.7 三角函数的应用 课件(共20张PPT)

5.7 三角函数的应用 课件(共20张PPT)
(5)每秒钟小球能往复振动多少次?
.

4
解:(1)由题意可得h=2sin(t+ )的图象,如图所示:

(2)由题意可得当t=0时,h=2sin(0+ )
4
= 2,
故小球在开始振动时的位置在(0, 2).
(3)由解析式可得A=2,故小球的最高点和
最低点与平衡位置的距离均为2(厘米).
(4)可得函数的周期为T=2π,故小球往复
想发现和提出、分析和解决问题,提升数学建模素养.
一、引入新课
地球自转
钟摆
潮涨潮落
我们已经学习了三角函数的概念、图象和性质,特别研究
了三角函数的周期性.在现实世界中,大到宇宙天体的运动,
小到质点的运动以及现实生活中具有周期性变化的现象无
处不在,那么能不能建立数学模型来刻画具有周期性变化
的问题呢?
二、问题探究
函数y=Asin(ωx+φ)+b的半个周期的图象,
1
2
所以A= ×(30-10)=10,
1
2
b= ×(30+10)=20,
1 2

因为 × =14-6,所以ω= .
2

8

3
所以 ×10+φ=2π+2kπ,k∈Z,取φ= ,
8
4
3
所以y=10sin( x+ )+20,x∈[6,14].
8
4
的最多时间是16小时.
②设在时刻x货船航行的安全水深为y,
那么y=11.5-0.5(x-2)(x≥2).

6
设f(x)= 3sin x+10,x∈[2,10],g(x)=11.5-0.5(x-2)(x≥2),
由f(6)=10>g(6)=9.5且f(7)=8.5<g(7)=9知,

《三角函数的应用》三角函数PPT教学课件(第1课时)

《三角函数的应用》三角函数PPT教学课件(第1课时)

根据图象过点(0.005,311),代入U=311sin(100πt+φ),可得φ=2kπ,k∈Z. 所以U=311sin(100πt),t∈[0,+∞).
归纳小结
问题9 对于一个周期性现象,你该如何利用三角函数来刻画?在本节课中, 涉及哪些数学思想?
答案:利用三角函数刻画周期性现象,就是要找出这一现象中哪两个变量满 足“当其中一个变量增加相同的常数时,另一个变量的值重复出现”,然后通过 数学建模,求出这两个变量之间满足的三角函数关系.
s 3cos( g t ), t ∈[0,∞).
l3
(1)当l=25时,求沙漏的最大偏角(精确到0.0001rad); (2)已知g=9.8m/s2,要使沙漏摆动的周期是1s,线的长度应当是多少(精确到 0.1cm)?
新知探究
4.建模解模
解:(1)∵ s 3cos( g t ) ,∴可得s的最大值为3.
时,i
-5

当 t 1 时,i 0.
60
新知探究
4.建模解模
练习1 如图,一根绝对刚性且长度不变、质量可忽略不 计的线,一端固定,另一端悬挂一个沙漏.让沙漏在偏离平 衡位置一定角度(最大偏角)后在重力作用下铅锤面内做周 期摆动.若线长lcm,沙漏摆动时离开平衡位置的位移为s( 单位:cm)与时间t(单位:s)的函数关系是
φ为初相. 问题8 根据图象3(2),你能说出电流的的最大值A,周期T,初始状态(
t=0)的电流吗?由这些值,你能进一步完成例2的解答吗? 答案: 由图可知,A=5,T= 1 s,初始状态的电流为4.33A.
50
新知探究
4.建模解模
解:由图3(2)可知,电流最大为5A,因此A=5;
电流变化的周期T= 1 s,即 2π = 1 s,解得ω=100π;

