粉末冶金原理名词解释汇总
粉末冶金原理
粉末冶金原理1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。
2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量g/cm3。
4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。
5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线,分布曲线对应50%处称为中位径弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象6.合批:将成分相同而粒度不同的粉末进行混合,称为合批7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。
8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。
9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结体的密度和其它性能得到提高的方法。
10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。
11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。
12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。
13.混合:将两种或两种以上不同成分的粉末混合均匀。
分为机械法和化学法。
14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成拱桥孔洞的现象。
15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。
16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。
粉末冶金术语
粉末冶金术语简介粉末冶金术语可按以下主要标题进行分类:粉末成形烧结烧结后处理粉末冶金材料这里收录的是粉末冶金一些常用术语,主要摘自于GB/T 3500-1998 《粉末冶金术语》,希望能对大家有所帮助。
一、粉末:粉末 powder通常是指尺寸小于1mm的离散颗粒的集合体。
粉浆 slurry粉末在液体中形成的可浇注的粘性分散体系。
坯料 feedstock用作注射成形或粉末挤压原料的塑化粉末。
雾化粉 atomized powder熔融金属或合金分散成液滴并凝固成单个颗粒的粉末。
(分散介质通常是高速气流或液流)羰基粉 carbonyl powder热离解金属羰基化合物而制得的粉末。
电解粉 electrolytic powder用电解沉积法制得的粉末。
还原粉 reduced powder用化学还原法还原金属化合物而制成的粉末。
海绵粉 sponge powder将还原法制得的高度多孔金属海绵体粉碎而制成的多孔性还原粉末。
合金粉 alloyed powder由两种或多种组元部分或完全合金化而制得的金属粉末。
预合金粉 pre-alloyed powder通常指将熔体雾化而制成的完全合金化的粉末。
复合粉 composite powder每一颗粒由两种或多种不同成分组成的粉末。
包覆粉 coated powder由一层异种成分包覆在颗粒表面而形成的复合粉。
合批粉 blended powder由名义成分相同的不同批次粉末混合而成的粉末。
粘结剂 binder为了提高压坯的强度或防止粉末偏析而添加到粉末中的可在烧结前或烧结过程中除掉的物质。
掺杂剂 dopant为了防止或控制烧结体在烧结过程中或在使用过程中的再结晶或晶粒长大而在金属粉末中加入的少量物质。
(主要用于钨粉末冶金)润滑剂 lubricant为了减少颗粒之间及压坯与模壁表面之间的摩擦而加入粉末中的物质。
增塑剂 plasticizer用于粘结剂,旨在提高粉末成形性的热塑性材料。
粉末冶金原理重点
装球量:球磨筒内磨球的数量。
球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为ηi=M/(qIt)×100%粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。
松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为g/cm3。
振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。
单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。
一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。
二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。
压缩性: 粉末被压紧的能力成形性: 粉末压制后,压坯保持既定形状的能力净压力:单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。
多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。
气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。
活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。
氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。
液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。
机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。
