3.2条件分布及其独立性
§3.2 边际分布与独立性
pj
3 5
1 i 2 3-i j 1 j 2 3-j C ) ) C3 ) ) ( ( ( ( 3 3 3 3
i 3
i, j 0,1, 2,3.
1 i 2 3-i Pi P(X i) C ) ) ( ( i 0, 2 3 1,,。 3 3 j 1 j 2 3-j Pj =P(Y j) C3 ) ) ( ( j 0, 2 3。 1,, 3 3
FX ( x)
xi x
j1
i=1
P(X xi , Y y j )
xi x
j1
yj y
Pij
Pij
同理:Y ( y) F
yj y
P(X xi , Y y j )
i=1
2、已知(X,Y)的密度函数,求边际分布函数。
1 i 2 3-i j 1 j 2 3-j ( ( ( ( P(X i)P(Y j) C ) ) C3 ) ) 3 3 3 3 i j 1 i j 2 6 i j i, j 0,1, 2,3. C3C3 ( ) ( )
i 3
由上面的4个例题可以看出:
1、求(X,Y)的联合分布列的方法,是按照乘法公式进行的, P(X=xi,Y=y j ) P(X=xi )P(Y=y j | X=xi )
-2y
同理
1-e FY(y)= 0
y0 y0
2e-2y y 0 PY ( y ) y0 0
4
P((X+Y) 1 )
1 1 y
x +y)1
P( x, y )dxdy
《概率学》3.2_3.3二维随机变量的边缘分布及独立性
连续型
f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x) = F(x,+∞) F Y(y) = F(+∞, y)
pi .=P{X= xi}= pij i=1, 2, ..., j 1
p.j=P{Y= yj}= pij j=1, 2, ..., i 1
连续型 f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x)=(
)
F Y(y) =(
)
pi .=P{X= xi}(=
)
p.j=P{Y= yj}=(
)
f X ( x) (
)
fY ( y) (
)
作答
1
8
山东农业大学公共数学系概率统计课程组 版权所有
第2节 二维随机变量的边缘分布
第三章 多维随机变量及其分布
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
1
7
山东农业大学公共数学系概率统计课程组 版权所有
主第观2节题二维随2机分变量的填边缘空分布 填空
( X, Y )联合分布 一般 F(x,y)= P{X ≤ x,Y≤y}
离散型 P{X=xi ,Y=y j}= pi j
i, j=1, 2, ...,
1
2
fX (x)
f (x, y)dy
1
exp{ 1 (u2 2u v2)}dv
21 1 2
2(1 2)
1
u2
e2
1
exp{ (v u)2 }dv
2 1
2 1 2
2(1 2)
第23讲 条件分布
N
1
1 2
(y
2 ),
2 1
(1
2
)
.
同理可得 fY|X ( y | x)
1
2 2 1 2
exp
2
2 2
1 (1
2
)
y
2
2 1
(
x
1
)
2
.
即在X =x条件下,Y的条件分布是正态分布
N
2
2 1
(
x
1
),
2 2
(1
2
)
.
结论:二维正态分布的条件分布仍为正态分布.
简记为 FX|Y ( x | y). 即:FX|Y ( x | y)=P( X x |Y =y).
连续型随机变量的条件概率密度
定义2 设二维随机变量 ( X ,Y )的概率密度为 f ( x, y),Y 的边缘概率密度为fY ( y)是连续函数. 若对于固定的 y, fY ( y) 0, 则在Y y条件下, X的条件概率密度为
条件分布
条件分布
对于两个事件A,B,若P(B)>0,可以讨论条件概率
P( A | B) P( AB) P(B)
推广到随机变量
P(X
xi
|Y
yj)
P( X xi ,Y P(Y y j )
yj),
i 1,2, , P(Y yj ) 0.
这个分布就是条件分布.
离散型随机变量的条件分布列
定义 设 二维离散型随机变量(X,Y) 的分布列
X
,Y
)~N
(
1
,
2
;
2 1
,
22;
),
求条件概率密度
10条件分布与独立性
f (x,y)=fX(x)fY(y).
特别地,令x = μ1,y = μ2, 由上述等式得到
1
1,
2 1 2 1 2 2 1 2
从而ρ = 0.
综上所述, 得到以下的重要结论: 定理2 对于二维正态随机变量(X, Y), X与 Y相互独立的充要条件是参数ρ = 0.