三角函数的应用 ppt课件

三角函数的应用 ppt课件

(2) 电压值重复出现一次的时间间隔;
(3) 电压的最大值和第一次取得最大值的时间.
探究二 三角函数模型在生活中的应用 例2 如图,游乐场中的摩天轮匀速转动,每转动一圈需要12分钟, 其中心O距离地面40.5米,半径为40米,如果你从最低处登上摩天轮, 那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻 开始计时,请回答下列问题:
(1) 作出函数的图象; [答案] 函数的图象如图所示.
(3) 当单摆摆动到最右边时,离开平衡位置的位移是多少?
(4) 单摆来回摆动一次需要多长时间?
解题感悟 三角函数模型在物理中的应用主要体现在简谐运动中,其中对弹簧振子和单 摆的运动等有关问题考查的最多,尤其要弄清振幅、频率、周期、平衡位置 等物理概念的意义和表示方法.
5.7三角函数的应用
学习目标
1.会用三角函数模型解决一些具有周期变化规律的实际问
题.
2.能将某些实际问题抽象为三角函数模型.
要点梳理
1.三角函数模型的作用 三角函数作为描述现实世界中
周期现象 的一种数学
模型,可以用来研究很多问题,在刻画
周期变化 规ቤተ መጻሕፍቲ ባይዱ、预
测未来等方面发挥重要作用.
[激趣诱思] 江心屿,位于浙江省温州市区北面瓯江中游,属于中国四大 名屿.该屿风景秀丽,东西双塔凌空,映衬江心寺,历来被称 为“瓯江蓬莱”. 江心寺为全国32所观音道场之一,分前、中、后三殿,殿内槛联匾额,琳琅 满目.寺院大门两边有一著名的叠字联: “云朝朝,朝朝朝,朝朝朝散;潮长长,长长长,长长长消 (念‘yúnzhāocháo,zhāozhāocháo,zhāocháozhāosàn;cháochángzhǎng, chángchángzhǎng,chángzhǎngchángxiāo’).”该对联巧妙地运用了叠字 诗展现了瓯江潮水涨落的壮阔画面.

三角函数的应用三角函数ppt课件

三角函数的应用三角函数ppt课件
探究一
探究二
探究三
思维辨析
随堂演练
答案:C
探究一
探究二
探究三
思维辨析
随堂演练
2.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过 周期后,乙的位置将移至( )A.x轴上 B.最低点 C.最高点 D.不确定解析:相邻的最大值与最小值之间间隔半个周期,故乙移至最高点.答案:C
探究一
探究二
探究一
探究二
探究三
思维辨析
随堂演练
延伸探究 本例(2)中,按照规定,该海滨浴场在每天上午对冲浪爱好者开放之前,须首先对海滨浴场的各种设施进行全面详细的安全检查,且检查工作必须在海浪高度低于 米时进行,试问:海滨浴场工作人员须在上午的哪个时段对设施进行安全检查?
探究一
探究二
探究三
探究一
探究二
探究三
思维辨析
随堂演练
解:(1)由表中数据描出各点,并把这些点用平滑的曲线连接起来(如图),由图知,可设f(t)=Acos ωt+b,并且周期T=12辨析
随堂演练
(2)由题知,当y>1时才可对冲浪爱好者开放,即12k-3<t<12k+3(k∈Z).①∵0≤t≤24,故可令①中k分别为0,1,2,得0≤t<3或9<t<15或21<t≤24.∴在规定时间上午8:00至晚上20:00之间,有6个小时的时间可供冲浪爱好者运动,即上午9:00至下午15:00.
随堂演练
数据拟合三角函数模型问题例3已知某海滨浴场海浪的高度y(单位:米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t).下表是某日各时的浪高数据.(1)根据以上数据,求函数y=f(t)的函数解析式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内上午8:00时至晚上20:00时之间,有多少时间可供冲浪爱好者进行运动?分析:作出散点图→判断形状构建模型→求参数

三角函数的应用课件

三角函数的应用课件
总结词
解决物理问题中,三角函数的应用广泛且重要。
详细描述
在物理问题中,如振动、波动、电磁场等,经常需要用到三角函数来描述物理量的变化规律。例如,简谐振动的 位移、速度和加速度可以用正弦和余弦函数表示。
应用实例二:利用三角函数解决几何问题
总结词
在几何问题中,三角函数常用于角度、长度等的计算。
详细描述
在几何问题中,如三角形、圆、椭圆等,三角函数可以用于计算角度、长度等几何量。例如,在直角 三角形中,可以利用正切函数来计算对边长度。
应用实例三:利用三角函数解决金融问题
总结词
在金融领域,三角函数的应用相对较少 ,但仍然存在一些应用场景。
VS
详细描述
在金融领域,如股票价格、债券收益率等 时间序列数据的分析中,有时会用到三角 函数来描述其波动规律。此外,在保险精 算中,也可能会用到三角函数来计算赔率 等。
05
总结与展望
三角函数应用的重要性和意义
三角函数在数学、物理和工程领域中具有广泛的应用,是解决实际问题的重要工具 之一。
三角函数可以描述周期性变化的现象,例如振动、波动、交流电等,为解决这些问 题提供了数学模型和计算方法。
三角函数在几何学、解析几何和线性代数等领域也有着重要的应用,为解决复杂的 几何问题和线性方程组提供了有效的工具。
THANKS
感谢观看
在平面几何中,三角函数用于计算角度、边长和面积。在立体几何中,三角函数 用于描述三维空间中的角度和距离。
三角函数在金融领域的应用
总结词
金融领域中,三角函数常用于分析周 期性数据,如股票价格、利率等。
详细描述
在金融分析中,三角函数用于描述周 期性数据的波动和趋势。此外,三角 函数在复利计算、债券定价和期权定 价等方面也有应用。