热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法1、粉末制备的方法有哪些,各自的特点是什么?1 物理化学法1还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co及其合金粉末)金属热还原法(Ta,Nb,Ti,Zr,Th,U)→SHS自蔓延高温合成。
粉末冶金原理名词解释汇总
粉末冶金原理名词解释汇总(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--粉末冶金原理名词解释汇总临界转速机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度比表面积单位质量或单位体积粉末具有的表面积(一克质量或一定体积的粉末所具有的表面积与其质量或体积的比值称为比表面积)二次颗粒由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒离解压每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。
电化当量这是表述电解过程输入电量与粉末产出的定量关系,表达为每 96500库仑应该有一克当量的物质经电解析出气相迁移细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程真密度颗粒质量用除去开孔和闭孔的颗粒体积除得的商值。
真密度实际上就是粉末的固体密度似密度又叫有效密度,颗粒质量用包括闭孔在内的颗粒体积去除得的相对密度粉末或压坯密度与对应材料理论密度的比值百分数松装密度粉末在规定条件下自然填充容器时,单位体积内的粉末质量,单位为g/cm3比形状因子将粉末颗粒面积因子与体积因子之比称为比形状因子压坯密度压坯质量与压坯体积的比值相对体积粉末体的相对密度(d=ρ/ρ理)的倒数称为相对体积,用β=1/d表示粒度分布将粉末样品分成若干粒径,并以这些粒径的粉末质量(颗粒数量、粉末体积)占粉末样品总质量(总颗粒数量、总粉末体积)的百分数对粒径作图,即为粒度分布;(一定体积或一定重量(一定数量)粉末中各种粒径粉末体积(重量、数量)占粉末总量的百分数的表达称为粒度分布)粉末加工硬化金属粉末在研磨过程中由于晶格畸变和位错密度增加,导致粉末硬度增加,变形困难的现象称为加工硬化雾化法利用高速气流或高速液流将金属流(其它物质流)击碎制造粉末的方法二流雾化由雾化介质流体与金属液流构成的雾化体系称为二流雾化快速冷凝将金属或合金的熔液快速冷却(冷却速度>105℃/s),保持高温相、获得性能奇异性能的粉末和合金(如非晶、准晶、微晶)的技术,是传统雾化技术的重要发展假合金两种或两种以上金属元素因不是根据相图规律、不经形成固溶体或化合物而构成的合金体系,假合金实际是混合物保护气氛为防止粉末或压坯在高温处理过程发生氧化而向体系加入还原性气体或真空条件称为保护气氛压制性粉末压缩性与成形性的总称成形性粉末在经模压之后保持形状的能力,一般用压坯强度表示压缩性粉末在模具中被压缩的能力称为压缩性,一般用压坯密度表示粉末粒度一定质量(一定体积)或一定数量的粉末的平均颗粒尺寸成为粉末粒度粉末流动性 50 克粉末流经标准漏斗所需要的时间称为粉末流动性。
粉末冶金的名词解释
粉末冶金的名词解释粉末冶金是一种先进的金属加工技术,它是通过将金属或非金属材料粉末进行成型和烧结而制造出零件或产品的过程。
相较于传统的金属加工方法,粉末冶金具有独特的优势和应用领域。
本文将对粉末冶金进行解释,并讨论其在不同领域的应用。
一、粉末冶金的工艺过程粉末冶金的工艺过程主要包括粉末制备、成型和烧结三个阶段。
粉末制备是将金属或非金属材料通过不同的方法制备成粉末。
常见的方法包括机械破碎、球磨、水热法和煅烧等。
通过这些方法可以控制粉末的颗粒大小和形状,以满足不同材料和应用的需求。
成型是将制备好的粉末放入模具中,通过力的作用进行成型。
成型方法常见的有压力成型、注射成型和挤压成型等。
通过成型,粉末可以被固化成具有初步形状的零件。
烧结是将成型后的零件进行高温处理,使粉末颗粒之间发生结合并形成固体。
这个过程中,粉末颗粒会扩散,表面能降低,从而使其相互连接,形成具有一定强度和密度的零件。
二、粉末冶金的优势粉末冶金相较于传统的金属加工方法,具有以下优势:1. 原材料利用率高。
粉末冶金可以直接利用原材料制备成粉末,大大减少了废料的产生。
同时,可以使用廉价原材料和废料来制备粉末,降低成本。
2. 零件成型精度高。
粉末冶金可以通过模具成型,在模具的作用下零件形状和尺寸可以精确控制,成型精度高。
3. 可以制造复杂形状和孔隙材料。
由于粉末可以在模具中充分填充,而且可以通过加工制造出复杂形状和孔隙材料。
4. 可以制造具有特殊性能的材料。
通过控制粉末的成分和制备过程,可以制造出具有特殊性能的材料,如陶瓷材料、合金材料等。
三、粉末冶金的应用领域粉末冶金广泛应用于各个领域,以下是几个常见的应用领域:1. 汽车工业。
粉末冶金用于制造汽车零部件,如发动机活塞、齿轮和制动系统等。
由于粉末冶金可以制造出高强度、低摩擦系数和高耐磨性的材料,适用于汽车工业的要求。
2. 电子工业。
粉末冶金用于制造电子器件和元器件,如继电器、电容器和磁体等。
粉末冶金可以制造出具有特殊性能的材料,满足微电子技术的要求。
粉末冶金知识点总结
粉末冶金知识点总结一、粉末冶金基础知识1. 粉末冶金的概念粉末冶金是一种利用金属或非金属粉末作为原料,通过压实和烧结等方式制备零部件的工艺。
它充分发挥了粉末的特性,即可压性、可成形性、可烧结性和可溶性等,使得粉末冶金工艺具有高效率、低成本、无废料和生产精度高等优点。
2. 粉末材料的选择在粉末冶金过程中,选择合适的粉末材料对于制备高质量的产品至关重要。
一般来说,粉末材料应具有以下特点:细小的颗粒大小、均匀的颗粒分布、高的纯度和良好的流动性。
3. 粉末冶金的工艺粉末冶金工艺通常包括原料的混合、成型、烧结和后处理等步骤。
在这个过程中,需要注意粉末的混合比例、成型方式、烧结温度和时间等参数的控制,以确保制备出符合要求的成品。
