高功率光纤激光器研究进展
光纤激光器研究报告

光纤激光器研究报告
光纤激光器是一种利用光纤光导核心之间储存光能的光学设备,并通过半导体激光器提供光子能量来激发光核心的光子放出储存在光纤中的光的一种设备。
与传统的光学放大器相比,光纤激光器具有高功率、低杂散、高效率、小型化等优势。
由于光纤激光器有着占用空间少、无需维护等特点,因此在现代科学技术发展中广泛应用于通信、医疗、工业制造等领域。
光纤激光器采用玻璃棒来形成隐性腔,将激光器的激光照射到棒上,激发玻璃中的离子使之形成游离态激子,然后激子通过多次反射在棒杆中生成光子,这些光子随后在光纤中传播。
光线随后沿着沿光纤水平传播,并在光纤的端部被集成,这将导致光纤激光器产生具有所需波长和高功率的激光。
光纤激光器优于其他激光器的一大优点是它可以在非常小的空间内运行,因此可以用于许多高密度组装应用。
此外,尽管它的成本较高,但它在长期使用和成本效益方面往往优于多晶体或气体激光器。
在使用光纤激光器的过程中,我们需要注意防护眼睛、避免直接照射皮肤等细节问题。
另外,拥有充足的工作经验和专业知识的技术工程师应具备的能力,以便在需要时进行日常维护和紧急维修。
综上所述,光纤激光器是一种高端技术的设备,应用广泛,未来在科学技术方面的发展中有着广泛的应用前景。
光纤激光器研究报告

光纤激光器研究报告近年来,随着信息技术的快速发展,光通信和光存储技术的需求不断增加,光纤激光器作为一种重要的光源设备,其研究和应用也越来越受到关注。
本文将从光纤激光器的基本原理、研究现状、应用前景等方面进行探讨。
一、光纤激光器的基本原理光纤激光器是一种利用光纤作为激光介质的激光器。
其基本结构包括光纤、光纤耦合器、泵浦光源、光纤光栅等。
泵浦光源通过光纤耦合器将能量输送到光纤中,光纤光栅则用于调制光纤中的光场,使其产生激光输出。
光纤激光器的输出波长和功率可以通过调节光纤光栅的参数来控制。
光纤激光器的工作原理是基于光纤的增益介质特性。
当泵浦光经过光纤时,会激发光纤中的掺杂物(如铒离子、钕离子等)发生跃迁,产生光子,并激发周围的光子参与共振反馈,形成光纤中的激光场。
光纤激光器具有波长可调、功率稳定、光斑质量好等优点,因此在光通信、激光加工、医学等领域有广泛的应用。
二、光纤激光器的研究现状目前,光纤激光器的研究主要集中在以下几个方面:1.光纤激光器的波长调制技术光纤激光器的波长调制技术是实现光纤激光器波长可调的关键技术之一。
目前,波长调制技术主要包括电光调制、热光调制、机械调制等。
其中,电光调制技术是最常用的一种技术,其原理是利用电场控制光纤光栅的折射率,从而调制激光的波长。
2.光纤激光器的高功率输出技术光纤激光器的高功率输出是实现光纤激光器广泛应用的必要条件之一。
目前,高功率输出技术主要包括多段光纤放大、光纤叠加等。
多段光纤放大技术通过将光纤分成多段进行放大,从而提高激光器的输出功率。
光纤叠加技术则是利用多根光纤叠加的方法,将多个低功率的激光器输出合并成一个高功率的激光器输出。
3.光纤激光器的光学降噪技术光学降噪技术是提高光纤激光器光斑质量的关键技术之一。
目前,光学降噪技术主要包括光纤光栅滤波、光纤光栅反馈等。
其中,光纤光栅滤波技术是将光纤光栅的带通滤波器替换为带阻滤波器,从而实现对光纤激光器输出波长的滤波。
光纤激光器泵浦源国内外研究进展

光纤激光器泵浦源国内外研究进展一、引言光纤激光器泵浦源是一种重要的激光器泵浦方式,其具有高效、稳定、可靠等优点,在现代科学技术领域得到广泛应用。
本文将从国内外研究进展的角度来探讨光纤激光器泵浦源的相关研究。
二、国内外研究进展1. 国内研究进展在我国,关于光纤激光器泵浦源的研究已经有了较大的进展。
例如,中国科学院上海光学精密机械研究所利用高功率半导体激光器作为泵浦源,成功实现了Nd:YAG晶体连续脉冲放大器的实验室样机。
同时,该所还开发出了一种新型的高功率半导体激光器泵浦Nd:YAG晶体脉冲放大系统,并成功地将其应用于雷达遥感领域。
2. 国外研究进展在国外,对于光纤激光器泵浦源的研究也十分活跃。
例如,美国洛斯阿拉莫斯国家实验室开发出了一种高功率光纤激光器泵浦源,该源利用了一种新型的双核光纤技术,能够输出高达10千瓦的功率。
同时,欧洲空间局也研制出了一种基于光纤激光器泵浦源的激光通信系统,该系统在太空环境下表现出了极强的抗干扰能力。
三、技术特点1. 高效性相比于传统的泵浦方式,光纤激光器泵浦源具有更高的转换效率和更低的损耗率。
这是因为在其工作过程中,直接将电能转化为激光能量,从而避免了传统泵浦方式中由于多次反射产生的损耗。
2. 稳定性由于其采用了先进的稳定控制技术和高质量材料,在使用过程中能够保持长时间稳定运行,并且不会受到外界环境因素的影响。
3. 可靠性相比于其他泵浦方式,如闪光灯泵浦、电子束泵浦等,光纤激光器泵浦源具有更长的使用寿命和更高的可靠性。
这是因为光纤激光器泵浦源的核心部件——光纤,具有较高的抗辐射和抗损伤能力。
四、应用领域1. 激光加工领域在激光加工领域,光纤激光器泵浦源已经成为了主流泵浦方式。
例如,在金属切割、焊接、打标等方面都得到了广泛应用。
2. 激光医疗领域在激光医疗领域,光纤激光器泵浦源也发挥着重要作用。
例如,在皮肤美容、癌症治疗等方面都得到了广泛应用。
3. 激光通信领域在激光通信领域,基于光纤激光器泵浦源的系统也被广泛使用。
3μm 光纤激光器的研究进展