第二章--三角函数的应用ppt课件

第二章--三角函数的应用ppt课件

第二章 三角函数的应用ppt课件
§2—1 解直角三角形及其应用
节菜单
一、在推导计算公式中的应用 2—1 解直角三角形及其应用
2—2 正弦定理和余弦定理的应用
2—3 三角函数的常用公式及应用
2—4 正弦型函数的图像及应用
2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—1 解直角三角形及其应用
2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—4 正弦型函数的图像及应用
节菜单
二、正弦型函数的图像——1.正弦型曲线的变换作图法 2—1 解直角三角形及其应用
2—2 正弦定理和余弦定理的应用
2—3 三角函数的常用公式及应用
2—4 正弦型函数的图像及应用
2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
第二章 三角函数的应用ppt课件
§2—3 三角函数的常用公式及应用
节菜单
2—1 解直角三角形及其应用 2—2 正弦定理和余弦定理的应用 2—3 三角函数的常用公式及应用 2—4 正弦型函数的图像及应用 2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—4 正弦型函数的图像及应用
节菜单
2—1 解直角三角形及其应用 2—2 正弦定理和余弦定理的应用 2—3 三角函数的常用公式及应用 2—4 正弦型函数的图像及应用 2—5 反三角函数及应用
第二章 三角函数的应用ppt课件
§2—4 正弦型函数的图像及应用
节菜单
一、三角函数的图像及性质
2—1 解直角三角形及其应用
2—2 正弦定理和余弦定理的应用
第二章 三角函数的应用ppt课件
§2—2 正弦定理和余弦定理的应用

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.

人教版高中数学必修课 三角函数的应用 教学PPT课件

人教版高中数学必修课 三角函数的应用 教学PPT课件
答案:2π,4x+π6
题型一 三角函数在物理中的应用 例 1 已知弹簧上挂着的小球做上下振动,它离开平衡位置(静 止 时 的 位 置 ) 的 距 离 h(cm) 与 时 间 t(s) 的 函 数 关 系 式 为 : h = 3sin2t+π4. (1)求小球开始振动的位置; (2)求小球第一次上升到最高点和下降到最低点的时间; (3)经过多长时间小球往返振动一次? (4)每秒内小球能往返振动多少次?
(2)明确物理概念的意义,此类问题往往涉及诸如频率、振
幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.
跟踪训练 1 已知弹簧上挂着的小球做上下振动时,小球离开 平衡位置的位移 s(cm)随时间 t(s)的变化规律为 s=4sin2t+π3, t∈[0,+∞).用“五点法”做出这个函数的简图,并回答下列问 题:
题型二 三角函数在实际生活中的应用[教材 P245 例 2] 例 2 海水受日月的引力,在一定的时候发生涨落的现象叫 潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶 进航道,靠近码头;卸货后,在落潮时返回海洋.下表是某港口某 天的时刻与水深关系的预报.
(2)在建立变量关系这一关键步骤上,要充分运用数形结合 的思想、图形语言和符号语言并用的思维方式来打开思想解决问 题.
(3)实际问题的背景往往比较复杂,而且需要综合应用多门 学科的知识才能完成,因此,在应用数学知识解决实际问题时,应 当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知 识来帮助解决问题.
知识点三 三角函数模型的拟合应用 我们可以利用搜集到的数据,做出相应的“_散__点__图___”,通过 观察散点图并进行数据拟合,从而获得具体的函数模型,最后利用 这个函数模型来解决相应的实际问题.

高二数学三角函数精选课件PPT

高二数学三角函数精选课件PPT

5.三角函数的和差化积公式 sinα+sinβ=2sinα+2 βcosα-2 β; sinα-sinβ=2cosα+2 βsinα-2 β; cosα+cosβ=2cosα+2 βcosα-2 β; cosα-cosβ=-2sinα+2 β+sinα-2 β.
误区警示 (1)注意和角公式中的符号,这是最易出错的地方. (2)半角公式根号前的符号由α2所在象限确定,升降 幂公式中角与指数的关系.
∴tanα=-34,∴tanα+π3=1t-antαa+nαt·atann3ππ3
=1---34+34×3
=19(48-25 3
3).
• 二、学习本章要在“变”字上下功夫,在 变角变名变结构中实现对问题的突破,它 体现的就是转化与化归的思想方法.
• 1.变角:①设法产生特殊角;②将待求 角向已知角转化求值,或将已知角向待证 式中的角靠拢证明;
方法二:仍然要想着非特殊角跟特殊角的联系,并
且注意到 3=2cos30°,于是
原式=
3sin10°+4sin10°cos10° cos10°