讲评 随机变量的独立性往往由实际问题
PX≤ x Y y为随机变量X在条件Y= y下的条件
分布函数, 记作 FX Y ( x y).
即
x f (x, y)
FX Y ( x y)
dx. fY ( y)
则上式就是在给定条件Y= y下, 随机变量X的
条件分布函数.
而 f (x, y) 称为在给定条件
fY ( y)
Y= y下X的条件概率密度,
L
f (x1, x2,L , xn)dx2dx3L dxn,
(3.5)
fX1,X2 (x1, x2)
L
f (x1, x2,L , xn)dx3dx4L dxn.
(3.6)
定义2 若对于所有的实数x1,x2,…, xn有
F(x1, x2,L , xn) FX1 (x1)FX 2 (x2)L FXn (xn) (3.7) ,
随机变量的独立性是概率论与数理统计 中的一个很重要的概念,它是由随机事件的相 互独立性引申而来的.我们知道,两个事件A与B 是相互独立的,当且仅当它们满足条件 P(AB)=P(A)P(B).
由此, 可引出两个随机变量的相互独立性.
设X,Y为两个随机变量,于是{X≤x},{Y≤y}为 两个随机事件, 则两事件{X≤x},{Y≤y}相互独立, 相当于下式成立 P{X≤x,Y≤y}=P{X≤x} P{Y≤y}, 或写成 F(x,y)=FX(x)FY(y).
概率论与数理统计3-4
20
O
20
x
图 3-12
求 (1)给定 Y=y 条件下, X 的条件概率密度; (2)给定 Y=10 条件下, X≤5 的概率; (3)如果 Y=20 件呢?
解: (1)
fY ( y )
f X |Y ( x | y ) f ( x, y ) fY ( y ) ;
同理,当 fX (x) >0 时,
fY |X ( y | x ) f ( x, y ) f X ( x) .
第3章 连续型随机变量
3.4.1 连续性随机变量的条件分布密度与独立性
定义 3.8 设(X, 是连续性随机变量,f ( x , y ) ,f X ( x ) , Y)
f X ( z y ) f Y ( y ) dy ,
卷积公式
f X ( x ) f Y ( z x ) dx .
第3章 连续型随机变量
3.4.2二个连续型随机变量和分布
例 3.16 设 X 和 Y 独立, 有共同的概率密度
1 当 0 x 1 f ( x) 0 其他
z
2
1
f ( x , y ) dxdy . D={ (x, y): z y f ( x , y ) dx dy .
z f ( u y , y ) du dy
x+y ≤z },
+
+
第3章 连续型随机变量
3.4.2二个连续型随机变量和分布
1 / f ( x, y ) 0 当x y 1
§3.2边际分布、独立性
边际密度函数 p(x, y) pX (x) pY ( y)
例3.2.7
根据独立性能找到联合分布 例3.2.8 若无独立性,则不能直接找到联合分布
END
例3.2.6
X P
Y P
-1 0 1/4 1/2
0
1
1/2 1/2
1 1/4
P(XY 0) 1 求(1) pij (2) X ,Y独立?
按列相加
i
i
例3.2.2 已知( X ,Y ) ~ pij ,求pi , p j
Y0
X
0
0.09
1 0.21
3 0.24
pi P(X i)
0.09 0.21 0.24 0.54
1
0.07
0.09 0.07 p j P(Y j) 0.16
0.12
0.21 0.12 0.33
0.27
只有 不同的二维,那它们的边际分布一样
习题3.2 第2题
2、边际分布列
已知(X,Y)的联合分布列,求X,Y的分布列
pi P(X xi ) P(X xi ,Y ) P(X xi ,Y y j ) pij
按行相加
j
j
p j P(Y y j ) P( X ,Y y j ) P( X xi ,Y y j ) pij
例3.2.1 二维指数分布的边际分布也是 一维指数分布
二维指数分布的分布函数
1 ex e y exyxy x 0, y 0
F(x, y)
0
else
0
边际分布
1 ex F(x) F(x,)
一维指数分布 0
x0 else
1 e y F( y) F(, y)
3.2条件分布与随机变量的独立性
3e3 ydy e3
1
19
例5 甲乙两人约定中午12:30分在某地会面. 如果甲 来到的时间在12:15到12:45之间是均匀分布, 乙独立 地到达, 而且到达时间在12:00到13:00之间是均匀分 布, 试求先到的人等待另一人到达的时间不超过5分 钟的概率, 又甲先到的概率是多少?