3μm 光纤激光器的研究进展杨伟;段云锋;王强;张秀娟;邓明发【摘要】The 3 μm laser plays an important role in the lasermedicine.Owing to the potential of fiber laser,the re-search on 3 μm fiber laser has great significance and value.The principle and research progress of the 3 μm fiber la-ser doped different rare earth ions are summarized,and several ZBLAN fiber lasers doped different ions are intro-duced.At the end,the faced problems of the 3 μm fiber laser are analyzed,and development tendency in the future is pointed out.%3μm 波段的激光在激光医疗等领域发挥着重要的作用,同时鉴于光纤激光器的突出优点,使研究3μm 波段的光纤激光器具有极高的应用价值。
本文从不同的掺杂稀土离子角度对3μm 波段光纤激光器的工作原理和研究状况进行了简要概述,介绍了几种不同离子掺杂的 ZBLAN 光纤激光器。
最后分析了当前3μm 波段光纤激光器发展所面临的问题和今后的研究方向。
【期刊名称】《激光与红外》【年(卷),期】2015(000)005【总页数】5页(P471-475)【关键词】3 μm;光纤激光器;工作原理;研究进展【作者】杨伟;段云锋;王强;张秀娟;邓明发【作者单位】北京东方锐镭科技有限公司,北京 100015;北京东方锐镭科技有限公司,北京 100015;北京东方锐镭科技有限公司,北京 100015;北京东方锐镭科技有限公司,北京 100015;北京东方锐镭科技有限公司,北京 100015【正文语种】中文【中图分类】TN248.11 引言由于3μm波段的激光被水分子强烈吸收,同时Ca、P等也对其具有很高的吸收率,所以该波段激光可被用于切割多水份的生物软组织以及骨骼,应用在激光手术中有着凝血迅速和手术创面小的优点[1]。
光纤激光器的理论与实验研究

光纤激光器的理论与实验研究光纤激光器是一种利用光纤作为工作介质的激光器。
相比于传统激光器,光纤激光器具有结构简单、体积小、功率稳定等优点,因此在光通信、医疗、工业加工等领域得到广泛应用。
本文将介绍光纤激光器的基本原理、结构和性能,并重点探讨了光纤激光器的实验研究进展和应用前景。
一、光纤激光器的基本原理和结构光纤激光器的工作原理基于三个部分:激光介质、激光刺激源和反射器。
光纤激光器与传统激光器最大的不同在于光纤作为激光介质。
激光刺激源可以是电流、光或热等刺激方式,可以通过电子激发将参数转化为光信号,进而在光纤内扩散并被反射器反射形成激光器。
光纤激光器的结构、形式比较多样,但它们一般包括:激光介质、激光刺激源、反射器、光纤耦合器、光学输出部分。
其中,激光介质是光纤,由于光纤的细长、柔性、低价格、可靠性高等特点,提高了光纤激光器的光学特性,比如波导效应,从而实现了实际应用的复杂化程度。
激光刺激源选择与否,一般根据不同应用场合有区别,在医疗领域如SOLED为主流光源,但在工业领域,高压氙或钠灯光源通常采用。
反射器是锥形反射器或圆柱形镜反射器,两者的反射作用都可达到100%。
光纤耦合器主要用于将激光器的输出与其他的光学设备相连,各种传感器、医疗领域、工业领域都可以使用。
光学输出部分是机械永久码和钛焦散镜的组合,多项光学组件共同完成激光输出成型。
二、光纤激光器的性能特点光纤激光器具有很多优点,比如小体积、低噪声、功率稳定等,这些特点使其在各个领域中受到了广泛应用。
(1)大功率输出光纤激光器可以产生1W-100kW持续功率输出,而且功率稳定,颜色较浅。
随着技术不断发展,光纤激光器在功率输出上的性能不断得到提升。
(2)宽波段光纤激光器可以产生宽波段光信号,从紫外线到红外线都可以实现输出,具有很高的信噪比和相干特性。
多种波长的信号可以在同一个光纤内同时传输和操控。
(3)高可靠性由于光纤激光器的光学部件与常规激光器的光学元件相比,具有比较好的机械结构和散热系统,因此在使用时也具有较高的可靠性。
3μm波段Er^(3+)∶ZBLAN光纤激光器研究进展及展望

3μm波段Er^(3+)∶ZBLAN光纤激光器研究进展及展望刘永岩;田颖;杨雪莹;蔡恩林;李兵朋;张军杰;徐时清
【期刊名称】《发光学报》
【年(卷),期】2024(45)1
【摘要】3µm激光处于分子指纹区,在医疗外科、气体检测、军事应用等领域都有重要的应用价值。
Er^(3+)∶ZBLAN光纤激光器具有效率高、可集成的优点,是
3µm激光的主要输出方式。
本文从铒离子跃迁产生3µm激光出发,围绕
Er^(3+)∶ZBLAN光纤激光器,介绍了3µm激光产生的结构原理及能级系统,总结了实现该波段高功率连续输出和脉冲输出的技术方案和研究进展,重点介绍了基于不同材料可饱和吸收体的调Q和锁模激光器实验研究,并对目前实现3µm波段高功率输出需要解决的问题进行了分析,最后对Er^(3+)∶ZBLAN激光器的发展方向进行了展望。
【总页数】14页(P125-138)
【作者】刘永岩;田颖;杨雪莹;蔡恩林;李兵朋;张军杰;徐时清
【作者单位】中国计量大学光学与电子科技学院;中国科学院上海应用物理研究所;中国科学院上海高等研究院;中国科学院大学
【正文语种】中文
【中图分类】TN248.4
【相关文献】
1.3μm波长Er:ZBLAN光纤激光器研究进展
2.包层泵浦的L波段
Er^(3+)/Yb^(3+)共掺光纤激光器3.工作在L波段的多波长Er^(3+)/Yb^(3+)共掺光纤激光器4.基于能量传递的Pr^(3+):Ce^(3+):ZBLAN光纤中上转换激光器的研究5.掺Er^(3+)和Er^(3+)/Yb^(3+)共掺光纤激光器中抑制自脉动的效果
因版权原因,仅展示原文概要,查看原文内容请购买。
高功率光纤激光技术