4. 粉末冶金的应用粉末冶金技术已广泛应用于汽车、航空航天、医疗器械、电子设备等领域,制备出的产品具有优异的性能和精密的形状,可以满足各种特殊需求。
二、粉末材料的制备方法1. 机械合金化机械合金化是一种通过机械设备将原料混合并形成均匀的粉末混合物的方法。
常见的机械合金化设备包括球磨机、混合机和搅拌机等。
这种方法对原料的颗粒大小和形状要求不高,适用于制备一些普通的粉末材料。
2. 化学还原法化学还原法是一种利用化学反应生成的气体来分解金属或合金化合物,产生金属粉末的方法。
这种方法可以制备出颗粒细小、形状均匀的金属粉末,适用于制备高质量的粉末材料。
3. 气相沉积法气相沉积法是一种通过将金属原子或分子从气体中沉积到基底上形成薄膜或粉末的方法。
这种方法可以制备出极细的金属粉末,适用于制备一些用于电子器件等特殊应用场合的粉末材料。
4. 电化学法电化学法是一种利用电化学反应来制备金属粉末的方法。
这种方法制备的金属粉末质量较高,但工艺复杂,适用于制备一些对粉末质量要求较高的粉末材料。
5. 液态金属雾化法液态金属雾化法是一种通过气流将液态金属喷雾成细小颗粒的方法。
这种方法可以制备出颗粒细小、形状均匀的金属粉末,适用于制备高质量的粉末材料。
粉末冶金 名词解释
一、名词解释1、拱桥效应:粉料自由堆积的空隙率往往比理论计算值大得多,就是因为实际粉料不是球形,加上表面粗糙图表,以及附着和凝聚的作用,结果颗粒互相交错咬合,形成拱桥型空间,增大了空隙率。
这种现象称为拱桥效应。
2、氢损测定:把金属粉末的的试样在纯氢气流中煅烧足够长的时间,(铁粉为1000-1050℃,1h;铜粉为875℃,0.5h),粉末中的氧被还原成水蒸气,某些元素与氢挥发性化合物,与挥发性金属一同排除,测得金属粉末的损失量成为氢损。
3、粉末注射成型:利用塑料的可挤压性和可模塑性,将松散的粒料或粉状成型物料从注射机的料斗送入高温的机筒内加热熔融塑化,使之成为黏流态熔体,在柱塞或螺杆的高压推动下,以很大的流速通过机筒前端的喷嘴注射进入温度较低的闭合模具中,经过一段保压冷却定型时间后,开启模具便可从模腔中脱出具有一定形状和尺寸的塑料制件。
4、烧结:把压坯或松装粉末体加热到其基本组员熔点以下的温度,并在此温度下保温,从而使粉末颗粒相互结合起来,改善其性能。
这种热处理称作烧结。
5、活化烧结:采用化学或物理措施,使烧结温度降低,烧结过程加快,或使烧结体密度和其他性能得到提高的方法,称为活化烧结。
6、烧结颈:通过烧结,颗粒之间由于原子的扩散,彼此之间的间隙逐渐球化,且颗粒间形成颈状的联结,形成烧结颈。
7、无压烧结:8、热等静压:在高温高压密封容器中,以高压氩气为介质,对其中的粉末或待压实的烧结坯料(或零件)施加各向均等静压力,形成高致密度坯料(或零件)的方法。
9、融浸:用熔点比压坯或烧结体低的金属或合金熔化后填充压坯或烧结体孔隙的方法。
10、成型:将松散的粉末体加工成具有一定尺寸、形状,以及一定密度和强度的坯块。
11、侧压力:粉末体在压模内受压时,压坯会向周围膨胀,模壁就会给压坯一个大小相等、方向相反的反作用力,这个力就是侧压力。
12、弹性后效:弹性后效指的是材料在弹性范围内受某一不变载荷作用,其弹性变形随时间缓缓增长的现象。
粉末冶金原理复习总结
临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度。
离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。
电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每96500库仑应该有一克当量的物质经电解析出。
气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程。
相对密度:粉末或压坯密度与对应材料理论密度的比值百分数。
压坯密度:压坯质量与压坯体积的比值。
相对体积:粉末体的相对密度(d=ρ/ρ理)的倒数称为相对体积,用β=1/d表示。
粉末加工硬化:金属粉末在研磨过程中由于晶格畸变和位错密度增加,导致粉末硬度增加,变形困难的现象称为加工硬化。
快速冷凝:将金属或合金的熔液快速冷却(冷却速度>105℃/s),保持高温相、获得性能奇异性能的粉末和合金(如非晶、准晶、微晶)的技术,是传统雾化技术的重要发展。
假合金:两种或两种以上金属元素因不是根据相图规律、不经形成固溶体或化合物而构成的合金体系,假合金实际是混合物。
保护气氛:为防止粉末或压坯在高温处理过程发生氧化而向体系加入还原性气体或真空条件称为保护气氛。
粉末粒度:一定质量(一定体积)或一定数量的粉末的平均颗粒尺寸成为粉末粒度。
粉末流动性:50克粉末流经标准漏斗所需要的时间称为粉末流性。
孔隙度:粉体或压坯中孔隙体积与粉体表观体积或压坯体积之比。
标准筛:用筛分析法测量粉末粒度时采用的一套按一定模数(根号2)制备的金属网筛。
单轴压制:在模压时,包括单向压制和双向压制,压力存在压制各向异性。
密度等高线:粉末压坯中具有相同密度的空间连线称为等高线,等高线将压坯分成具有不同密度的区域。
雾化介质:雾化制粉时,用来冲击破碎金属流柱的高压液体或高压气体称为雾化介质。
活化能:发生物理或化学反应时,形成中间络合物所需要的能量称为活化能。
粉末冶金原理(终)
绪论粉末冶金:是冶金学的一种,是制取金属粉末,采用成形和烧结工艺将金属粉末(添加或不添加外金属粉末)制成材料和制品的一项工艺技术。
粉末冶金的特点:优:1.能生产其他方法无法生产成很难生产的材料和制品:Cu-W合金(假合金)(Cu、W 完全不互熔、电触头、发汗材料);2,能够产生具有特殊性能的产品,性能优越:多孔含油轴承;3.粉末冶金是一种少切削甚至不切削的工艺:生产φ45齿轮。
缺:1.只适合大规模的生产,否则不经济;2.在制取形状复杂、尺寸大的产品时受到限制。
第一章制粉法的分类:机械法(涡旋法,捣磨法,球磨法,切割磨法,超细粉碎法,雾化法)和物理化学法(冷凝法,热分解法,还原法,沉淀法,置换法,电解法,合金分解法,有机溶媒法)。
还原过程的基本原理和还原剂的选择(课本第9页)。
