复变函数期末基础知识复习及模拟试题

合集下载

复变函数_期末基础知识复习_和_模拟试题

复变函数_期末基础知识复习_和_模拟试题
一 基本内容:
第一、二章
一、 复数的表示方法 (代数、三角、指数表示法) 及其运算公式。
二、函数可导和解析的充分必要条件,函数可导和
解析的充分条件。C-R方程。
三、初等函数(指数函数、三角函数、对数函数、
幂函数)的定义与性质。
华侨大学厦门工学院 09电子3班
虚轴
复数的模:
z x2 y 2 r
C C
华侨大学厦门工学院 09电子3班
x x(t ) 1 :光滑曲线C 的实参数方程为 ,t : , y y(t )
f ( z )dz
C
{u[ x(t ), y(t )] iv[ x(t ), y(t )]} {x(t ) iy(t )}dt
注:过z1与z2两点的直线的参数方程为: z z1 ( z2 z1 )t, t .
连接z1 x1 iy1与z2 x2 iy2的直线段的参数方程为:
z z1 t ( z2 z1 ),0 t 1
华侨大学厦门工学院 09电子3班
通过两点( x1 , y1 )与( x2 , y2 )的直线方程为
留数定理

C
k 1 华侨大学厦门工学院 09电子3班
f ( z )dz 2 i Re s[ f ( z ), zk ].
n
第八、九章 一、傅氏变换、拉氏变换及它们的逆变换的定义。 二、记住 函数的几个重要性质。 三、记住几个重要函数的积分变换。 四、记住积分变换的性质(线性、位移、相似、 微分、积分性质)。 五、会用二、三、四中的结论求某些函数的积分 变换或逆变换。 六、会求解简单的微分方程。
f ( z ) Cn ( z z0 )n ,

复变函数考试试题与答案各种总结

复变函数考试试题与答案各种总结

《复变函数》考试试题与答案各种总结(总24页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( )二.填空题(20分)1、=-⎰=-1||00)(z z n z z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数0n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分)1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题1. 2101i n n π=⎧⎨≠⎩ ;2. 1;3. 2k π,()k z ∈;4. z i =±;5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞. 三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑. 2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰.3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内,()()2()c f z dz i z zϕλπϕλ==-⎰. 所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =.所以12,u c v c ==. (12,c c 为常数). 所以12()f z c ic =+为常数.2.证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)if eπ-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( ) 二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题 1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解 令i z re θ=.则22(),(0,1)k if z k θπ+===.又因为在正实轴去正实值,所以0k =. 所以4()if i e π=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-,因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n n n n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R < 内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f .( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( )9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________. 3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数期末试题

复变函数期末试题

《复变函数论》试题库《复变函数》考试试题(一) 判断题(20分)1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数).( )5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z0是)(z f 的m 阶零点,则z0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f(z)在区域D 内解析, 则对D 内任一简单闭曲线C)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( )二.填空题(20分)=-⎰=-1||00)(z z n z z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数0nn nz∞=∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________. 8.=)0,(Re n zz e s ________,其中n 为自然数.9.z zsin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证:()f z 0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值. 《复变函数》考试试题(二)判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u(x,y)与v(x,y)都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f(z)在z0解析,则f(z)在z0连续. ( )4. 有界整函数必为常数. ( )5. 如z0是函数f(z)的本性奇点,则)(lim 0z f z z →一定不存在.( )6. 若函数f(z)在z0可导,则f(z)在z0解析. ( )7. 若f(z)在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )9. 若f(z)在区域D 内解析,则|f(z)|也在D 内解析. ( )10. 存在一个在零点解析的函数f(z)使0)11(=+n f 且,...2,1,21)21(==n n n f .( )二. 填空题. (20分) 1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0nn nz∞=∑的收敛半径为__________ .5. 若z0是f(z)的m 阶零点且m>0,则z0是)('z f 的_____零点.6. 函数ez 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-z z .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点iz =处的值.3. 计算积分:⎰-=iizz I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f(z)在区域D 内解析,试证:f(z)在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理. 《复变函数》考试试题(三) 一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( )2. 若f(z)在z0处满足柯西-黎曼条件, 则f(z)在z0解析. ( )3. 若函数f(z)在z0处解析,则f(z)在z0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛.( )5. 若函数f(z)是区域D 内解析且在D 内的某个圆内恒为常数,则数f(z)在区域D 内为常数. ( ) 6. 若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导. ( ) 7. 如果函数f(z)在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )9. 若z0是)(z f 的m 阶零点, 则z0是1/)(z f 的m 阶极点. ( ) 10. 若z 是)(z f 的可去奇点,则0)),((Res 0=z z f .( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f(z)的定义域为___________.2. 函数ez 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f(z)的孤立奇点有__________. 8. 设1-=ze ,则___=z . 9. 若0z 是)(zf 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zz e .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数n n nz n n ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z|<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数期末考试分章节复习题