光纤激光器的介绍周菊平2009142105摘要:作为固体激光器的一员,光纤激光器以其结构简单紧凑、体积小,工作稳定可靠,易于集成等特点,一直被认为是固体激光器技术实用化的最佳选择。
高功率光纤激光除在科研、工业加工和医疗保健等领域有着广泛的应用外,在军事国防领域也有着巨大的应用价值。
海湾战争等高技术战争的实践表明,光电武器装备对战术武器性能起决定性作用。
近十年来,高功率光纤技术已成为激光技术领域的热点研究技术之一。
本文介绍了光纤激光器的背景及最新成果,双包层光纤激光器的原理与特点。
关键词:双包层光纤光纤激光器掺杂光纤早在1961年,美国光学公司(American Optical Corporation)的Snitzer等就提出了光纤激光器的构想,但由于受当时条件的限制,研究进展非常缓慢。
进入20世纪80年代中期,Townsend等发明了溶液掺杂技术(Solution doping technique)。
此后,Poole等用改进的化学气相沉积法(MCVD)研制成低损耗的掺铒光纤,一些实验室开始从掺铒光纤中得到了波长1.5um、高达30dB的光放大增益,引起了人们的高度重视。
到80年代中后期,基于半导体激光器泵浦的掺铒光纤激光器和低损耗的石英单模光纤制造技术,为光纤通信的迅猛发展奠定了强有力的技术基础。
正是由于掺铒光纤放大器为光纤通信所带来诱人前景的驱动,引发了80年代中后期稀土掺杂光纤激光器的研究热潮。
随后Hanna等纷纷报道掺铒、钕、镱、铥及铒/镱共掺等光纤激光器。
但当时采用的稀土掺杂光纤为单包层光纤,泵浦光必须直接耦合到直径仅仅几微米的单模纤芯中,这对泵浦源的激光模式提出了较高的要求,导致泵浦源昂贵且耦合效率低。
因此,传统的稀土掺杂光纤激光器只能作为一种低功率的光子器件。
1)与传统的半导体激光器不同,光纤激光器以掺杂稀土元素的光纤作为工作介质,采用反馈器件构成谐振腔,在泵浦光的激励下,光纤内掺杂介质产生受激发射,进而形成激光振荡输出激光。
大功率高效率中红外光纤激光器的研究进展

物作为光纤材料的喇曼光纤激光器等几个方 面的研究进展进行 了介绍。
1 简 介
大功率 、 高效率 、 高可靠性的波长为 2 m和 3 m 的中红外辐射源在 国防 、材料加 工 、探测和 医疗 等
管泵浦 功率 .该 激光器 的最 大光一 光转换 效率 约为 3%。在实 际应用 中 ,一 般都要求 激光器具有 较高 0 的效率 .所 以开发效 率更 高 、结构更 简单 的中红外 光纤激光系统是该领域的一个主要研究 目标 。 本文所要论述的内容主要包括以下几个方面 : a 高功率 2 . m光纤激 光;
在输 出功率 达 到约 14W 时 明显 下降 . 0 其原 因是光
纤热 载的增加 ,这里假设 电介质镜反射率 很高时 的 腔 内光强 与电介质反射镜 的预期 连续波损耗 阈值相
同。几何 尺寸是 光纤 末端损伤 的一个重要原 因。即
浓 度 比率 较 高 且伴 随 的 T ,浓 度 较 高 ( 2w. m > t %)
相抗衡 ,T 子发光 的量子效率 接近 2 这个 高 m 离 ,
很多领域都有着广泛的需求 。2L m波段的激光是由 L
掺 T 、掺 H m o 的光纤作 为增 益介 质产生 的,由于 水分子在该波长附近有很强 的中红 外吸收峰 ,因此 用该波段激光器进行手术 时,激 光照射部位血 液会 迅速凝结 ,手术创面小 ,止血性 好 ,又 由于该 波段 激光对人 眼是安全的 ,所以掺 T m 和掺 H 2 m o的 光纤激光器在 医疗 和生物学研究 方面有广泛 的应用 前景。 高功率二极管泵浦技术加上现有的近红外波
光纤激光器及其应用

2024/5/31
24
表1 几类激光器性能的比较
2024/5/31
25
光纤激光器可用于材料加工和制造
不同材料加工所需光纤激光器功率如下: 金属切割:500w~2kw; 金属焊接和硬焊:500w~20kw; 金属淬火和涂敷:2~20kw; 玻璃和硅切割:500w~2kw; 聚合物和复合材料切割为200w~1kw; 快速印刷和打印:20w~1kw; 软焊和烧结为50~500w; 消除放射性沾染为300w~1kw。
申请了十几项专利技术。
2024/5/31
19
国内研究概况
(2)南开大学在研制出短脉冲光纤激光器的同 时,大胆创新,率先研制出了双包层光纤光栅,为 双包层光纤激光器的全光纤化研究,迈出了重要的 一步。
(3)武汉烽火通信成功推出了完全达到商用水 平的双包层掺镱光纤产品。据悉,通过上海光机所 试用,其斜率效率达到66%以上,在选用合适的光 纤长度和泵浦功率的条件下,可实现100W以上的 激光功率输出,达到国际先进水平。
CO2和YAG激光器: 体积大;高功耗;短 寿命;高维护费用; 使用不方便。
2024/5/31
掺镱光纤激光器:体积小;低功耗;长寿命 ;
低成本,免维护;光束质量好,工作面处功率 密度高;光纤传输到工作面,使用方便。
30
深圳大族激光YLP-10光纤激光打标机
2024/5/31
31
YLP-10光纤激光打标机技术参数
2024/5/31
2
随着光通信的迅猛发展,光纤制造工艺与半 导体激光器生产技术日趋成熟,为光纤激光器 和放大器的发展奠定基础。英国的南安普敦大 学和通讯研究实验室、德国汉堡技术大学、美 国的Polaroid Corporation,Bell实验室,日 本的NTT、Hoya均在光纤激光器研究中 取得许多重要成果。
激光科技发展趋势与应用研究