金属氧化物还原的动力学(见课本第15页)。
多项反应的机理(1)“吸附—自动催化”理论第一步:吸附—气体还原剂分子被金属氧化物吸附。
第二步:反应—被吸附的还原剂分子固体氧化物中的氧相互作用并产生新相。
第三步:解吸—反应的气体产物从固体表面上解吸MeO(固) + X(气) = MeX(固)·X(吸附)+Me(固)·X(吸附) = Me(固)·XO(吸附)+ Me(固)·XO(吸附) = Me(固)+XO(气)= MeO(固) + X(气) = Me(固)+XO(气)扩散到MeO的表面(还原剂氧化物通过产物层扩散)(2)反应速度与时间关系曲线(见课本23页)碳还原法制取铁粉的本质影响还原过程和铁粉质量的因素(1)原料a 原料中杂质的影响;b 原料粒度的影响(2)固体碳还原剂a 固体碳还原剂类型的影响;b 固体碳还原剂用量的影响)(3)还原工艺条件a 还原温度和还原时间的影响;b 料层厚度的影响;c 还原罐密封程度的影响(4)添加剂a 加入一定的固体碳的影响;b 返回料的影响;c 引入气体还原剂的影响;d 碱金属盐的影响(5)海绵铁的处理退火的目的:1.提高铁粉纯度;2.消除加工硬化;3.防止粉末自燃影响固体碳还原铁鳞的主要因素(1)原料A 铁鳞 a 杂质二氧化硅有害 < 0.3%b 粒度粒度减小,反应面增大,还原速度加快B 固体碳 a 类型还原能力木炭 > 焦炭〉无烟煤b 用量根据碳氧比K值及还原温度而定(2)还原工艺条件A 还原温度适当提高温度有利于还原,但还原温度不宜过高 950-1100℃B 还原时间随温度而定,温度高时,时间可缩短,时间的影响远不及温度的影响C 料层厚度温度一定时,料层厚度增加,还原时间加长D 还原罐密封程度密封不严时可造成还原不透或冷却时氧化(3)添加剂A 往原料铁鳞中加入一定量的固体碳时效果较好(疏松剂)B 往原料中加入一定量的反馈料,有利于还原过程(废铁粉)C 引入气体还原剂挥发沉积长大机理:(1)钨的氧化物具有挥发性,而且随着温度升高,挥发性升高;(2)WO3的挥发性 > WO2的挥发性;(3)WO3挥发后的气相被还原,然后沉积在已还原低价氧化钨或金属钨颗粒表面使其长大。
粉末冶金重点整理
10. 制备超细合金加V、Cr为什么阻碍碳化物长大??? 原因:1、降低共晶温度 2、在WC和Cr界面析出阻碍长大(形核,长大) 具体:超细 WC&Co 合金晶粒长大的驱动力是来自于表面积的减少。它是由于具有较高 溶解度的细碳化物溶解于富钴相中而发生,继而再析出在较大碳化物上,从而引起 WC 晶粒 长大。在超细 WC&Co 合金中添加一定量的抑制剂就可以抑制这种 WC 晶粒的长大。 晶粒长大主要发生在 WC 的溶解沉淀过程中,WC 溶解在液相里并沉淀在较大的 WC 晶粒 上。WC 晶粒疯长现象也符合溶解沉淀机理。抑制剂改变了 WC&Co 的界面自由能,从而抑 制了溶解-沉淀过程,降低了溶解-沉淀速度。速度降低的原因是 WC&Co 不同界面间的 各向异性减少。抑制剂的渗透过程主要通过在粘结相里和在 WC&Co 界面上的扩散。有效
粉末冶金原理
粉末冶金原理粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过压制和烧结等工艺制造金属零件的方法。
在粉末冶金工艺中,粉末的特性和原理起着至关重要的作用。
粉末冶金原理主要包括粉末的制备、成型、烧结和后处理等几个方面。
首先,粉末的制备是粉末冶金的第一步。
金属粉末的制备可以通过机械研磨、化学方法和物理方法等多种途径。
机械研磨是指将金属块或者金属棒经过研磨机械的加工,得到所需的金属粉末。
化学方法则是通过化学反应得到金属粉末,而物理方法则是通过物理手段如电解、喷雾等得到金属粉末。
在粉末冶金中,粉末的制备质量直接影响着最终制品的质量和性能。
其次,成型是指将金属粉末进行成型工艺,使其成为所需形状的工件。
成型方法包括压制成型、注射成型、挤压成型等多种方式。
压制成型是将金属粉末放入模具中,再经过压制机械的加工,使其成为所需形状的工件。
注射成型则是将金属粉末与粘结剂混合后,通过注射成型机械将其注射成型。
挤压成型是将金属粉末放入容器中,再通过挤压机械的作用,使其成为所需形状的工件。
成型工艺的精密度和成型质量对于最终产品的质量和性能至关重要。
接下来,烧结是粉末冶金中的关键工艺。
烧结是指将成型后的金属粉末在高温下进行加热处理,使其颗粒间发生结合,形成致密的金属材料。
烧结工艺的温度、压力和时间等参数对于最终产品的致密度、硬度和耐磨性等性能有着重要影响。
最后,后处理是指对烧结后的金属制品进行表面处理、热处理和精加工等工艺。
表面处理可以提高金属制品的耐腐蚀性和美观度,热处理可以改善金属制品的硬度和强度,精加工则可以提高金属制品的精度和表面质量。
总之,粉末冶金原理是一个复杂而又精密的工艺体系,涉及到材料科学、机械工程、化学工程等多个领域的知识。
通过对粉末的制备、成型、烧结和后处理等环节的深入研究和探索,可以不断提高粉末冶金工艺的精度和效率,为制造业的发展和进步提供更加可靠的技术支持。
粉末冶金专业术语
粉末冶金术语粉末冶金分两大块:压制粉末冶金,也叫传统粉末冶金(PM)。
还有就是金属粉末注射成型(MIM)1.粉末粉末powder通常是指尺寸为0.1um~1mm的离散颗粒的集合体。
粉浆slurry粉末在液体中形成的可浇注的粘性分散体系。
坯料feedstock用作注射成形或粉末挤压原料的塑化粉末。
雾化粉atomized powder熔融金属或合金分散成液滴并凝固成单个颗粒的粉末。
(分散介质通常是高速气流或液流)羰基粉carbonyl powder热离解金属羰基化合物而制得的粉末。
电解粉electrolytic powder用电解沉积法制得的粉末。
还原粉reduced powder用化学还原法还原金属化合物而制成的粉末。
海绵粉sponge powder将还原法制得的高度多孔金属海绵体粉碎而制成的多孔性还原粉末。
合金粉alloyed powder由两种或多种组元部分或完全合金化而制得的金属粉末。
预合金粉pre-alloyed powder通常指将熔体雾化而制成的完全合金化的粉末。