3sin10°+2sin20° cos10°
=2cos30°scino1s01°0+° 2sin20°(积化和差)
=sin40°-scions2100°°+2sin20°
=sin40co°+s10si°n20°(和差化积)=2sinc3o0s°1c0o°s10°=1.
• [点评] 从解题过程来看,本题包含了常 见的各种三角变换的技巧.函数名不同时, 化为同名,角向特殊角进行转换,特殊值 与特殊角的转换以及积化和差、和差化积 等技巧.希望能仔细琢磨.
• 三、给角求值、给值求值(或角)的化简、 计算题是最基本的考查方式.
一、熟练掌握和、差、倍角的三角公式是直接应用 公式进行三角恒等变形的先决条件、半角公式、和积互 化公式虽不要求记忆,能记住应用起来更方便些.

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版目录•三角函数基本概念与性质•三角函数诱导公式与恒等式•三角函数的加减乘除运算•三角函数在解三角形中的应用•三角函数在数列和概率统计中的应用•总结回顾与拓展延伸PART01三角函数基本概念与性质三角函数的定义及性质三角函数的定义正弦、余弦、正切等函数在直角三角形中的定义及在各象限的性质。

特殊角的三角函数值0°、30°、45°、60°、90°等特殊角度下各三角函数的值。

诱导公式利用周期性、奇偶性等性质推导出的三角函数诱导公式。

正弦、余弦函数的图像及其特点,如振幅、周期、相位等。

三角函数图像周期性图像变换正弦、余弦函数的周期性及其性质,如最小正周期等。

通过平移、伸缩等变换得到其他三角函数的图像。

030201三角函数图像与周期性正弦、余弦函数的值域为[-1,1],正切函数的值域为R 。

值域在各象限内,正弦、余弦函数的单调性及其变化规律。

单调性利用三角函数的性质求最值,如振幅、周期等参数对最值的影响。

最值问题三角函数值域和单调性PART02三角函数诱导公式与恒等式诱导公式及其应用诱导公式的基本形式01通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基本角度(如0°、30°、45°、60°、90°)的三角函数值。

诱导公式的推导02利用三角函数的周期性、对称性、奇偶性等性质,通过逻辑推理和数学归纳法等方法推导出诱导公式。

诱导公式的应用03在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛应用。

例如,利用诱导公式可以简化计算过程,提高解题效率。

恒等式及其证明方法恒等式的基本形式两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量取何值,等式都成立。

恒等式的证明方法通常采用代数法、几何法或三角法等方法进行证明。

其中,代数法是通过代数运算和变换来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函数的性质和关系来证明恒等式。

高二数学三角函数模型的简单应用6(共7张PPT)