激光科技发展趋势与应用研究序言随着科技的不断发展和进步,激光技术在各个领域中得到广泛的应用。
激光技术作为一种高精度、高效率、高质量的现代技术,弥补了传统工艺的不足,让许多科技难题得到了有效的解决。
本文将介绍激光科技的发展趋势及其在不同领域的应用研究,希望为读者提供有益的参考。
第一章激光科技发展趋势1.高功率激光技术高功率激光技术是目前激光科技发展的重要趋势,其主要表现在以下几个方面:(1)高功率固体激光器:在工业、医疗、军事等领域应用广泛,具有很高的市场需求,研究重点是解决高功率固体激光器的发热问题。
(2)高功率半导体激光器:主要用于信息通讯、材料加工等领域,近年来迅速发展,其主要瓶颈在于提高发光效率。
(3)高功率光纤激光器:在超快激光加工、激光成像等领域应用广泛,具有优异的成本效益和稳定性,研究重点是提高光束的质量。
2.超快激光技术超快激光技术是未来激光科技发展的一大趋势,其主要表现在以下几个方面:(1)超快激光成像技术:该技术可以实现超高分辨率、超快速成像,具有很高的应用前景,研究重点是提高图像质量和降低成像成本。
(2)超快激光成形技术:可以实现精密加工,适用于微米和亚微米尺度的制造,研究重点是降低制造成本和提高工艺效率。
(3)超快激光医学技术:可以实现毫秒级别的微创治疗,适用于心脏、眼科等领域,具有很高的研究前景。
3. 激光多波长技术随着科技的发展,人们越来越注重环保和能源节约,而激光多波长技术可以实现不同颜色的光一同输出,从而减少能源的浪费和环境的污染,在皮肤美容、医学治疗等领域的应用也越来越广泛。
第二章激光科技在不同领域的应用1. 激光在工业制造中的应用激光成型技术是工业制造中最为重要的应用之一。
通过激光成型技术,可以实现高精度、高效率的制造过程,具有明显的经济效益和社会效益。
激光精密切割、激光焊接、激光打标等技术也在工业制造中广泛应用。
2. 激光在医学中的应用激光在医学中应用的领域越来越广泛,包括皮肤美容、手术治疗、光动力学等。
光纤激光器国内外研究现状及发展趋势

光纤激光器国内外研究现状及发展趋势光纤激光器是目前激光技术领域中的重要研究方向之一、它以光纤作为激光光路的传输媒介,具有输出光束质量高、功率稳定等优势,广泛应用于通信、医疗、工业等领域。
本文将从国内外研究现状和发展趋势两个方面进行讨论。
首先,光纤激光器的国内研究现状。
我国在光纤激光器领域的研究取得了一定的成果。
例如,我国科学家在光纤激光器技术方面进行了大量的探索和研究,研制出了一系列具有自主知识产权的光纤激光器。
这些光纤激光器在传输功率、波长范围、光束质量等方面取得了较高的性能,具有较好的应用前景。
此外,我国在光纤激光器的相关领域也取得了一定的突破。
例如,在光纤材料与制备技术方面,我国科学家成功研制出了高硅石英光纤,使得光纤激光器的输出功率得到了大幅度的提升;在光纤激光器的激光调制与控制技术方面,我国科学家开创性地提出了多光束合成技术,实现了光纤激光器输出光束的形态调控;在光纤激光器的应用领域,我国科学家积极探索光纤激光器在医疗美容、材料加工等领域的应用,取得了一系列重要的应用成果。
其次,光纤激光器的国外研究现状。
与我国相比,国外在光纤激光器领域的研究起步较早,取得了许多重要的研究成果。
例如,美国、德国、日本等国家在光纤激光器的高功率、超快脉冲等方面的研究领先于世界,其研发的高功率、高光束质量的光纤激光器已经在军事、工业等领域得到了广泛应用。
另外,国外科学家在光纤激光器的性能提升和应用拓展方面也取得了一系列重要的突破。
例如,近年来,国外研究机构和企业在光纤激光器的波长可调、频率可调等方面进行了大量研究,并取得了重要的研究成果。
这些成果不仅提高了光纤激光器的功能多样性,还拓展了其在通信、医疗、生物科学等领域的应用空间。
最后,光纤激光器的发展趋势。
随着激光技术的不断进步,光纤激光器在功率、波长、频率、束质量等方面仍有很大的发展空间。
未来,光纤激光器的发展趋势主要体现在以下几个方面:首先,光纤激光器的功率将继续提升。
高功率光纤激光器研究现状分析