复合粉composite powder每一颗粒由两种或多种不同成分组成的粉末。
包覆粉coated powder由一层异种成分包覆在颗粒表面而形成的复合粉。
合批粉blended powder由名义成分相同的不同批次粉末混合而成的粉末。
粘结剂binder为了提高压坯的强度或防止粉末偏析而添加到粉末中的可在烧结前或烧结过程中除掉的物质。
掺杂(添加)剂dopant为了防止或控制烧结体在烧结过程中或在使用过程中的再结晶或晶粒长大而在金属粉末中加入的少量物质。
(主要用于钨粉末冶金)润滑剂lubricant为了减少颗粒之间及压坯与模壁表面之间的摩擦而加入粉末中的物质。
增塑剂plasticizer用于粘结剂,旨在提高粉末成形性的热塑性材料。
制粒granulation为改善粉末流动性而使较细颗粒团聚成粗粉团粒的工艺。
机械合金化mechanical alloying用高能研磨机或球磨机实现固态合金化的过程。
2015 粉末冶金整理
名词解释1.离解压:任何金属氧化物,都有离解的趋势,离解后氧的分压,成为离解压。
温度越高,离解压越大。
2.电化当量:电极上通过单位电量时,电极反应形成产物地理论质量。
3.比形状因子:表面形状因子(f)与体积形状因子(k)的比值4.松装密度:粉末式样自然地充满规定地容器时,单位容积地粉末质量。
5.粉末粒度:以mm或um表示地颗粒大小,简称粒径或粒度。
6.粉末流动性:50g粉末从标准流速漏斗流出所需时间,单位为s/50g。
7.比表面积:单位质量粉末地表面积,即1g粉末所具有地总表面积。
8.二流雾化:用高速气流或高压水击碎金属液流,克服液体金属原子间健合力使之分散成粉。
9.流动性:同610.弹性后效:在压制过程中,当除去压制压力并把压坯压出压模之后,由于内应力的作用,压坯发生弹性膨胀的现象。
11.当量粒径:用沉降法、离心法、或水力学方法(风筛法,水筛法)测得的粉末粒度。
12.单元系烧结:单一成分的粉末或单一成分粉末压坯的烧结。
(ppt)纯金属(如难熔金属和纯铁软磁材料)或化合物,在其熔点以下的温度进行的固相烧结过程。
(书p265)13.蒸发凝聚:蒸气压差使原子从球的表面蒸发,重新在烧结颈凹面凝聚下来,这就是蒸发与凝聚物质迁移的模型,由此引起烧结颈长大的烧结机构。
14.粒径:同515.烧结颈:烧结初期,颗粒间地原始接触点或面转变为晶体结合,即通过形核、结晶长大等原子形成过程形成烧结颈。
16.合批:将成分相同而粒度不同地粉末进行混合。
17.压缩性:指粉末在规定的压制条件下被压紧的能力。
用规定的单位压力下粉末所能达到的坯块密度表示。
简答1.从热力学分析用CO及固体碳还原氧化铁(Fe2O3)的过程和反应。
CO还原氧化铁(间接还原):(书p24)Fe2O3还原过程是:Fe2O3 ---Fe3O4---FeO---Fe在570℃以上3 Fe2O3 + CO = 2 Fe3O4 +CO2 △H298=-62.999 (a)Fe3O4 + CO =3 FeO +CO2 △H298=22.395 (b)FeO + CO = Fe +CO2 △H298=-13.605 (c) 在570℃以下Fe3O4 +4 CO =3 Fe +4CO2 △H298=-17.163 (d)C还原氧化铁(直接还原):(书p26)在570℃以上3 Fe2O3 + C = 2 Fe3O4 + COFe3O4 + C =3 FeO + COFeO + C = Fe +CO在570℃以下1/4Fe3O4 + C =3/4 Fe + CO铁氧化物的直接还原,从热力学上看可以认为是间接还原反应与碳的气化反应的加和反应,这就是固体碳还原铁氧化物过程的实质。
粉末冶金原理试题及答案
粉末冶金原理试题及答案粉末冶金原理试题及答案一、名词解释:粉末加工硬化,二流雾化,假合金,二次颗粒,保护气氛金属粉末在研磨过程中由于晶格畸变和位错密度增加,导致粉末硬度增加,变形困难的现象称为加工硬化;由雾化介质流体与金属液流构成的雾化体系称为二流雾化;不是根据相图规律构成的合金体系,假合金实际是混合物;由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒;为防止粉末或压坯在高温处理过程发生氧化而向体系因入还原性气体或真空条件称为保护气氛;松装密度,成形性,粉末粒度,粉末流动性,粉末比表面积,粉末自由充满规定的容积内所具有的粉末重量成为松装密度粉末在经模压之后保持形状的能力一定质量(一定体积)或一定数量的粉末的平均颗粒尺寸成为粉末粒度一克质量或一定体积的粉末所具有的表面积与其质量或体积的比值称为比表面积50 克粉末流经标准漏斗所需要的时间称为粉末比表面积。
二、分析讨论:1 、与传统加工方法比较,粉末冶金技术有何重要优缺点,试举例说明。
解 :优点:材料利用率高,加工成本较低,节省劳动率,可以获得具有特殊性能的材料或产品,缺点:由于产品中孔隙存在,与传统加工方法相比,材料性能较差例子:铜—钨假合金制造,这是用传统方法不能获得的材料;2 、气体雾化制粉过程中,有哪些因素控制粉末粒度?解 :二流之间的夹角,夹角越大,雾化介质对金属流柱的冲击作用越强,得到的粉末越细;采用液体雾化介质时,由于质量大于气体雾化介质,携带的能量大,得到的粉末越细;金属流柱直径小,获得粉末粒度小;金属温度越高,金属熔体黏度小,易于破碎,所得粉末细小;3 、分析粉末粒度、粉末形貌与松装密度之间的关系。
解 :粉末平均粒度越小,粉末形貌越复杂,粉末颗粒之间以及粉末表面留下空隙越大,松装密度越小;粉末平均粒度越小,粉末形貌越复杂,粉末颗粒之间的运动摩擦阻力越大,流动性越差,松装密度越小。
三、分析计算:1 、经氢气还原氧化铁制备还原铁粉:FeO+H 2 =Fe+H 2 O平衡常数: LgKp=-1000/T+0.5, Kp=P H2O /P H2讨论还原温度分别为 500 o C , 600 o C , 700 o C 时,平衡常数变化趋势和温度对还原的影响。
粉末冶金原理