复变函数期末考试分章节复习题

第一章复习题1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D.142. z=2-2i ,|z 2|=( ) A. 2 B.8 C. 4 D. 83. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线B.双曲线C.抛物线D.圆4. 设z=x+iy,则(1+i )z 2的实部为( ) A.x 2-y 2+2xyB.x 2-y 2-2xyC.x 2+y 2+2xyD.x 2+y 2-2xy5. arg(2-2i)=( ) A.43π-B.4π-C.4πD.43π 6.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=w C .6arg π-=wD .3arg π-=w7.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于18.设11z i=-+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( )A. e 2+2xB. e |2i+2z|C. e 2+2zD. e 2x 10. Re(e 2x+iy )=( )A. e 2xB. e yC. e 2x cosyD. e 2x siny11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1D.Im z<012. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线13 .下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2314.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1D.π≤<πargz 2116.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D . 1≤||z i -≤417. arg(3-i)=___________.18. arg (-1+3i )= .19. 若i3i1z -+=,则z =___________.20.设i z 101103+-=,则=_z ____________.21. 若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.22. 复数1-3i 的三角表达式是_________________.23. 求方程z 3+8=0的所有复根. 24. 解方程z 4=-1.25 计算复数z=327-的值.26.求z =(-1+i )6的共轭复数z 及共轭复数的模|z |.27.设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 28. 设t 为实参数,求曲线z=re it +3 (0≤t <2π的直角坐标方程. 29.设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线.30.用θcos 与θsin 表示θ5cos .第二章复习题1. ln(-1)为( ) A.无定义的B.0 C .πi D.(2k+1)πi(k 为整数)2.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +3.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg 43) B .ln5+i(π-arctg 43) C .ln5+i(-π-arctg 34)D .ln5+i(π-arctg 34)4. 设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2B.3xy 2-x 3C.3x 2y-y 3D.3y 3-3x 35. 设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( ) A. -3 B. -1 C. 1 D. 36. 设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( ) A. -3 B. 1 C. 2 D. 37. 若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( ) A.xy+x B.2x+2y C.2xy+y D.x+y 8. 若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=( )A. e x (ycosy-xsiny)B. e x (xcosy-xsiny)C. e x (ycosy-ysiny)D. e x (xcosy-ysiny)9. 设v(x,y)=e axsiny 是调和函数,则常数a=( )A. 0 B. 1 C.2 D.310. 设f(z)=z 3+8iz+4i ,则f ′(1-i)=( ) A. -2i B. 2i C. -2D. 211.正弦函数sinz=( )A .i e e iz iz 2-- B .2iziz ee --C .i e e iz iz 2-+D .2iziz e e -+12. 对数函数w=ln z 的解析区域为___________. 13.已知f(z)=u+iv 是解析函数,其中u =)ln(2122y x +,则=∂∂yv. 14. 若sinz=0,则z=___________. 15. 若cosz=0,则z=________. 16.方程i z 31ln π+=的解为____________. 17. tgz 的所有零点为_________________.18. 设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.19.设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20. 设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.21.函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22. 已知调和函数v=arctg xy,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=,求),(y x v .24.设u=x 2-y 2+xy 是解析函数f(z)的实部,其中z=x+iy.求f ′(z)并将它表示成z 的函数形式. 25.设v=e ax siny ,求常数a 使v 成为调和函数.26.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式.27. 