解 由 X 与Y 独立性知
0
0, x 0
x0
ex , x 0
0, x 0
18
当 x 0时,有
fY|X ( y | x)
f (x, y) fX (x)
xe x(1
ex 0
y)
y
y 0
0
xexy y 0
0 y0
(2)当 X 3时,有
P(Y 1 X 3)
1 fY|X ( y | 3)dy
的边缘分布律中的部分数值, 试将其余数值填入表 中的空白处.
X
Y y1 y2 y3 P{ X xi } pi .
x1
1/ 8
x2
1/ 8
P{ y yj } p j 1/ 6
1
解 由于 P{ X x1,Y y1} P{Y y1} P{X x2 ,Y y1} 1/ 6 1/ 8 1/ 24,
1 p• j
i 1
pij
p• j p• j
1
同样, P{Y y j | X xi }也具有这两点性质。
9
例2 设 X与Y的联合概率分布如右表.
求Y 0 时, X 的条件概率 X Y -1 0 2 分布以及 X 0 时, Y 的条件 0 0.1 0.2 0
概率分布;
1 0.3 0.05 0.1 2 0.15 0 0.1
f ( x, y),( X ,Y ) 关于 Y 的边缘概率密度为fY ( y).若
3.2条件分布及其独立性
fX|Y (x| y)
f (x,y) fY (y)
1
2π 1 2
e
1 2(1
2
[ )
(
x1
2 1
)2
2
(x1)( y2 1 2
)
(
y2)2
2 2
]
1 2
1
e
(
y2
2
2 2
)2
2π 2
1
e
1 2(1
2)(
x1 1
y2 2
)2
2π 1 1 2
1
e
212
1 (1
2
[ )
x1
1 2
(
y 2 )]2
P{X xi,Y yj} P{Y yj}
pij pYj
(323)
其中P{Xxi|Yyj}是在事件“Yyj ”发生的条件下 事件“Xxi”
发生的条件概率 通常记作pi|j
不难验证 数列pi|j(i1 2 )满足概率分布所要求的性质
(1) pi|j 0 (2) pi| j 1 i
二、离散型随机变量的条件概率分布与独立性
一、条件分布与独立性的一般概念
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
并称F(x|A)(x)为在A发生的条件下X的条件分布函数 设A{Yy} 且P{Yy}0 则有
F(x|Y y) P{X x,Y y} F(x,y) P{Y y} FY (y)
(320)
说明 一般地 两个随机变量X和Y之间存在着相互联系 因而一
F(x y)和f(x y) 我们希望考虑在Yy的条件下X的条件分布
P{X x|Y y} lim P{X x| yΔ y Y y} Δ y0
【学习】第三章多维随机变量
fX(x)f(x,y)dy,
fY(y)f(x,y)dx
结 束
19
例1: 设 (X, Y) 的分布函数为:
F (x ,y ) a ( b arx ) c c (a ta ry n ) c,( t a x ,y n ) ,
2
2
试求 (1) a 、 b、c , (2) (X, Y ) 的概率密度.
x2 … xi … p21 … pi 1 … ┇…┇…
yj p1 j p2 j … pi j … ┇ ┇ ┇ …┇ …
( X, Y ) 的分布律的性质: (1) 非负性 pi j 0,
(2) 归一性 pi j 1
ij
结 束
10
( X, Y ) 的分布律
P {X x i,Y yj} p ij,i,j 1 ,2 ,
第三章 多维随机变量及其分布
结 束
1
到现在为止,我们只讨论了一维随机变量及其分布. 但有些随机现象用一个随机变量来描述还不够,而 需要用几个随机变量来描述.
如: 在打靶时, 命中点的位置是由 一对随机变量(两个坐标)来确定的.
飞机的重心在空中的位置是由 三个随机变量(三个坐标)来确定 的等等.
因而需进一步讨论由多个随机变量构成的随机向量. 其处理思路及方法与一维情形相同, 但形式较一维 复杂; 学习时应注意与一维情形的对照.
D的可能取值 为1, 2, 3, 4; F 的可能取值 为0, 1, 2 ;
再确定取值的概率,如: P{D1,F0}P{N1} 1/ 6,
P{D2,F1} P ( { N 2 }{ N 3 }{ N 5 } 3 / 6
等等.