一、名词解释1、比表面积:比表面积是指单位质量粉体颗粒外部表面积和内部孔结构的表面积之和,单位m2/g2、离解压:它是在一定的温度下,某化合物的生成-离解反应达到平衡时产生的气体所具有的压力3、一次颗粒:粉末中能分开并独立存在的最小实体4、电化当量:指在电镀过程中电极上通过单位电量时,电极反应形成产物之理论重量5、侧压力:压制过程中由垂直压力引起的模壁施加于压柸的侧面压力6、弹性后效:在压制过程中,当除去压制压力并把压柸压出压模之后,由于内应力的作用,压柸发生弹性膨胀的现象7、注射成型:将粉末与热塑性材料均匀混合使成为具有良好流动性能(在一定温度下)的流态物质,而后把这种流态物质在注射机上经一定的温度压力,注入模具内成型的工艺。
8、烧结:粉末或粉末压柸.在适当的温度和气氛条件下加热所发生的现象或过程9、液相烧结:在烧结温度下,低熔组元融化或形成低熔共晶物,有液相英气的物质迁移现象或过程10、烧结机构:研究烧结过程中各种可能的物质迁移方式及速率11、硬质合金:由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种合金材料12、涂层硬质合金:在强度和韧性较好的硬质合金基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物而获得的13、粒度分布:具有不同粒径的颗粒占全部粉末的百分含量二、问答题1. 碳还原法制取铁粉的过程机理是什么?影响铁粉还原过程和铁粉质量的因素有哪些?铁氧化物的还原过程是分段进行的,即从高价氧化物到低价氧化物最后转变成金属。
铁氧化物的直接还原,从热力学观点看,可认为是间接还原反应与碳的气化反应的加和反应,这就是碳还原的实质。
因素:⑴原料:原料中杂质、原料粒度⑵固体碳还原剂:固体碳还原剂类型、用量⑶还原工艺条件:还原温度与时间、料层厚度、还原罐密封程度⑷添加剂:加入一定固体碳的影响、返回料、引入气体还原剂、碱金属盐、海绵铁的处理4、还原法制取钨粉的过程机理是什么?影响钨粉粒度的因素有哪些? 氢还原。
粉末冶金原理
粉末冶金原理
粉末冶金是一种重要的金属加工技术,通过将金属粉末进行成形和烧结加工,制备出具有特定性能的金属零件。
粉末冶金原理涉及粉末制备、成形、烧结和后续处理等多个方面。
粉末制备
粉末制备是粉末冶金的第一步,通常采用机械合金化、原子溅射、化学合成等方法制备金属粉末。
机械合金化是通过球磨等机械方法将金属粉末与添加剂混合均匀,形成合金粉末。
原子溅射则是通过高能离子轰击金属靶,产生金属原子蒸汽再凝结成粉末。
化学合成则是利用化学反应产生金属粉末。
成形
在成形阶段,将金属粉末与添加剂混合后,通过压制成型的方式制备出所需形状的粉末冶金零件。
压制成型通常采用冷压、注射成型等方法。
压制后的粉末冶金件通常呈现出较高的强度和密度。
烧结
烧结是粉末冶金中关键的工艺步骤,通过高温热处理将压制成型后的金属粉末在固态中形成致密的金属结构。
烧结温度、保温时间、气氛等因素对烧结效果有重要影响。
经过烧结处理后,粉末冶金件具有一定的强度和密度。
后续处理
经过烧结后的粉末冶金件通常需要进行后续处理,包括热处理、表面处理等,以进一步改善材料性能。
热处理可以提高材料的硬度、强度和耐磨性,表面处理可以提高材料的耐腐蚀性和美观性。
粉末冶金技术在汽车、航空航天、电子等领域有着广泛的应用,制备出具有特定性能的零件,为现代工业的发展提供了重要支持。
粉末冶金原理的研究和应用将进一步推动金属材料领域的创新和发展。
粉末冶金原理
粉末冶金原理
粉末冶金是一种通过将金属或非金属粉末在一定条件下压制、烧结或熔炼而制备块状材料的工艺。
相较于传统的熔融金属加工方法,粉末冶金具有以下优点:
1. 材料利用率高:粉末冶金可以充分利用原料,减少浪费。
在制备过程中,可以将不同粉末按照一定比例混合,使得合金的成分更加均匀,从而提高材料的性能。
2. 可以制备复杂的形状:粉末冶金可以制备出具有复杂形状的零件和部件,例如齿轮、凸轮等,而这些形状很难通过传统的加工方法实现。
3. 材料性能优越:粉末冶金制备的材料具有均匀的组织结构和较高的密度,因此其物理性能、力学性能和化学性能等方面往往比传统材料更好。
同时,可以通过改变原料的成分和粒度来调整材料的性能,满足不同的工程需求。
4. 节约能源:粉末冶金不需要进行熔融处理,可以节约大量能源,降低对环境的影响。
在粉末冶金的制备过程中,通常包括粉末的制备、混合、压制成形、烧结和后处理等步骤。
其中,烧结是粉末冶金的核心步骤,通过在一定温度下加热和应用一定的压力,使粉末颗粒之间形成结合力,从而形成致密的块状材料。
虽然粉末冶金具有众多优点,但也存在一些限制。
例如,由于
粉末冶金需要较高的温度和压力,加工设备和工艺相对复杂,制造成本较高。
此外,制备大尺寸的零件也比较困难。
总的来说,粉末冶金是一种重要的金属材料制备技术,可以用于制备具有优越性能的材料和零件。
随着科学技术的不断进步,粉末冶金将会在更多的领域得到应用和发展。
粉末冶金原理
粉末冶金原理
粉末冶金是一种通过粉末冶金工艺制备金属、合金、陶瓷和复合材料的方法。
它是一种高效的材料制备技术,具有原料利用率高、产品尺寸精度高、材料组织均匀等优点,因此在航空航天、汽车、电子、机械等领域得到广泛应用。
粉末冶金的基本原理是将金属粉末或合金粉末按一定的成型方法制备成所需形
状的坯料,然后通过烧结或热压等方法将其致密化,最终得到所需的产品。
这种方法可以制备复杂形状的产品,且可以调控产品的性能,因此在一些特殊领域有着独特的优势。
粉末冶金的工艺包括粉末制备、成型和烧结等步骤。
首先是粉末的制备,通常
采用机械球磨、化学法、电化学法等方法制备金属或合金粉末。
然后是成型,通过压制、注射成型等手段将粉末压制成所需形状的坯料。
最后是烧结,将压制好的坯料在一定的温度下进行热处理,使粉末颗粒之间发生扩散与结合,最终形成致密的产品。
粉末冶金的优点之一是可以制备高性能的材料。
由于粉末冶金可以制备复杂形
状的产品,因此可以设计出更加符合工程需求的材料,提高材料的使用性能。
另外,由于粉末冶金可以控制材料的成分和微观结构,因此可以调控材料的力学性能、导热性能、磁性能等,满足不同领域的需求。
除此之外,粉末冶金还可以实现材料的资源化利用。
由于粉末冶金可以利用废料、废料料等再生资源进行材料制备,因此可以减少对原材料的依赖,实现资源的再利用,降低生产成本,减少对环境的影响。