设u=e 2x cos 2y 是解析函数f(z)的实部,求f(z).28.已知z ≠0时,22x yu x y -=+为调和函数,求解析函数()f z u iv =+的导数f ′(z),并将它表示成z 的函数形式.29.求方程sin z +cos z =0 的全部根.第三章复习题1.设C 为正向圆周|z|=1,则⎰=C2zdz ( )A. 0 B. 1 C.πiD. 2πi2.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A. i B. 2i C.-i D. -2i3.设C 为正向圆周|z|=1,则⎰=-Czdz 1e z sin ( )A.2πi ·sin 1B.-2πiC.0D.2πi4.⎰==-2|z |2)i z (dz ( ) A. 0 B. 1 C. 2π D. 2πi5.⎰=-=2|1z |dz z zcos ( ) A. 0 B. 1 C. 2π D. 2πi 6.⎰+=i220zdz ( ) A. i B. 2i C. 3i D. 4i7.设C 为正向圆周|z-a|=a(a>0),则积分⎰-Ca z dz22=( )A. a i 2π-B. ai π- C. a i2πD. ai π8.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( )A.0 B.πiC.2πiD.6πi9.设C 为正向圆周|z |=1,则⎰=c z d z co t ( )A. -2πi B. 2πi C.-2π D.2π10.⎰=-3|i z |z dz=( ) A. 0 B. 2π C. πi D. 2πi 11.⎰=---11212z z sinzdz |z |=( )A. 0 B. 2πisin1 C. 2πsin1 D.1sin 21i π 12.⎰32dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin913.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6 B .i π4 C .iπ2D .014.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2π D .i e 22π-15.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( )A .i e 3π B .e6πC .ei π2D .i e3π 16.复积分iizedz ⎰的值是( )A . 1(1)e i ---B .1e i -C .1(1)e i --D .1e i --17.复积分|1|2zz i e z i --=-⎰ dz 的值是( )A .i e B .i e - C .2πi ieD .2πi ie -18.设C为正向圆周⎰=ξ-ξξ=<=ξC 3d )z (2sin )z (f 1|z |1||时,,则当___________.19.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则___________. 20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.设C 为正向圆周|z |=1,则=-⎰dz ie cz22π. 22. 设C 为正向圆周|z|=1,则积分⎰=Cdz z1___________.23.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.24.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C3_)(____________.25.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.26.|3|1cos z z i e zdz -=⎰=______________.27. 设C 为正向圆周|z|=1,计算积分⎰+-=C 2.dz )2z )(21z (zsin I28. 计算积分⎰-=C3z dz )a z (e I ,其中C 为正向圆周|z|=1,|a|≠1.29. 计算积分⎰+-=C2dz z)i 1(z 1I ,其中C 为正向圆周|z|=2.30. 求积分⎰++-Cdz i z 22z 3I )(=的值,其中C:|z|=4为正向. 31. 求积分⎰-C4z dz z 3e I =的值,其中C:|z|=1为正向.32.设C 为正向圆周|z|=1,求I=dz zec z ⎰21.33.设C 为正向圆周|z-i |=21,求I =⎰+c z z dz )1(2.34.设C 为正向圆周|z|=1,求I=⎰C zdz ze 5.35. 求积分I=⎰+Cdz z i 的22值,其中C :|z|=4为正向. 36. 求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向.37.设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π 38.计算积分I=2()cx y ix dz -+⎰,其中C 为从0到1+i 的直线段.39.计算积分I=221(1)(1)Cdz z z -+⎰ ,其中C 为正向圆周2220x y x +-= 第四章复习题1. 复数列i 2n n e z π=的极限为() A.-1 B.0 C.1D.不存在2. 设∑∞==0n n!n z )z (f ,则f (10)(0)为( )A.0B.!101C.1D.10!3.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 4.幂级数∑∞=+0)1(1n nn z i 的收敛半径为( ) A .2 B .1 C .21 D .05. 下列级数中绝对收敛的是( )A.∑∞=+1!)43(n nn i B.nn i∑∞=+1)231( C. ∑∞=1n nni D.∑∞=+-11)1(n n n i6. 1e 1)z (f z -=在z=πi 处的泰勒级数的收敛半径为( )A. πiB. 2πiC. πD. 2π7. 处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( ) A. 0 B. 1 C. 2 D. 38. f(z)=211z+在z=1处的泰勒展开式的收敛半径为( ) A.23B. 1C.2D.3 9. f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.310. z=2i 为函数222z )4z (z e )z (f +=的( )A.可去奇点B.本性奇点C.极点D.解析点11. 以z=0为本性奇点的函数是( )A.z zsin B.)1z (z 1- C.2z z cos 1- D.z1sin12.