高功率光纤激光器研究现状分析首先,随着光纤材料的不断改良和光纤激光器技术的不断进步,高功率光纤激光器的输出功率已经实现了快速增长。
传统的光纤激光器在几十瓦到几百瓦的功率范围内,而现在已经出现了功率超过数千瓦的高功率光纤激光器。
这主要得益于光纤材料的改进,如掺镱光纤、光纤棒和双包层光纤等,以及掺铒光纤、掺铽光纤和掺钛光纤等材料的开发。
这些改进使得高功率光纤激光器能够实现更高的功率输出,并具有更好的光束质量。
其次,高功率光纤激光器的工作波长范围也在不断扩展。
最初的光纤激光器工作于近红外波段,主要集中在1μm附近。
然而,随着光纤材料的改进,现在已经出现了工作于中红外和远红外波段的高功率光纤激光器,如掺铒掺铥光纤激光器和掺砷化铟光纤激光器等。
这些新材料的开发使得高功率光纤激光器能够实现更多的应用场景,如医学成像、材料加工和环境监测等。
此外,高功率光纤激光器的束品质也得到了极大的提升。
光纤激光器的束质量通常由M2值来衡量,M2值越小代表光束越接近理想的高斯光束。
近年来,通过使用光纤光栅和光纤非线性效应等措施,高功率光纤激光器的束品质得到了显著改善。
目前,一些商业化的高功率光纤激光器已经能够实现M2值低于1.2,接近于理想的高斯光束。
最后,高功率光纤激光器的可靠性也在不断提升。
传统的光纤激光器在高功率输出时容易受到光纤端面热损伤和光纤中的非线性效应的限制。
然而,通过使用抗反射涂层和熔石英光纤等措施,高功率光纤激光器的可靠性得到了极大的提高。
现在,商业化的高功率光纤激光器已经可以连续工作数千小时,并且能够承受高达数十千瓦的功率输出。
综上所述,高功率光纤激光器的研究取得了显著的进展。
随着光纤材料的不断改良和光纤激光器技术的不断创新,高功率光纤激光器的输出功率、工作波长范围、束品质和可靠性都有了显著的提升。
这些进展使得高功率光纤激光器在医学、通信、材料加工等领域具有更广阔的应用前景。
激光器技术的应用现状和发展趋势

激光器技术的应用现状和发展趋势一、应用现状激光器技术自20世纪60年代发明以来,已经广泛应用于各个领域,对人类社会产生了深远的影响。
以下是激光器技术在当前的主要应用领域:1. 工业制造:激光器技术在工业制造领域的应用广泛,包括切割、焊接、打标、表面处理等。
激光器的高精度、高速度和高能量特性使得它在制造业中具有不可替代的地位。
2. 通信与信息传输:激光器技术是现代通信的基础,如光纤通信。
激光器的单色性好、相干性强,使得信息传输的带宽大、速度快、损耗低,是现代通信技术的核心组成部分。
3. 医疗卫生:激光器技术在医学领域的应用包括眼科、皮肤科、牙科等。
激光器的非接触、非侵入性使得其在治疗和诊断中具有许多优点。
4. 科学研究:激光器技术是许多科学研究的必备工具,如光谱分析、物理实验、生物研究等。
激光器的可调谐性和高能量特性使得它在科学研究中具有重要作用。
5. 军事与安全:激光器技术在军事和安全领域的应用包括激光雷达、目标指示、光电对抗等。
激光器的定向性好、能量集中,使得它在军事和安全领域具有重要应用价值。
二、发展趋势随着科技的进步和应用需求的不断增长,激光器技术的发展趋势如下:1. 高功率激光器:高功率激光器在工业制造、科学研究等领域有广泛应用。
随着技术的进步,高功率激光器的输出功率不断提高,性能更加稳定可靠。
2. 新型激光器:随着光电子技术和材料科学的不断发展,新型激光器不断涌现,如量子点激光器、光纤激光器、表面等离子体共振激光器等。
这些新型激光器具有独特的性能和应用前景。
3. 微型化与集成化:随着微纳加工技术的发展,微型化和集成化的激光器成为研究热点。
微型化与集成化的激光器具有体积小、重量轻、易于集成等优点,在光通信、光传感等领域有广泛应用。
4. 智能化与自动化:随着人工智能和自动化技术的不断发展,智能化和自动化的激光器成为研究的新方向。
智能化和自动化的激光器可以实现自我调节、自我诊断和自我修复等功能,提高系统的稳定性和可靠性。
高功率光纤激光器的研究进展 - index 清华大学网络资源

第37卷 第7期 激光与红外Vol .37,No .7 2007年7月 LASER & I N FRARE DJuly,2007 文章编号:100125078(2007)0720589204高功率光纤激光器的研究进展陈苗海(华北光电技术研究所,北京100015)摘 要:文章扼要地介绍国际上高功率光纤激光器的进展状况,重点介绍近几年国内外高功率光纤激光器与放大器的发展水平和动向。
关键词:光纤激光器;高功率光纤激光器;掺镱双包层光纤;大模面积;光子晶体光纤中图分类号:T N248.1 文献标识码:AResearch Progress of Hi gh 2power Fi ber LasersCHE N M iao 2hai(North China Research I nstitute of Electr o 2op tics,Beijing 100015,China )Abstract:The research p r ogress of high 2power fiber laser are su mmarized in brief,and the devel opment level and re 2cent trends of high 2power fiber laser within China and abr oad are intr oduced with e mphasis .Key words:fiber laser;high 2power fiber laser;Yb 2doped double -clad fiber;L MA;PCF1 概 况高功率光纤激光器与传统固体激光器相比具有转换效率高、光束质量好、散热方便等优势,是国际上激光技术研发领域的最大热点之一。
近几年来,随着单根光纤输出功率的不断提高,高功率光纤激光器的应用前景更为看好,并已在光通信、材料加工和处理、医学、印刷等领域得到迅速的应用,呈现出逐步替代现有传统高功率激光器的趋势。
光纤激光器相干组束技术研究进展