可得D 和 F 的 联合分布律及 边缘分布律为:
FD 1 2 0 1/6 0 1 0 3/6
3.2.1,2(边际分布,条件分布)
r
y
y
2 r 2 − y2 , | y |≤ r 2 ϕY ( y ) = π r 0, | y |> r
-r −
r 2 − y2
r 2 − y2
r x
-r
说明: ( X ,Y) 的联合分布是均匀分布, 说明: 的联合分布是均匀分布, 但边缘分布都不是均匀分布。 但边缘分布都不是均匀分布。
2× 2 P (ξ1 = 1, ξ 2 = 1) = = 0.16 5× 5
ξ1
ξ2
0 1
0 0.36 0.24 0.6
1 0.24 0.6 0.16 0.1 0.4
边际分布相同 联合分布却不相同
联合分布可决定边际分布 边际分布不能决定联合分布
−1 0 1 X ~ 1 1 1 , 例 已知 X ,Y 的分布分别为 4 2 4
∴ pη |ξ ( y | x ) =
pξη ( x , y )
pξ ( x ) 称 pη|ξ ( y | x) 为在 ξ = x 条件下, 连续随机变量 η 条件下 ,
的条件概率密度函数。 的条件概率密度函数 。
Fη|ξ
∫ ( y | x) =
y −∞
pξη ( x , v )dv pξ ( x )
解: 1) 不放回”取球方式 ) 不放回” “
3× 2 P (ξ1 = 0, ξ 2 = 0) = = 0.3 5× 4 3× 2 P (ξ1 = 0, ξ 2 = 1) = = 0.3 5× 4
2× 3 P (ξ 1 = 1, ξ 2 = 0) = = 0.3 5× 4
2×1 P (ξ1 = 1, ξ 2 = 1) = = 0.1 5× 4
p12 L p22 L M pm 2 L p•2 L
第2节 条件分布与独立性
解 (1)若( X , Y ) ~ N (0,0,1,1, ), 则
X |Y ( x | y) ~ N ( y,1 2 );
Y | X ( y | x) ~ N ( x,1 ).
2
推广
(2) 设( X ,Y ) ~ N ( 1 , 2 , , , ), 则
.
对于任意给定 xi , 如果 P{ X xi } 0, 则在X xi的
性质:pi| j 0,
p
i
i| j
1;
p j|i 0,
p
j
j|i
1.
问题 : 联合分布、边缘分布和条件分布有什么关系?
联合分布、边缘分布和条件分布的关系 X Y
y1 p11 p21 pi 1
y2 p12 p22 pi 2
2. 连续型变量独立的定义
设两个连续型随机变量 X 和 Y 的联合密度和边缘 密度分别为 f ( x, y )和 f X ( x )与fY ( y ). 则
严格地说 , 连续型随机变量X与Y 相互独立是指 f ( x, y ) f X ( x ) fY ( y ) 在整个平面上几乎处处(即面积为0的区域除外)成立.
3. 一般型随机变量的条件分布 设 X 是一随机变量, A 是一随机事件, 则由如下条件 概率确定的函数
F ( x A) P X x A , x 称为在A 发生条件下 X的条件分布函数 .
二、随机变量的独立性
随机变量独立的直观含义
随机变量 X 和 Y 相互独立的直观含义是指它 们之间在概率上相互毫无影响, 也就是说 , 任何一 个的取值都不会影响到另一个取值的分布.
pi 1
yj p1 j p2 i pij
人教版高中数学选修2-3课件:3.2 独立性检验的基本思想及其初步应用(共38张PPT)
P(K2≥k0) 0.05 0.025 0.010 0.005 0.001
例如:
k0
3.841 5.024 6.635 7.879 10.828
①如果k≥10.828,就有99.9%的把握认为“X与Y有关系”;
②如果k≥7.879,就有99.5%的把握认为“X与Y有关系”;
③如果k≥6.635,就有99%的把握认为“X与Y有关系”;
≈7.8.