点z=-1是f(z)=(z+1)5sin)1(1+z 的( )A.可去奇点B.二阶极点C.五阶零点D.本性奇点13. z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点14.z=0是函数2zcos 1z-的( )A .本性奇点B .可去奇点C .一阶极点D .二阶极点15. 2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( )A.∑∞=-0n nnz )1( B.∑∞=-0n n2z )1z (1 C.∑∞=--0n nn )1z ()1(D. ∑∞=---0n 2n n)1z ()1(16. 可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞ C. 0<|z-2|<2 D. 0<|z-2|<+∞17. f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( )A.∑∞=-01n nn z )( B.∑∞=-021n nz )z ( C.∑∞=-02n n )z (D.∑∞=---0121n n n)z ()(18. 设i 1a a lim n 1n n +=+∞→,则幂级数∑∞=+0n nn z 1n a 的收敛半径为___________.19. 幂级数∑∞=0n n nz 3n的收敛半径是___________.20. 幂级数∑∞=1n n nz n!n 的收敛半径是________.21.若在幂级数∑∞=0n nn z b 中,i b bn n n 43lim 1+=+∞→,则该幂级数的收敛半径为____________.22.幂级数∑∞-12n nn nz 的收敛半径是____________.23.设n z z f nn n2)1()(0∑∞=-=,则)0()10(f =___________.24. z =0是f(z)=zz )1ln(+的奇点,其类型为 . 25. f(z)=21z z -在圆环域0<|z|<1内的罗朗展开式为 . 26.设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.27. 求f(z)=ln z 在点z=2的泰勒级数展开式,并求其收敛半径.28 将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数. 29.求)2)(1(1)(--=z z z f 在z =0处的泰勒展开式.30. 将函数f(z)=ln(3+z)展开为z 的泰勒级数.31.将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.32. (1)求z 1在圆环域1<|z-1|<+∞内的罗朗级数展开式; (2)求2z1在圆环域1<|z-1|<+∞内的罗朗级数展开式.33. 将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.34. 将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数.35.求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.36.将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.第五章复习题1. 设函数22iz )1z (e )z (f +=,则Res[f(z),-i]=( )A.0 B.4ie-C.4ie D.4e 2. 设f(z)=1z z22-,则Res[f(z),1]=( ) A.0 B.1 C.πD.2π3. 若f(z)=tgz ,则Res[f(z),2π]=( ) A. -2π B. -π C. -1 D. 04.函数z z tan 在z =0点的留数为( ) A .2 B .i C .1 D .05.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -6.Re [cot ,1]s z π=( ) A .1π- B .1πC .-2iD .2i7.设f(z)= +--++--+---nn z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= . 8.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I9.(1)求)4z )(1z (1)z (f 22++=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分⎰+∞∞-++=)4x )(1x (dx I 22.10.(1)求2z2i z 4e)z (f +=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 211.(1)求f(z)=12+z z在上半平面内的孤立奇点,并指出其类型; (2)求f(z)e iz 在以上奇点的留数; (3)利用以上结果,求I=⎰+∞∞-+dx x xx 1sin 2. 12. 利用留数计算积分I=⎰C zsinzdz,其中C 为正向圆周|z|=1.13.(1)求f(z)=iz e zz21+在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分I=⎰+∞∞-+x d x 1xsinx214.求)(1)(3i z z z f -=在各个孤立奇点处的留数.15.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 16.利用留数计算积分I=22(1)zc e dz z -⎰ ,其中C 为正向圆周||z =2.17.(1)求242()1z f z z z =++在上半平面内的所有孤立奇点.(2)求)(z f 在以上各孤立奇点的留数. (3)利用以上结果计算积分I=2421x dx x x +∞-∞++⎰.第六章复习题1. 把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-=B.z 1)1z (i w -+=C.z 11z w -+= D.1z )1z (i w +-=2. w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面3. 线性变换z1z2+=ω( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<14. 线性变换ω=iz zi +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0 B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<15.