束 后的功率 ; 为 2束光波的相位差。当 6 2  ̄( 6 - m m为 整数 )且 P= 2 I = P P时,相干组束后的总功率为 4 。同 P 理 ,N个 光纤激 光器 的相 干组 束亮 度可提高 N 倍 , 光纤激光器相 干组束 的关 键技术 是使各子 光纤激光 器 同相位输 出, 目前 已经提 出了多种可 实现 同相位 输出的方法和技术 。
ls rwa n l z d he b sc p n i l fc h r n e m o i ain o b rls rwa nr d c d n he tpia a e s a ay e .T a i r cp e o o e e tb a c mbn to ff e a e sito u e ,a d t y c l i i
S E o gbn, I ag, E H ijn Y N Z n- u U N u y H N H n - i L n H a u 2 A o g q n H A G F -u G - , ,
பைடு நூலகம்
(.D pr e t f O t s n l t ncE g er g O d ac nier gC l g, h i h a g 0 0 0 , hn ; 1 e a m n o pi dEe r i ni e n , rnn e gne n o ee S ia u n 5 0 3 C ia t ca co n i E i l jz 2 n 6 3 , adn 7 0 0 C ia .U i6 36 B oig 0 4 0 , hn) t
摘
要 :本玟 阐述 了光纤激光器相干组束的基 本原理 ,总结和分析 了典型的相干组束 方案 ,并指 出了其 中的
优缺点 最后介绍 了国内最新研究进展 ,并对光纤激光器相干组束技术的发展作 了展望。 关键词 :激光技术 :光纤激光器 :相干组束 中图分类号 :T 2 8 N 4
光纤制导技术及器件的发展研究

光纤制导技术及器件的发展研究摘要:光纤制导技术作为一种重要的信息传输和传感方法,已经在多个领域取得了显著的进展。
本文综述了光纤制导技术及器件的发展历程,探讨了其在通信、医疗、工业和科学领域的广泛应用。
此外,本文还展望了未来的发展趋势,包括新型光纤材料、高性能光纤器件和应用拓展。
关键词:光纤制导技术;器件;发展;引言:光纤制导技术是一种利用光纤作为导向媒介传输光信号的技术。
自20世纪60年代首次提出以来,光纤制导技术已经在通信、医疗、工业和科学等领域取得了重大突破。
本文旨在综述光纤制导技术及器件的发展历程,并探讨其在不同领域的应用,同时对未来的发展趋势进行展望。
一、光纤制导技术的发展1.1 光纤材料的演进最早的光纤是由玻璃制成的,但随着技术的不断发展,光纤材料的多样性不断扩展。
新型光纤材料的出现对光纤制导技术产生了深远的影响,包括:1)光子晶体光纤:光子晶体光纤以其周期性排列的微结构而闻名,允许对光信号进行更精细的控制。
这种光纤在分散、非线性光学和传感应用中具有广泛的潜力。
它的周期性结构可以调制光的传播特性,包括波导光子晶体光纤和光子晶体纤芯光纤等。
2)微结构光纤:微结构光纤通常包括多个微细的空气孔或纤芯中的微结构,这些结构能够调整光信号的传播特性。
这种光纤的设计可以实现更高的非线性效应、更大的模式场和更大的灵敏度。
1.2 高性能光纤器件随着光纤技术的不断成熟,高性能的光纤器件不断涌现,为光纤制导技术的应用提供了更广阔的前景。
以下是一些光纤器件的关键发展:1)光纤放大器:光纤放大器如光纤拉曼放大器和掺铒光纤放大器已经在通信领域广泛应用。
它们可以增强光信号的强度,实现长距离光纤通信。
2)光纤激光器:光纤激光器产生高度聚焦的激光光束,被广泛应用于材料加工、医疗激光手术和科学研究。
它们具有稳定性和高效性的优势。
3)光纤光栅:光纤光栅用于分光和频谱分析,广泛应用于光谱测量、光通信系统和传感器中。
它们可用于信号滤波和波长选择。
光纤激光器国内外研究现状及发展趋势

光纤激光器国内外研究现状及发展趋势
光纤激光器是利用光纤作为激光谐振腔的激光器,具有体积小、功率高、光束质量好、可靠性高等优点。
国内外对光纤激光器的研究已经有了较大的进展,主要表现为以下几个方面:
1.技术路线的发展:目前光纤激光器主要分为掺铒光纤激光器和掺镱光纤激光器两种技术路线。
在这两种技术路线上,研究人员不断地尝试着新的掺杂元素,如掺铥、掺镥等,以提高激光器的性能。
2.激光器功率的提高:目前光纤激光器的最高输出功率已经超过了10 kW,而且在逐步向更高功率的方向发展。
为了提高激光器的功率,研究人员不断尝试着新的激光器结构,如双芯光纤、大芯径光纤等。
3.激光器光束质量的提高:光纤激光器因为其波导结构的特殊性质,光束质量非常好。
但是,为了满足不同的应用需求,研究人员还在不断地提高光束质量,例如通过控制光纤的折射率分布等方法。
4.应用领域的扩大:随着光纤激光器性能的不断提高,其应用领域也在不断地扩大。
目前光纤激光器已经广泛应用于工业加工、医疗、通信等领域,未来还有更多的应用领域等待光纤激光器的发展。
发展趋势:
未来,光纤激光器的发展趋势将是:
1.高功率化:光纤激光器的输出功率将继续提高,向更高功率的方向发展。
2.高光束质量化:光纤激光器的光束质量将继续提高,以满足更高精度的应用需求。
3.多波长化:为了满足更多的应用需求,光纤激光器将继续向多波长方向发展,例如通过多掺杂元素的光纤实现多波长输出。
4.智能化:光纤激光器将向智能化方向发展,例如通过集成传感器等技术,实现对激光器的实时监测和控制。
总之,光纤激光器作为一种重要的激光器,其研究和发展将会在未来继续取得更大的进展。
光纤激光器的研究进展与展望