总的来说,粉末冶金是一种高效的材料制备技术,具有制备高性能材料、实现
资源化利用等优点,因此在现代工业中得到了广泛的应用。
随着科技的发展,相信粉末冶金技术会不断完善,为人类社会的发展做出更大的贡献。
粉末冶金重点整理
粉末冶金重点整理名词解释:1,熔解析出:溶解和析出阶段。
如果固相在液相中可以溶解,则在液相出现后,特别是细小的粉末和粗大的颗粒的凸起及棱角部分会在液相中溶解消失。
由于细小的粉末颗粒在液相中的溶解度要比粗颗粒大,因此在细小颗粒溶解的同时,也会在粗颗粒表面上有析出的颗粒。
蒸发凝聚:表面层原子向空间蒸发,借蒸汽压差通过气相向颈部空间扩散,沉积在颈部。
3,密度等高线:密度相同的区域连在一起形成的类似等高线的线分布4,比表面:粉末比表面定义为1g 质量的粉末所具有的总表面积,用m2/g 表示;致密固体的比表面用m2/cm3 为单位,称容积比表面。
粉末比表面是粉末的平均粒度、颗粒形状和颗粒密度的函数。
5,二流雾化:借助高压水流或气流的冲击来破碎液流,称为水雾化或气雾化.也称二流雾化。
6,临界转速:当转速达一定的速度时,球体受离心力的作用,一直紧贴在圆筒壁上,以致不能跌落,物料就不能被粉碎。
这种情况下的转速称为临界转速。
7, 松装密度:松装密度是粉末试样自然地充满规定的容器时,单位容积的粉末质量。
8, 标准筛:标准筛,采用SUS304(0Cr18ni9)不锈钢拉伸抛光而成,壁厚0.6毫米,表面光可鉴人,整体成型坚固耐用,没有磁性,筛网与筛框通过锡焊固定,不会松弛。
9, 粒度分布:由于组成粉末的无数颗粒一般粒径不同,故又用具有不同粒径的颗粒占全部粉末的百分含量表示粉末的粒度组成,又称粒度分布.10, 二次颗粒:单颗粒如果以某种形式聚集11, 真密度:粉末质量与除去开孔和闭孔体积的粉末体积的比值,是材料的理论密度12, 相对密度: 压坯密度与真密度的比。
13, 压坯密度:压坯密度是压坯单位体积实际质量的平均值,用g/cm3表示。
14, 团粒:由单颗粒或二次颗粒依靠范德华的作用下结合而成的粉末颗粒,易于分散.15, 粉末压制性: 压制性是压缩性和成形性的总称。
压缩性就是金属粉末在规定的压制条件下被压紧的能力。
成形性是指粉末压制后,压坯保持既定形状的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末冶金原理名词解释汇总
临界转速机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落
时,筒体的转动速度
比表面积单位质量或单位体积粉末具有的表面积(一克质量或一定体积的粉末所具有的表面积与其质量或体积的比值称为比表面积)
二次颗粒由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒
离解压每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。
电化当量这是表述电解过程输入电量与粉末产出的定量关系,表达为每 96500库仑应该有一克当量的物质经电解析出
气相迁移细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程
真密度颗粒质量用除去开孔和闭孔的颗粒体积除得的商值。
真密度实际上就是粉末的固体密度
似密度又叫有效密度,颗粒质量用包括闭孔在内的颗粒体积去除得的
相对密度粉末或压坯密度与对应材料理论密度的比值百分数
松装密度粉末在规定条件下自然填充容器时,单位体积内的粉末质量,单位为g/cm3
比形状因子将粉末颗粒面积因子与体积因子之比称为比形状因子
压坯密度压坯质量与压坯体积的比值
相对体积粉末体的相对密度(d=ρ/ρ理)的倒数称为相对体积,用β=1/d表示
粒度分布将粉末样品分成若干粒径,并以这些粒径的粉末质量(颗粒数量、粉末体积)占粉末样品总质量(总颗粒数量、总粉末体积)的百分数对粒径作图,即为粒度分布;(一定体积或一定重量(一定数量)粉末中各种粒径粉末体积(重量、数量)占粉末总量的百分数的表达称为粒度分布)
粉末加工硬化金属粉末在研磨过程中由于晶格畸变和位错密度增加,导致粉末
硬度增加,变形困难的现象称为加工硬化
雾化法利用高速气流或高速液流将金属流(其它物质流)击碎制造粉末的方法二流雾化由雾化介质流体与金属液流构成的雾化体系称为二流雾化
快速冷凝将金属或合金的熔液快速冷却(冷却速度>105℃/s),保持高温相、获得性能奇异性能的粉末和合金(如非晶、准晶、微晶)的技术,是传统雾化技术的重要发展
假合金两种或两种以上金属元素因不是根据相图规律、不经形成固溶体或化合物而构成的合金体系,假合金实际是混合物
保护气氛为防止粉末或压坯在高温处理过程发生氧化而向体系加入还原性气体或真空条件称为保护气氛
压制性粉末压缩性与成形性的总称
成形性粉末在经模压之后保持形状的能力,一般用压坯强度表示
压缩性粉末在模具中被压缩的能力称为压缩性,一般用压坯密度表示
粉末粒度一定质量(一定体积)或一定数量的粉末的平均颗粒尺寸成为粉末粒度
粉末流动性 50 克粉末流经标准漏斗所需要的时间称为粉末流动性。
临界转速机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度;
孔隙度粉体或压坯中孔隙体积与粉体表观体积或压坯体积之比;
标准筛用筛分析法测量粉末粒度时采用的一套按一定模数(根号 2 )制备的金属网筛
弹性后效粉末经模压推出模腔后,由于压坯内应力驰豫,压坯尺寸增大的现象称作
单轴压制在模压时,包括单向压制和双向压制,压力存在压制各向异性
密度等高线粉末压坯中具有相同密度的空间连线称为等高线,等高线将压坯分成具有不同密度的区域
混合混合系指将不同成分的粉末混合均匀的过程
合批具有相同化学成分,不同批次生产过程得到的粉末的混合工序称为合批
雾化介质雾化制粉时,用来冲击破碎金属流柱的高压液体或高压气体称为雾化介质
活化能发生物理或化学反应时,形成中间络合物所需要的能量称为活化能
平衡常数在某一温度、某一压力下,反应达到平衡时,生成物气体分压与反应物气体分压之比称为平衡常数