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .3π-<ϕ<0 C .0<ϕ<3πD .0<ϕ<3π6. 映射z1=ω是关于___________的对称变换.7. 线性映射ω=z 是关于________的对称变换.8.分式线性映射i z i z +---=11ω把上半平面Imz>0映射成___________. 9. 设D 是上半单位圆:Im z>0,|z|<1,求下列保角映射: (1)w 1=f(z)把D 映射为第Ⅱ象限D 1,且f(1)=0; (2)w 2=g(w 1)把D 1映射为第Ⅰ象限D 2; (3)w=h(w 2)把D 2映射为上半平面D 3; (4)求把D 映射为D 3的保角映射w=F(z).10. 设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0; (3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0; (4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3. 11.设D 为Z 平面的单位圆盘去掉原点及正实轴的区域. 求下列保角映射: (1)w 1=f 1(z)把D 映射成W 1平面的上半单位圆盘D 1;(2)w=f 2(w 1)把D 1映射成W 平面的第一象限;(3)w=f(z)把D 映射成W 平面的第一象限..12. 设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π; (3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0; (4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z). 13.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.14.设Z 平面上区域D :||z <2且||z i ->1.试求以下保角映射:(1))(11z f =ω把D 映射成W1平面上的带形域D1:41<Im 1ω<21;(2))(122ωωf =把D1映射成W2平面上的带形域D2:0<Im 2ω<π; (3))(23ωωf =把D2映射成W 平面上的区域D3:Im ω>0;(4)综合以上三步,求保角映射)(z f =ω把D 映射成Im ω>0.第二篇复习题1.δ函数的傅氏变换F )]t ([δ为( )A.-2B.-1C.1D.22. 函数f(t)=t 的傅氏变换F [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω) 3.函数f(t)=π2122t e -的傅氏变换F [])(t f 为( )A . 2ω-eB . 22ω-eC .22ωeD . 2ωe4.求函数)t (f 3)t (2-δ的傅氏变换,其中⎩⎨⎧≤>=-.0t ,00t ,te )t (f t5.求函数3f(t)+2sint 的付氏变换,其中 f(t)=⎩⎨⎧>≤1||,01||,1t t6. (1)求e -t 的拉氏变换F [e -t ];(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0,y ′(0)=1,求F [y ′(t)]、F [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t7.(1)求e t 的拉氏变换L [e t ];(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0,y ′(0)=0,求L [y ′(t)]、L [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t000028.求函数222)4(4)(-+=p p p F 的拉氏逆变换9.(1)求sint 的拉氏变换(sint ); (2)设F (p )=[])(t y ,其中函数)(t y 可导,且1)0(-=y ,求[])(t y '.(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧-==+'1)0(sin y ty y全国2009年4月自考复变函数与积分变换试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( )A .-1B .-21C .21D .12.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π3.设n 为整数,则Ln (-ie )=( )A .1-2πi B .)22(πn π-i C .1+)i π(n π22-D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =15.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2 D .π26.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23-B .i π3-C .i π43D .i π23 7.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i π D .2i π 8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <3 10.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21D .1 二、填空题(本大题共6小题,每小题2分,共12分) 11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________.14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________.16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程.18.(本题6分)设C 是正向圆周⎰+-=-C zdz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域.20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值.22.(本题7分)设v (x ,y )=arctan )(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(dz z z e I Cz⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