备课素材
附表:P(K2≥k0) k0
0.050 3.841
0.010 6.635
0.001 10.828
参照附表,得到的正确结论是 (A ) A.有99%以上的把握认为“爱好该项运动与性别有关” B.有99%以上的把握认为“爱好该项运动与性别无关” C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
表(称为2×2列联表)为
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计 a+c
b+d a+b+c+d
若要推断的论述为H1:“X与Y有关系”,则可以按如下步骤判断H1成立的可能性:
预习探究
预习探究
P(K2≥k0) 0.50 0.40 0.25 0.15 0.10
k0
0.455 0.708 1.323 2.072 2.706
考点类析
考点一 两分类变量之间关联关系的定性分析
例1 为考察某种药物预防某种疾病的效果,进行了一 项动物试验,得到如下列联表:
服用药 未服用药
高等数学3.4 随机变量的独立性与条件分布
2 3/15 3/15
0 1
(2) 由( X , Y ) 的联合分布律知 X 的边缘分布为 X P 0 1/15 1 10/15
由条件分布定义可知
P Y = 0 X = 0 = P Y = 1 X = 0 = P Y = 2 X = 0 =
P X = 0 , Y = 0 P X = 0 P X = 0 , Y = 1 P X = 0 P X = 0 , Y = 2 P X = 0
Y P
1 1/2
2 1/9 +α
3 1/18 +β
若X 与 Y 相互独立, 则有 1 = P X = 1, Y = 2 = P X= 1 9 1 1 = ( + ) 3 9 1 = P X = 1, Y= 3 = P X =1 18 1 1 = ( + ) 3 18
Y P = 2
dt
=
同理
x R
fY ( y ) =
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0 , 则对于任意实数 x 与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数 x与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 若取 x = 1 , y = 2 , 则有
1 2
2
2 2 ( x ) ( x ) 2 2 1 1 + 2 2 1 1
y 2 ( x 1 ) x 1 1 = 2 2 1 2 1 2(1 ) 2
2
所以( X , Y )关于X的边缘密度为
条件分布及其独立性
分析
设(X Y)是连续型随机向量 分布函数和密度函数分别为 F(x y)和f(x y) 我们希望考虑在Yy的条件下X的条件分布
由于{Yy}是一个零概率事件
P{X x|Y y} P{X x,Y y} P{Y y}
(328)
的分子、分母均为0 因而直接根据条件概率定义来考虑X的
(320)
对给定的x和y 如果事件{Xx}与事件{Yy}独立 则有
此时
F(x y) P{Xx Yy}P{Xx}P{Yy} FX(x)FY(y)
F(x|Yy)FX(x)
(321)
一、条件分布与独立性的一般概念
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
并称F(x|A)(x)为在A发生的条件下X的条件分布函数 设A{Yy} 且P{Yy}0 则有
F(x|Y y) P{X x,Y y} F(x,y) P{Y y} FY (y)
(1) pi|j 0 (2) pi| j 1 i
二、离散型随机变量的条件概率分布与独立性
条件概率分布
设(X Y)是二维离散型随机向量 其概率分布为
P{Xxi Yyj}pij i j1 2 则由条件概率公式 当P{Yyj}0时 有
P{X
xi |Yຫໍສະໝຸດ 1 x2 , π 0,
| x|1, 其他.
于是 对一切x(|x|1) 有
fY|X (y| x)
f (x, y) fX (x)
2
1, 1 x2 0,
| y| 1 x2, 其他.
例38(2) 设(X Y)是在D{(x y)|x2y21}上服从均匀分布 的随机向量 求fX|Y (x|y)
吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版
吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.3 古典概型现习题3现习题4现习题5现习题6现习题7现习题8现习题9现习题101.4 条件概率习题3 空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题6.习题7习题8习题9习题10习题11现习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22现习题23现习题24第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.习题4 (空)习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10 纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布习题1习题2习题3习题4习题5习题6总习题二1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、。
3-2 边缘分布及随机变量的独立性
1 则有 p X ( x) e 2 σ1
即
( x μ1 )2
2 2 σ1
2 2 σ1
e
t2 2
d t,
同理可得
1 p X ( x) e 2πσ1
( x μ1 )2
, x .
1 pY ( y ) e 2 σ 2
( y μ2 )2
为随机变量( X , Y )关于X 的边缘分布函数.
记为 FX ( x) F ( x, ).
同理令 x ,
FY ( y) F (, y) P{X , Y y} P{Y y}
为随机变量 ( X,Y )关于Y 的边缘分布函数.
二、离散型随机变量的边缘分布律
X PX
1 0.3
3 0.7
Y PY
2 0.6
4 0.4
求随机变量 (X,Y) 的分布律.