电化当量克当量与法拉第常数之比称为电化当量(这是表述点解过程输入电量与粉末产出的定量关系,表达为每96500库仑应该有一克当量的物质经电解析出)
闭孔隙粉末颗粒中由质体包围、且不同外界连通的孔隙
比形状因子粉末颗粒面积形状因子与体积形状因子之比称为比形状因子
气相迁移细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程
溶解析出物质通过固溶性质,固相物质经由固溶进入液相,形成饱和固溶体后继而析出,进行物质迁移的过程
露点在标准大气压下,气氛中水蒸汽开始凝结的温度,是其中水蒸汽与氢分压比的量度
烧结烧结是指粉末或压坯在低于主要组分熔点的温度下借助于原子迁移实现颗粒间联结的过程。
烧结驱动力烧结过程中驱使原子定向迁移的因素
热等静压把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程
冷等静压室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法
团粒由单颗粒或二次颗粒依靠范德华力粘结而成的聚集颗粒
活化烧结系指能降低烧结活化能,使体系的烧结在较低的温度下以较快的速度进行、烧结体性能得以提高的烧结方法。
(采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结体的密度和其它性能得到提高的方法称为活化烧结)
强化烧结是泛指能够增加烧结速率,或能够强化烧结体性能(合金化或抑制晶
粒长大)的所有烧结过程
还原终点浮斯体还原成海绵铁和海绵铁开始渗碳过程之间的转折点
Ostwald熟化由溶解-再析出过程造成的晶粒长大现象
挥发-沉积氢中水分子与钨氧化物反应生成挥发性的水合物,WOX+H2O→WOX.nH2O(g)↑,气相中的钨氧化物被氢还原沉积在钨颗粒上,导致W颗粒长大碳势某一含碳量的材料在某种气氛中烧结时既不渗碳也不脱碳,以材料中的碳含量表示气氛的碳势
内摩擦粉末颗粒之间的摩擦
外摩擦力粉末颗粒与模具(阴模内壁、模冲、芯棒)之间的因相对运动而出现的摩擦
制粒借助于聚合物的粘结作用将若干细小颗粒形成一团粒,减小团粒间的摩擦力,大幅度降低颗粒运动时的摩擦面积,增大运动单元的动力的过程
拱桥效应(搭桥)颗粒间由于摩擦力的作用而相互搭架形成拱桥孔洞的现象
脱模压力使压坯从模中脱出所需的压力,与坯件的弹性模量,残留应变量即弹性后效及其与模壁之间的摩擦系数直接相关
温压系指粉末与模具被加热到较低温度(一般为150℃)下的刚模压制方法
注射成形技术一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,将粉末与热塑性材料均匀混合使成为具有良好流动性能(在一定温度下)的流态物质,而后把这种流态物在注射成形机上经过一定的温度和压力,注入模具内成形
挤压超前现象在挤压筒的径向上,愈靠近模壁受阻力越大,愈接近中心受阻力愈小。
结果中心部位的挤压物料的流动速度比外层挤压物料的流动速度快,这种现象称为超前现象
表面扩散球表面层原子向颈部扩散。
蒸发-凝聚表面层原子向空间蒸发,借蒸汽压差通过气相向颈部空间扩散,沉积在颈部。
体积扩散借助于空位运动,原子等向颈部迁移。
粘性流动非晶材料,在剪切应力作用下,产生粘性流动,物质向颈部迁移。
塑性流动烧结温度接近物质熔点,当颈部的拉伸应力大于物质的屈服强度时,
发生塑性变形,导致物质向颈部迁移。
晶界扩散晶界为快速扩散通道。
原子沿晶界向颈部迁移。
位错管道扩散位错为非完整区域,原子易于沿此通道向颈部扩散,导致物质迁移。
单元系粉末烧结纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。
(单元系烧结是指纯金属或有固定化学成分的化合物或均匀固熔体在固态下的烧结,过程不出现新的组成物或新相,也不发生凝聚状态的改变(不出现液相),故也称为单相烧结)
多元系固相烧结由两种以上的组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程
液相烧结烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结
瞬时液相烧结在烧结中、初期存在液相,后期液相消失。
烧结中初期为液相烧结,后期为固相烧结。
稳定液相烧结烧结过程始终存在液相。
熔浸多孔骨架的固相烧结和低熔点金属渗入骨架后的液相烧结过程。
前期为固相烧结,后期为液相烧结。
全致密假合金如W-Cu等。
超固相线液相烧结液相在粉末颗粒内形成,是一种在微区范围内较普通液相烧结更为均匀的烧结过程
马栾哥尼效应溶质浓度的变化导致液体表面张力的不同,产生液相流动的现象
润湿性液相对固相颗粒的表面润湿情况,由固、液相的表面张力(比表面能)γs 、γl以及两相的界面张力(界面能)γsl所决定
热压又称为加热烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常烧结温度或更低一点,经过较短时间烧结成致密而均匀的制品
Orowan强化(位错绕过质点机制)弥散质点导致基体中位错线产生一定程度的弯曲,阻碍位错运动。
当位错线通过弥散质点以后,合金发生屈服
机械合金化借助于机械和物理活化使基体与合金元素间的合金化和弥散粒子分布均匀
弥散强化由于弥散质点的存在而导致材料强化的现象,实质是弥散质点阻碍基体中位错运动
纤维增强将高强度和高模量的纤维加入到基体中,复合材料强度大幅度提高的现象
氢损值金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成水蒸气,某些元素与氢生成挥发性的化合物,与挥发性金属一同排除,测得试样粉末的相对质量损失,称为氢损。
其值可用下式表示:(A—B)/(A—C)*100%,其中A-粉末试样(5g)加烧舟质量,B-氢中煅烧后残余物加烧舟质量,C-烧舟质量
蓝钨蓝钨是不掺杂钨粉和掺杂钨粉生产的原料,经煅烧仲钨酸铵而制得,是一种无确定成分的化合物,可描述为(NH4)xHyWO3
水静压力等静压制中的水作用在粉末体中,粉末体受到的各个方向上相等的压力。