复变函数期末考试题大全(东北师大)

复变函数期末考试题大全(东北师大)

____________________________________________________________________________________________________一、填空题(每小题2分)1、复数i 212--的指数形式是2、函数w =z1将Z S 上的曲线()1122=+-y x 变成W S (iv u w +=)上 的曲线是3、若01=+z e ,则z =4、()ii +1=5、积分()⎰+--+idz z 2222=6、积分⎰==1sin 21z dz zzi π 7、幂级数()∑∞=+01n n nz i 的收敛半径R=8、0=z 是函数ze z 111--的 奇点 9、=⎪⎪⎭⎫⎝⎛-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( )A 无意义B 等于1C 是复数其实部等于1D 是复数其模等于1 2、下列命题正确的是( )A i i 2<B 零的辐角是零C 仅存在一个数z,使得z z -=1D iz z i=13、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( )Ai 2321- B 223i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( )A z1sin 1B z 1cosC zctg e 1D Lnz6、下列积分之值不等于0的是( )A ⎰=-123z z dzB ⎰=-121z z dzC⎰=++1242z z z dzD ⎰=1cos z z dz7、函数()z z f arctan =在0=z 处的泰勒展式为( )A ()∑∞=+-02121n n nn z (z <1) B ()∑∞=+-01221n n n n z(z <1)C ()∑∞=++-012121n n nn z (z <1) D ()∑∞=-0221n n n n z(z <1)8、幂级数n n n z 201)1(∑∞=+-在1<z 内的和函数是( )A211z - B 211z + C 112-z D 211z+- 9、设a i ≠,C :i z -=1,则()=-⎰dz i a zz C2cos ( )A 0 Beπ2i C 2πie D icosi 10、将单位圆1<z 共形映射成单位圆外部1>w 的分式线性变换是( )A )1(1>--=a z a a z e w i βB )1(1<--=a za az e w i β____________________________________________________________________________________________________C )1(>--=a a z a z ew i βD )1(<--=a az az e w i β 三、判断题(每小题2分) 1、( )对任何复数z,22z z =成立2、( )若a 是()z f 和()z g 的一个奇点,则a 也是()()z g z f +的奇点3、( )方程01237=+-z z 的根全在圆环21<<z 内4、( )z=∞是函数()=z f ()251z z-的三阶极点5、( )解析函数的零点是孤立的四、计算题(每小题6分)1、已知())(2222y dxy cx i by axy x z f +++++=在z S 上解析,求a,b,c,d 的值2、计算积分⎰=--22)1(25z dz z z z 3、将函数()11+-=z z z f 在1=z 的邻域内展成泰勒级数,并指出收敛范围4、计算实积分I=⎰∞+++0222)4)(1(dx x x x5、求211)(zz f +=在指定圆环+∞<-<i z 2内的洛朗展式 6、求将上半平面0Im >z 共形映射成单位圆1<w 的分式线性变换()z L w =,使符合条件()0=i L ,()0>'i L五、证明题(每小题7分)1、设(1)函数)(z f 在区域D 内解析(2)在某一点D z ∈0有0)(0)(=z fn ,( ,2,1=n )证明:)(z f 在D 内必为常数2、证明方程015=++n z z e 在单位圆1<z 内有n 个根一填空题(每小题2分,视答题情况可酌情给1分,共20分) 1 i eπ654-,2 21=u , 3 (2k+1)i π,(k=0, 2,1±±), 4 ⎪⎭⎫⎝⎛+-ππk i e e 242ln (k=0, 2,1±±)5 3i -,6 0 ,7 21 , 8 可去, 9 2e , 10 z 1-二 单选题(每小题2分,共20分)1 D2 D3 A4 A5 B6 B7 C8 D9 A 10 A 三 判断题(每小题2分,共10分)1⨯ 2 ⨯ 3 ∨ 4 ∨ 5 ⨯ 四 计算题(每小题6分,共36分)1解:22by axy x u ++=,22y dxy cx v ++= 3 分 y x v u = y dx ay x 22+=+x y v u -= dy cx by ax --=+22 …5分解得:1,2-====c b d a 6 分2 解:被积函数在圆周的2=z 内部只有一阶极点z=0及二阶极点z=1 2 分2)1(25)(Re 02-=--===z z z z z f s2225)(Re 1211=='⎪⎭⎫⎝⎛-====z z z z z z z f s 分5⎰=--22)1(25z dz z z z =π2i(-2+2)=0 6 分____________________________________________________________________________________________________3 解:()11+-=z z z f = ()nn nz z z 1211211111210-⎪⎭⎫ ⎝⎛--=-+-=+-∑∞= …4分 (1-z <2) …6分 4 解: 被积函数为偶函数在上半z 平面有两个一阶极点i,2i …1分I=⎰∞+∞-++dx x x x )4)(1(21222…2分 =[])(Re )(Re 2212z sf z f s i iz i z ==+π …3分=]iz iz i z z z z i z z i 22222)2)(1()4)((==+++⎢⎣⎡++π …5分=6π…6分 5 解:))((1)(i z i z z f +-=…1分=iz i i z -+-211)(12…3分=∑∞=---02)()2()1()(1n nnni z i i z +∞<-<i z 2 …6分 6 解: w =L(i)=kiz iz +- 2 分 2)(2i z ikw +=' …3分0)(=>'='i L w i k =∴ …4分 iz iz iw +-= …6分 五 证明题(每小题7分,共14分)1 证明:设)(:0D k R z z k ⊂<- )(z f 在0z 解析 由泰勒定理 ∑∞=-=000)()(!)