解
因为X与Y 相互独立, 所以
P{ X xi ,Y y j } P{ X xi } P{Y y j }
于是
P{ X 1,Y 2} P{ X 1} P{Y 2}
0.3 0.6 0.18,
i 1
j 1, 2, ,
分别称 pi (i 1, 2,) 和 p j ( j 1, 2,) 为 ( X , Y ) 关于 X 和关于 Y 的边缘分布律.
Y
X
x1
x2
xi
y1 y2 yj
p11 p12 p1 j
p21 p22 p2 j
pi 1 pi 2 pij
, x ;
1 , b y b, pY ( y ) 2b 其它. 0,
3.2条件分布与随机变量的独立性(课件)
P Y y 且 X x F y X x P Y y X x P X x
F ( x, y ) FX ( x ) F y X x FY ( y)F x Y y
独立性: 事件A与 B 独立
2 x, 0 x 1 f X ( x) 其它 0,
1
x
y x f ( x, y ) f 当 x 0 或 x 1 时, Y X y x 不存在. f X ( x)
1, f ( x, y) 0,
0 x 1, x y x yx
其它
求条件密度函数.
0dy 0, x 0 解 2 x, 0 x 1 2 x , 0 x 1 f X ( x ) f ( x , y )d y 0, 其它 0dy 0, x 1 0 x 1 时, y yx f X ( x) f ( x , y )d y
0dy 1 dy 0dy 2x x x
x
x
f ( x, y ) fY X y x f X ( x)
x
x 1
x x
y x
例 设X和Y的联合密度函数为 0 x 1, x y x yx 1, f ( x, y) y求条件密度函数. 0, 其它 yx 解
X Y
例 设随机变量 X 与 Y 独立, 下表列出二维随机向量 ( X , Y ) 的联合分布律 及边缘分布律 的部分数值,
将其余数值 填入空白处.
X
Y
y1
1 24 1 8 1 6
3.2.边缘分布_条件分布
2、连续型r.v.边缘分布
设(X, Y)~f (x, y),(x, y)R2,F(x, y)为分布 函数,则
FX ( x) F ( x, )
称
x
f ( x, y)dydx
f X ( x) f ( x, y)dy
为(X, Y )关于X 的边缘密度函数;
同理,称
例8 (X,Y)~ N(1, 12, 2, 22, ),求 fY | X ( y | x)
1 1 f X ( x) exp{ ( x 1 ) 2 } 解、由Ex3知, 2 12 2 1
f ( x, y ) fY | X ( y | x ) f X ( x)
1 2 2
二、条件分布
1. 离散型随机变量的条件分布律 例6.已知(X,Y)的分布律为 X \Y -1 0 pi.
-2 0 1/10 3/10 2/5 3/10 3/10 3/5 p.j 2/5 3/5 求X|Y = -1的条件分布律。
P{ X xi , Y 1} P{ X xi | Y 1} P{Y 1}
2 exp{ [ y2 2 ( x 1 )]2 } 2 2 2 2 1 1
1
2 Y | X N ( 2 ( x 1 ), 2 2 (1 2 )) 1
三、随机变量的相互独立性
定义 如果对任意实数x, y, F(x, y)=FX(x)FY(y)
其分量X及Y的分布函数为二维随机变量(X, Y) 关于X及关于Y的边缘分布函数, 分别记作 FX(x), FY(y), 边缘分布函数可以由(X ,Y)的分 布函数F(x, y)来确定.
定义
FX ( x) P{ X x} F ( x, ) lim F ( x, y )
第3.2.3节随机向量,随机变量的独立性(3)独立性
又 p1( x)
1
( x )2
e 2σ2 , x ;
2 σ
p2
(
y)
1 2b
,
b y b,
0, 其它.
得
p(x,y)
1
2b
1
e ,
(x )2 2σ2
2σ
其中 x , b y b.
当 y b 时, p( x, y) 0.
1
1
1
6
1
2
3
p2 P{Y yj } 1 2
2 1 9
1
9
3
p1 P{X xi }
1
1
18
Hale Waihona Puke 31 3
1 2
18
3
(1)由分布律的性质知 0, 0, 2 1,
3
故与应满足的条件是 : 0, 0 且 1 .
σ1σ2
σ
2 2
0
3. n个随机变量的独立性(集合论观点)
设1,2 ,L ,n为n维随机变量,如果对任意的一维
博雷尔点集A1,A2 ,L ,An ,
P{1 A1 ,2 A2 ,L ,n An } P{1 A1 },L , P{n An }
1,2 ,L
与相互独立 p1( x) p2( y) p( x, y)
1 2πσ1σ2
exp{ 1 2
(x
1 )2
σ12
(
y
2)2
σ22
}
1 2πσ1σ2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 当x0.5时 P{Xx X0.5}0
当x0.5时
P{X
x, X
0.5} x 0.05.,5,
0.5 x1, x 1.