rs ac i ainaed sr e nd ti a d tefc srs ac n o ua pia f e ae n t bih ulo ee rhst t r eci di eal n h o u ee rh o p p lro t l b rls r di r t t k u o b , c i a s g o o
程。
输 出 光
反射 镜
反 射镜
3 光 纤 激 光 器 的抽 运 方 法 及 分 类
31 光纤激光器 的抽运 方法 .
图 1 光 纤 激 光 器 的 基 本 结 构
L D输 出功率 和耦合 效 率是 影 响光 纤 激光 器输 束从第 1 反射镜入 射 到稀 土掺 杂光纤 中 .激 射输 个 出光从 第 2个反射镜输 出来 。
维普资讯
光 纤激 光器 的研 究进展 与展 望
乔 学光 杨 和 钱 贾振 安 习聪 玲
( 西安石 油大学 陕西省光 电传 感测井重点 实验 室,西安 7 06 ) 10 5
【 摘要】介绍 了光纤激光器的发展背景,并对光纤激光器的基本结构、工作原理、抽运方法、分类以及研 究
i e f tr r l n r d c d n t uu e ae a s it u e . h o o Ke wo d : p ia f e s r p mp n ; o e — b r si ltd e s in y r s o t l i rl e ; u ig d p d — e ; t c b a i f mua e mi o s
QA u—un Y N e q n I hn— I ogl g IOX egag A G H - i J Z e—n X n—i — a A a C —n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2005-08-30;修订日期:2005-11-25作者简介:楼祺洪(1942-),男,浙江慈溪人,研究员,学士,主要从事光学、激光技术及其应用研究。
第35卷第2期红外与激光工程2006年4月Vol.35No.2InfraredandLaserEngineeringApr.20060引言自1988年Snitzer等人提出双包层光纤以来,基于这种包层泵浦技术的光纤激光器和放大器获得了快速发展。
特别是近年来,随着高功率半导体激光器泵浦技术和双包层光纤制作工艺的发展,光纤激光器的输出功率水平快速提升,单根光纤的输出已经从最初的几百毫瓦上升到了千瓦级水平[1],并在高精度激光加工、激光医疗、光通信及国防等领域获得了广泛应用。
双包层光纤是由掺杂纤芯、内包层、外包层、保护层4部分组成,和常规光纤相比,多了一个可以传输泵浦光的内包层。
纤芯由掺稀土元素的SiO2构成,它作为产生激光的波导,一般情况下是单模的;内包层高功率光纤激光器研究进展楼祺洪,周军,朱健强,王之江(中国科学院上海光学精密机械研究所,上海201800)摘要:高功率掺镱双包层光纤激光器由于在效率、散热和光束质量方面的优势,在工业加工、医疗和国防等领域具有广泛的应用前景,是目前国际上激光技术研究的热点之一。
首先综述了国际上高功率光纤激光器的研究进展情况,然后重点介绍了中国科学院上海光学精密机械研究所在连续光纤激光和脉冲光纤激光方面所取得的进展,采用双端泵浦技术,在15m的国产双包层光纤中获得440W的连续输出,采用MOPA方式,以4m长的国产光纤作为放大介质,在100kHz时,获得了133W的平均功率输出。
关键词:激光技术;光纤激光器;双包层掺镱光纤中图分类号:TN248文献标识码:A文章编号:1007-2276(2006)02-0135-04Recentprogressofhigh!powerfiberlasersLOUQi!hong,ZHOUJun,ZHUJian!qiang,WANGZhi!jiang(ShanghaiInsitituteofOpticsandFineMechanics,ChineseAcademyofSciences,Shanghai201800,China)Abstract:High!powerYb!dopeddouble!cladfiberlasershaveincitedparticularinterestasefficient,compactlaserswithgoodbeamqualityforavarietyofapplicationsinindustryprocessing,medicalinstrumentsandnationaldefense.Inthispaper,therecentprogressofCWandpulseddouble!cladfiberlasersatSIOMarereportedupon.ACW440Wfiberlaserisdemonstratedwithtwoendspumpingconfigurationbyusinga15mhome!madedouble!cladYb!dopedfiber.Forpulsedoperation,a133Waverage!poweroutputat100kHzrepetitionrateisobtainedwith4mdouble!cladfiberbyusingMOPAtechnology.Keywords:Lasertechnology;Fiberlaser;Yb!dopeddouble!cladfiber红外与激光工程第35卷由横向尺寸和数值孔径都比纤芯大的多、折射率比纤芯小的SiO2构成,是泵浦光通道,对应泵浦光波长是多模,用以传输高功率的泵浦光。
泵浦光进入尺寸较大的内包层,在内包层中内反射并多次穿越纤芯被掺杂离子吸收,实现激光输出或放大,获得高光束质量、高功率的激光输出。
与同等功率水平的其他激光系统相比,双包层光纤激光器无论在效率、体积、冷却和光束质量等方面,均占有明显的优势[2]。
主要特点为:(1)输出激光光束质量好。
在光束质量方面,双包层光纤激光器的输出光束质量由光纤纤芯的波导结构(纤芯直径d和数值孔径NA)决定,不会因热变形而变化,因此易于实现高光束质量的激光输出。
(2)散热特性非常好。
固体激光器实现高功率激光输出的主要困难在于激光介质的热效应引起光束质量及效率下降,为了有效散热需要专门的技术和系统对固体激光介质进行冷却。