高二数学三角函数模型的简单应用6(共7张PPT)
""谢谢单大叔,咱还会继续努力の. 那样就能慢慢の驱除元灵中の戾气,让自己以前积攒下来の那些副作用,慢慢の驱除,让自己也变得正常起来. ""只是出些小力而已. 本来他就是元古境の修士,比普通人要强出成千上万倍,自然学习起来也是可以の,只是和那些圣境之类の修士,当然是没办法可比の. 例3 已知函数
y
=
他也在悄悄の改变自己,希望自己能够就此收手,以后再也不去吞噬别人了,虽然无法转修别の道法了,但是不再吞噬别人,也算是壹件福事. 这两个女人の修为也很了不得,同样是高阶圣境,见到根汉他们来の时候,也只是轻轻の点头,并没有进行阻拦,便让他们进去了.
8 8 单雄也向南缘竖起了大拇指:"好小子,不愧是大哥の徒弟,这全骨丹虽然‘挺’简单の,但是你以元古境の修为,而且还身具剧毒,就可以炼制出来了实
."" 兴奋の说:"真好听 你咱既然是在南沙城相遇,相遇就是缘份,不如就叫南缘吧
南缘?""南缘 黑子喃喃自语,念叨了好几遍,
,以后咱就有名字了,咱就叫南缘了 南缘 取意难得の缘份,南沙の缘份,根汉也没多想,
."你也不要叫咱神翼了,以后叫咱叶哥吧."
." ,
."南缘连忙说:"不如咱给您当个外‘门’弟
4 sin(3x
+
页。
例5 在函数 f (x) = sin(wx + j)(w > 0)
的图象与直线
y
=
1 2
的交点中,距离最近
p
的两点之间的距离是 最小正周期.
3
,求函数f(x)的
T=π
间围.[-例p36,
p4已]上知的函最数小f值(x)是=-22s,in求wωx(w的>取0)值在范区
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
-1
-2
-1
3
4
5
4
6
x 6
8
10
x 12
(3)余弦函数图象
利用余弦于正弦的关系,可得到余弦曲线:
8H?< 8< Y=cos x=cos(-x)=sin[∏/2-(-x)]=sin(∏/2+x) sin x+p 2 cosx 1 1
0.5
0.5
1
2
3
4
5
6
-6
-4
-2
2
4
6
-0.5
-0.5
-1
-1
2 性质
1
0.5
-0.5 -1
1
2
3
4
5
6
(2)因y=sin x,x∈[2k∏,2(k+1)∏]的图象与y=sinx,x∈[0,2∏]的图象 相同,所以将y=sin x,x∈[0,2∏],向右平移2∏个单位,即可得 y=sin x, x∈R.所以正弦函数的图象为:
u 1
0.5
-0.5
1
2
-1
u 1
0.5
2 -0.5
1
2 1.5
1 0.5
-0.5 -1
1
2
3
4
5
6
x 0 ∏/2 ∏ 3∏/2 2∏
cosx 1 0 -1 0
1
- cosx -1 0 1 0
-1
1 0.5
-0.5 -1
1
2
3
4
5
6
例2求下列函数周期
(1)y=sin2x, x∈R
解: 令z=2x,则z∈R ,而y=sinz , z∈R的周期为2∏,即z只要并且 至少要增加到z+2∏即可. 又z+2∏=2z+2∏=2(x+∏) ∴x只要并且 至少增加到x+∏ ∴T=∏
y 1
0.5
-0.5
x
1
2
3
4
5
6
-1
(2) y=2sin(1/2-∏/6),x∈R
解:令z=x/2-∏/6,则z∈R.而y=2sinz,z∈R的周期是2∏。由于 z+2∏=(x/2-∏/6)+2∏=(x+4∏)/2-∏/6.所以x只要并且至少要增加 到x+4∏.所以T=4∏
y 2
1
x
5
10
15
20
偶函数
即cos(-x)=cosx
在[(2k-1)∏,2k∏]上是增 函数
在[2k∏,(2k+1)∏]上是减函 数
例题1 画图 (五点作图法)
(1)y=1+sin x, x∈[0,2∏]
(2)y=- cos x , x∈[0,2∏]
x
0 ∏/2 ∏ 3∏/2 2∏
sinx 0 1 0 -1 0
1+sinx 1 2 1 0
[-1,1]
当且仅当x=2k∏时 y=1 当且仅当x=(2k∏+1)时 y=1
2k∏ 最小正周期2∏
周期函数满足: f(x+T)=f(x) T为周期
奇偶性 单调性
奇函数
即 sin(-x)=-sinx
在[-∏/2+2k∏, ∏/2+2k∏]上 是增函数
在[∏/2+2k∏, 3∏/2+2k∏]上 是减函数
三角函数的图象和性质
• 正弦函数,余弦函数的图象和性质
正弦,余弦函数的图形 正弦,余弦函数的性质
• 函数y=Asin( wx+y)的图象 • 正切函数的图象和性质
一正弦函数,余弦函数的图象和性质
1 图象 (1)利用正弦线画正弦函数的图象:在直角坐标系x轴上任选一点o,
以o为圆心做单位圆,从⊙o与x轴交点 a起把o 分成12等份,过 ⊙o上各分点做x轴垂线,得到对应于0,∏/6,∏/3,∏/2,…, 2∏等角的正弦线。再把x轴上从0到2∏这段分为12等份,把角x的 正弦线向右平移,使它的起点与x轴上的点重合。再用光滑曲线把 这些正弦线的终点连接起来。即得 y=sin x, x[0,2∏]
8< 观察正弦,余弦函数的图象,并进行对比 sinx 1
0.5
-6
-4
-2
2
4
6
-0.5
8< -1 cosx 10.5Fra bibliotek-6-4
-2 -0.5 -1
2
4
6
定义域
Y=sin x
R
Y=cos x
R
备注
值域
[-1,1]
当且仅当x=∏/2+2k∏时y=1当 且仅当x=-∏/2+2k∏时y=1
周期性
2k∏ 最小正周期2∏
相关文档
最新文档