从而可得
F (x|
X
0.5)
P{X x, X 0.5} P{X 0.5}
P{X
x, X 0.5
0.5}
F(x| X
0.5) 2x0, 1,
x 0.5, 0.5 x1,
1, x 1.
Yy
的条件下
X
的条件密度函数
类似地 可以讨论在Xx的条件下 Y的条件分布
三、连续型随机变量的条件密度函数与独立性
条件密度函数
设(X Y)是连续型随机向量 密度函数为f(x y)
如果fX(x)0 fY(y)0 则
fX|Y (x| y)
f (x, y) fY (y)
fY|X (y| x)
f (x, y) fX (x)
解 在X0时 Y的条件概率分布为
P{Y
1|
X
0}
P{Y 1, X P{X 0}
0}
0.1 0.10.20
1 3
P{Y
0|
X
0}
P{Y 0, X P{X 0}
0}
0.2 0.3
2 3
P{Y
2|
X
0}
P{Y 2,X 0} P{X 0}
0 0.3
0
定理33(独立性的判断)
设X Y是离散型随机变量 其联合概率分布为
§32 条件分布与随机变量的独立性
一、条件分布与独立性的一般概念 二、离散型随机变量的条件概率分布与独立性 三、连续型随机变量的条件密度函数与独立性
一、条件分布与独立性的一般概念
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
并称F(x|A)(x)为在A发生的条件下X的条件分布函数 设A{Yy} 且P{Yy}0 则有
解 由§3 1 知 X ~ N(1, 12),Y ~ N(2, 22), 于是
fX |Y (x| y)
f (x,y) fY (y)
1
e
212
1 (1
2
[ )
x
1
12
(
y 2 )]2
2π 1 1 2
故 在Yy的条件下 X服从正态分布
X~
N
(1
1 2
(
y
2),
12(1
2))
对称地 在Xx的条件下 Y服从正态分布
fY (y)
(329)
对给定的y 如果fY(y)0 则称P{Xx|Yy}为Yy的条件下 X的条件分布函数 记作FX|Y (x|y) 由(329)知
FX|Y (x| y)
x
f (u, y) du fY (y)
(330)
记
fX|Y (x| y)
f (x, y) fY (y)
称
fX|Y(x|y)为
条件分布行不通 为此 我们通过极限来定义条件分布
三、连续型随机变量的条件密度函数与独立性
分析 设(X Y)是连续型随机向量 分布函数和密度函数分别为
F(x y)和f(x y) 我们希望考虑在Yy的条件下X的条件分布
P{X x|Y y} lim P{X x| yΔ y Y y} Δ y0
lim P{X x, yΔ y Y y} Δy0 P{yΔ y Y y}
0, 其他,
于是其边缘密度函数fX(x)为
fX (x)
f (x, y)dy 2
1 x2 , π 0,
| x|1, 其他.
于是 对一切x(|x|1) 有
fY|X (y| x)
f (x, y) fX (x)
2
1, 1 x2 0,
| y| 1 x2, 其他.
例38(2) 设(X Y)是在D{(x y)|x2y21}上服从均匀分布 的随机向量 求fX|Y (x|y)
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
并称F(x|A)(x)为在A发生的条件下X的条件分布函数 设A{Yy} 且P{Yy}0 则有
F(x|Y y) P{X x,Y y} F(x,y) P{Y y} FY (y)
(320)
对给定的x和y 如果事件{Xx}与事件{Yy}独立 则有
P{Xxi Yyj}pij (i j1 2 ) 边缘概率分布分别为piX和pjY(i j1 2 ) 则X与Y相互独立的 充要条件是
pijpiXpjY (i j1 2 )
(327)
例37 设X与Y的联合概率分布如下表 判断X与Y是否相 互独立?
解 因为
P{X0}010203
P{Y1}0103015055
由条件密度函数的定义 我们容易知道 密度函数有下列
乘法公式
f(x y)fX(x)fY |X(y|x)fY (y)fX|Y(x|y)
(333)
例38(1) 设(X Y)是在D{(x y)|x2y21}上服从均匀分布 的随机向量 求fY|X(y|x)
解 由于(X Y)的密度函数为
f
(x,
y)
1 π
,
x2 y2 1,
| x| 1 y2, 其他.