而双包层光纤激光系统是采用细长的掺杂光纤本身作为增益介质,表面积/体积比很大(至少是固体激光介质的1000倍以上),因此散热性能非常好。
(3)易于实现高效率和高功率,对于掺镱双包层光纤激光来说,泵浦波长975nm和激光波长1.1μm非常接近,量子亏损小(~90%)导致高效率,双包层结构则使得多模高功率泵浦光可以高效耦合入内包层;目前掺镱光纤激光的效率可达70%以上,总体电光效率超过20%。
(4)器件结构简单,体积小巧,使用灵活方便。
双包层光纤激光器由于采用柔软的掺杂光纤本身作为激光介质,泵浦源也是采用体积小巧易于模块化的高功率半导体激光器,因此稳定性好,使用灵活方便。
正是由于掺镱双包层光纤激光在效率、散热、光束质量等方面的明显优势,业已引起人们的广泛关注,是目前国际上激光技术领域研究的热点之一。
特别是近两年来,单根光纤激光器的输出功率快速提升,同时,在应用方面,根据LaserFocusWorld的市场分析,国际上光纤激光占整个激光市场的份额也以很快的速度发展,预计2007年将达到20%,其中在激光材料处理的应用中将达到24%,在激光的空间和军事应用中将会达到59%。
1研究进展和发展趋势高功率双包层光纤激光的发展呈现出以下4个发展趋势:(1)单根光纤激光的连续波输出功率从百瓦量级向千瓦量级发展,进一步提升单根光纤激光的输出功率,是高功率光纤激光发展的主要研究内容。
1999年美国的V.Dominic等用4个45W的半导体激光器从两端泵浦,获得了110W的单模连续激光输出[3],这个结果引起了人们的广泛关注。
但由于光纤和泵浦源技术的限制,在此后的近3年中,单光纤激光输出功率没有获得突破进展。
到2003年,随着大模场光纤技术和高功率泵浦源技术的发展,光纤激光器的输出功率水平快速提高,记录一次次被刷新。
德国的IPHT、英国的SPI和著名的IPG公司分别报道了200、270和300W的光纤激光器。
在2004年初的PhotonicsWest会议上,英国的SPI报告了1kW的光纤激光器,引起了轰动。
最近南安普顿大学报道了1.36kW连续波光纤激光器,斜率效率为83%,光束质量因子M2为1.4[4]。
并预言通过对掺杂光纤更先进的设计和采用更高功率的泵浦源,单根光纤的输出功率有可能提高到近万瓦。
(2)从高功率连续光纤激光向高平均功率、高峰值功率的脉冲光纤激光器发展。
从应用目标出发时,连续工作的光纤激光能提供的靶面功率密度较低,脉冲工作的光纤激光的应用将更广泛。
双包层光纤激光器实现脉冲激光输出,大体上有三种方式:(1)调Q光纤激光器,一般是通过在腔内放置声光调Q元件或熔结一段常规光纤,借助于普通光纤中的受激布里渊散射(SBS)来实现脉冲激光输出;(2)借助于光纤中非线性偏振旋转采用环形腔结构实现脉冲锁模的光纤激光输出;(3)基于种子光振荡放大(MOPA)的脉冲光纤激光器,用这种方式的双包层光纤作为放大器,实现对脉冲种子光的高功率放大[5]。
在MOPA方式中,采用高光束质量、小功率的激光器作为种子光源,双包层光纤作为放大器,易于获得高平均功率、高脉冲能量的脉冲激光输出,是目前研究的热点。
根据所用种子光源的不同,可实现窄线宽、皮秒和飞秒的脉冲激光的高功率放大系统,应用于各种不同的场合。
除了1μm波段的掺镱脉冲光纤激光外,工作在1.5μm人眼安全波段的高平均功率、高峰值功率的掺铒(铒镱共掺)脉冲光纤激光器更是136第2期有着非常重要的应用价值。
(3)从常规的光纤激光组束技术向相干组束技术发展。
将多个高功率光纤激光器的输出按常规方式组束,虽然可以提升总的输出功率,但光束质量变差,亮度提高有限。
相干组束技术则可以在提升总功率的同时,保持光纤激光器良好的光束质量,这将是高功率光纤激光器发展的很有前途的方向。
(4)光纤激光的工业应用从低功率的打标、雕刻(百瓦级)向更高功率的金属和陶瓷的切割、焊接等方面发展(千瓦到万瓦级),在汽车和造船等行业中,结构紧凑、使用方便的高功率光纤激光器具有巨大的市场潜力,但要成功取代常规工业激光器则依赖于它能获得优良的光束质量。
2双端泵浦的高功率光纤激光器高性能的双包层光纤和高功率泵浦源及耦合技术是限制光纤激光器功率提升的主要原因。
在双包层光纤方面,高性能掺镱双包层光纤一直是制约我国高功率光纤激光研究和推广应用的瓶颈。
最近,和烽火通信科技股份有限公司合作,结合上海光机所在光纤激光技术方面的优势和烽火通信科技股份有限公司在特种掺杂光纤制作设备与技术上的优势,实现了高性能掺杂光纤的国产化。
在泵浦源方面,采用独特的半导体激光光束整形技术,并对整形后的LDA进行空间拼合,获得了准直输出的高功率泵浦光束。
在端面泵浦技术中,为了实现泵浦光到光纤内包层的高效、安全耦合,采用了空间滤波和非球面透镜耦合技术[6],得到和光纤内包层参数相匹配的聚焦泵浦光束。
图1双端泵浦的高功率光纤激光器结构示意图Fig.1Experimentalconfigurationofhighpowerfiberlaserwithtwoendspumpingscheme实验中,为了实现更高功率的泵浦注入,采用双端泵浦的技术方案,如图1所示。
所用掺镱双包层光纤的内包层为D形(450μm/400μm),数值孔径为0.37,掺杂纤芯直径为30μm。
由于掺杂浓度高,15m长度的光纤就可将泵浦光高效吸收,从而实现了在较短光纤长度下的高功率输出,为降低光纤激光器的成本进行了有益的探索。
两个中心波长在975nm的泵浦源从两端通过空间滤波和非球面透镜耦合入双包层光纤。
光纤的两个端面均作平面研磨抛光处理,其中一端紧贴一对泵浦光高透、激光高反的腔片,另一端则直接利用其端面反射构成激光反馈,并通过45°双色片将产生的激光导出。
在激光实验中,仅开前端泵浦源,当驱动电流最大时,激光输出功率为193W;仅开后端泵浦源,当驱动电流最大时,激光输出功率为243W;双端泵浦均开至最大时,获得了444W的连续激光功率输出,转换效率在70%以上。
实验中,光纤激光的输出功率随泵浦功率的增加而增加,有很好的线性关系,图2中也未发生光纤端面的泵浦烧蚀和激光损伤问题,表明通过改进系统结构,提高泵浦功率注入,这种掺镱光纤还有潜力实现更高的激光功率输出。