例 39 设(X ,Y)~ N(1, 2;12, 22; ) 求 fX|Y (x|y)和 fY|X (y|x)
解 由§3 1 知 X ~ N(1, 12),Y ~ N(2, 22), 于是
fX |Y (x| y)
f (x,y) fY (y)
1
2π 1 2
e
1 2(1
设X1 X2 Xn是n个随机变量 其联合分布函数为F(x1 x2 xn) 边缘分布函数为Fi (xi)(i1 2 n) 如果对任意实数 x1 x2 xn恒有
F(x1 x2 xn)F1(x1)F2(x2) Fn(xn) 则称X1 X2 Xn相互独立
二、离散型随机变量的条件概率分布与独立性
设随机变量X Y的联合分布函数为F(x y) 边缘分布函数 分别为FX(x) FY(y) 如果对任意实数x和y 恒有
F(x y)FX(x)FY (y) 则称随机变量X和Y相互独立
例35 设X服从[0 1]上的均匀分布 求在已知X0.5的条 件下X的条件分布函数
解 当x0.5时 P{Xx X0.5}0
解 由于(X Y)的密度函数为
f
(x,
y)
1 π
,
x2 y2 1,
0, 其他,
于是其边缘密度函数fY(y)为
fY (y)
f (x, y)dx 2
1 y2 , π 0,
| y|1, 其他.
于是 对一切y(|y|1) 有
fX|Y (x| y)
f (x, y) fY (y)
2
1, 1 y2 0,
而
P{X0 Y1}01
可见 P{X0 Y1}P{X0}P{Y1}
所以X与Y不独立
应注意的问题 在前一节讨论中 我们得知 由联合概率分布可以确定边
缘概率分布 但是由边缘概率分布一般不能确定联合概率分 布 比较表32中的两个不同联合概率分布 我们注意到它们具 有相同的边缘概率分布
表32 具有相同边缘概率分布的两个不同的联合概率分布
发生的条件概率 通常记作pi|j
不难验证 数列pi|j(i1 2 )满足概率分布所要求的性质
(1) pi|j 0 (2) pi| j 1 i
二、离散型随机变量的条件概率分布与独立性
条件概率分布
设(X Y)是二维离散型随机向量 其概率分布为
P{Xxi Yyj}pij i j1 2 则由条件概率公式 当P{Yyj}0时 有
此时
F(x y) P{Xx Yy}P{Xx}P{Yy} FX(x)FY(y)
F(x|Yy)FX(x)
(321)
一、条件分布与独立性的一般概念
条件分布函数 对每个给定的实数x 我们记条件概率P{Xx|A}为F(x|A)
并称F(x|A)(x)为在A发生的条件下X的条件分布函数 定义36(随机变量的相互独立性)
F(x|Y y) P{X x,Y y} F(x,y) P{Y y} FY (y)
(320)
说明 一般地 两个随机变量X和Y之间存在着相互联系 因而一
个随机变量的取值可能会影响另一随机变量取值的统计规律 性 (320)表明联合分布函数包含了X与Y相互联系的内容
一、条件分布与独立性的一般概念
P{X
xi |Y
y j}
P{X xi,Y yj} P{Y yj}
pij pYj
(323)
其中P{Xxi|Yyj}是在事件“Yyj ”发生的条件下 事件“Xxi”
发生的条件概率 通常记作pi|j
我们称
P{Xxi |Yyj}pi|j i1 2 为已知Yyj的条件下X的条件概率分布
例36 设X与Y的联合概率分布如下表 求Y0时X的条件 概率分布以及X0时Y的条件概率分布
(334)
证明 充分性 若f(x y)fX(x)fY(y) 则
xy
F(x, y) fX (u) fY (t)dudt
x
y
fX (u)du fY (t)dt
FX (x)Fy(y)
Y
~
N
(2
2 1
(x
1),
22(1
2))
定理34(独立性的判断)
设连续型随机向量(X Y)的密度函数为f(x y) 边缘密度函
数分别为fX(x)和fY(y) 则X与Y相互独立的充要条件是
f(x y)fX(x)fY(y)
(334)
证明 必要性 如果X与Y相互独立 则对任意x y 有
x
y
F(x, y) FX (x)FY (y) fX (u)du fY (t)dt