()(n n n z z n z fz f )(D k z ⊂∈ …2分 由题设 0)(0)(=z fn ∴)()(0z f z f ≡ ,)(D k z ⊂∈ …4分由唯一性定理 )()(0z f z f ≡ )(D z ∈ …7分 2 证明:令n z z f 5)(= ,1)(+=z e z ϕ 2 分 (1)()z f 及()z ϕ在1≤z 解析 (2)1=z 上,()55==n z z f()1111+=+≤+≤+=e e e e z zz z ϕ<5 4 分故在1=z 上()()z z f ϕ>,由儒歇定理在1=z 内()()()n z z f N z z z f N ====+)1,()1,(ϕ …7分一、填空题(每小题2分)1、()()323sin 3cos 5sin 5cos ϕϕϕϕi i -+的指数形式是 2、i i = 3、若0<r<1,则积分()⎰==+rz dz z 1ln4、若v 是u 的共轭调和函数,那么v 的共轭调和函数是5、设0=z 为函数)(z f =33sin z z -的m 阶零点,则m =6、设a z =为函数()z f 的n 阶极点,那么()()⎥⎦⎤⎢⎣⎡'=z f z f s a z Re = 7、幂级数∑∞=0!n nn z 的收敛半径R=____________________________________________________________________________________________________8、0=z 是函数zz 1sin 5的 奇点9、方程01237=+-z z 的根全在圆环 内 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w二、单选题(每小题2分)1、若函数()z f 在区域D 内解析,则函数()z f 在区域D 内( )A 在有限个点可导B 存在任意阶导数C 在无穷多个点可导D 存在有限个点不可导 2、使22z z =成立的复数是( )A 不存在B 唯一的C 纯虚数D 实数 3、⎰==-22)1(cos z dz z z( )A -i πsin1B i πsin1C -2i πsin1D 2i πsin1 4、根式3i 的值之一是( )A223i - B 223i -- C i D i - 5、π=z 是π-z zsin 的( )A 可去奇点B 一阶极点C 一阶零点D 本质奇点6、函数()()()411++=z z z z f ,在以0=z 为中心的圆环内的洛朗展式有m 个,则m=( )A 1B 2C 3D 4 7、下列函数是解析函数的为( )A xyi y x 222--B xyi x +2C )2()1(222x x y i y x +-+-D 33iy x + 8、在下列函数中,()0Re 0==z f s z 的是( )A ()21z e z f z -=B ()zz z z f 1sin -=C ()z z z z f cos sin +=D ()ze zf z 111--= 9、设a i ≠,C :i z -=1,则()=-⎰dz i a zz C2cos ( )A 0 Beπ2i C 2πie D icosi 10、将单位圆1<z 共形映射成单位圆外部1>w 的分式线性变换是( )A )1(1>--=a z a a z e w i βB )1(1<--=a z a az e w i β C )1(>--=a a z a z e w i βD )1(<--=a az az e w i β三、判断题(每小题2分)1、( )幂级数∑∞=0n n z 在z <1内一致收敛2、( )z=∞是函数2cos 1z z-的可去奇点 3、( )在柯西积分公式中,如果D a ∉,即a 在D 之外,其它条件不变,则积分()=-⎰dz az z f i C π210,()D z ∈ 4、( )函数()=z f zctge1在0=z 的去心邻域内可展成洛朗级数5、( )解析函数的零点是孤立的 四、计算题(每小题6分)1、计算积分()⎰+-Cdz ix y x 2,C :i →1+i 的直线段____________________________________________________________________________________________________2、求函数()()()211+-=z z zz f 在所有孤立奇点(包括∞)处的留数3、将函数()iz i z z f --+=11在i z =的去心邻域内展成洛朗级数,并指出收敛域 4、计算积分()⎰+Cz z dz122 , C:1222+=+y y x , 5、计算实积分I=⎰+πθθ20cos a d )1(>a6、求将单位圆1<z 共形映射成单位圆1<w 的分式线性变换()z L w =使符合条件021=⎪⎭⎫⎝⎛L ,()11-=L五、证明题(每小题7分)1、设函数()z f 在区域D 内解析,证明:函数()z f i 也在D 内解析2、证明:在0=z 解析,且满足的n n f 21121=⎪⎭⎫ ⎝⎛-,nn f 2121=⎪⎭⎫ ⎝⎛( 2,1=n )的函数()z f 不存在一填空题(每小题2分,视答题情况可酌情给1分,共20分) 1 ϕ19i e ,2 ππk e22--(k=0,±…) , 3 0, 4 u -, 5 96 n - ,7 ∞+ ,8 本质,9 21<<z , 10 z 1-二 单选题(每小题2分,共20分)1 B2 D3 C4 D5 A6 C7 C8 D9 A 10 A 三 判断题(每小题2分,共10分)1⨯ 2 ⨯ 3 ∨ 4 ⨯ 5 ⨯ 四 计算题(每小题6分,共36分)1解:C 的参数方程为: z=i+t, 01≤≤t dz=dt 3 分 ()⎰+-Cdz ix y x 2=()⎰+-121dt it t =321i+-6 分 2解: 1=z 为()z f 一阶极点 1 分1-=z 为()z f 二阶极点 2 分()411Re 11-='⎪⎭⎫⎝⎛-=-=-=z z z z z f s 3 分()()411Re 121=+===z z z zz f s 5 分 ()0Re =∞=z f s z …6分3 解:()iz i z z f --+=11=⎪⎪⎪⎪⎭⎫ ⎝⎛-++--i i z i i z 211211 …2分 = ()()()10211+∞=--+--∑n nn n i i z i z …5分 (0<i z -<2) …6分 4 解:在C 内()z f 有一个二阶极点z =0和一个一阶极点i z = …1分()011Re 020='⎪⎭⎫⎝⎛+===z z z z f s …3分()ii z z z f s iz iz 21)(1Re 2-=+=== …5分 所以原式=π2i π-=⎪⎭⎫ ⎝⎛-i 210 …6分5 解:令θi e z =____________________________________________________________________________________________________iz dzz z a I z ⎰=-++=1121 …1分=[][]⎰=-----+--122)1()1(2z a a z a a z dzi …3分被积函数在1=z 内的有一个 一阶极点12-+-=a a z121)(Re 212-=-+-=a z f sa a z …5分I=121212222-=-a a i iππ …6分6解:2212112121--=--=⎪⎭⎫ ⎝⎛=z z k z z kL w 2 分 ()121212111-=-=--=k kL 所以2=k 4 分 于是所求变换 2122212--=--=z z z z w 6 分 五 证明题(每小题7分,共14分)1 证明: 设f(z)=u (x ,y )+iv (x ,y ))(z f = u (x ,y )-iv (x ,y ))(z f i = v (x ,y )-i u (x ,y ) 2 分 f (z )在D 内解析,x y y x v u v u -==,)(z f i 四个偏导数为 v x ,v y ,-u x ,-u y 4 分比较f (z )的C -R 方程 )(z f i 也满足C-R 方程且四个偏导数在D 内连续 ∴)(z f i 在D 内解析 7 分2 证明:假设在0=z 解析的函数()z f 存在且满足n n f 21121=⎪⎭⎫ ⎝⎛-,n n f 2121=⎪⎭⎫ ⎝⎛( 2,1=n ) 2 分 点列⎭⎬⎫⎩⎨⎧n 21=n 21以0=z 为聚点在点列⎭⎬⎫⎩⎨⎧n 21上,n n f 2121=⎪⎭⎫ ⎝⎛由解析函数的唯一性定理在0=z 的邻域内()z f =z 5 分但在这个邻域内又有n n f 21121=⎪⎭⎫ ⎝⎛-矛盾 ∴在0=z 解析的函数()z f 不存在 7 分《复变函数论》试题库梅一A111《复变函数》考试试题(一)1、=-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.____________________________________________________________________________________________________5.幂级数0nn nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d zz f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z 在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分) 1. 设i z-=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.____________________________________________________________________________________________________《复变函数》考试试题(三)二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

《复变函数》考试试题与答案各种总结.docx

《复变函数》考试试题与答案各种总结.docx

---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。

复变函数期末试题及答案

复变函数期末试题及答案

复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。

答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。

答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案
C是复数其实部等于1D是复数其模等于1
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()

(完整版)《复变函数》考试试题与答案各种总结

(完整版)《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f (z)在z 0的某个邻域内可导,则函数f(z )在z 0解析. ( )2.有界整函数必在整个复平面为常数。

( ) 3。

若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6。

若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( ) 7。

若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点. ( )8。

若函数f (z )在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠。

( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z )在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。

( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。

=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________。

5。

幂级数0n n nz ∞=∑的收敛半径为__________。

6.若函数f (z )在整个平面上处处解析,则称它是__________。

7。

若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8。

=)0,(Re n zz e s ________,其中n 为自然数。

9. zz sin 的孤立奇点为________ .10。

复变函数复习考卷及其答案好!

复变函数复习考卷及其答案好!

复变函数复习考卷一、选择题(每题4分,共40分)A. $e^z$B. $\frac{1}{z}$C. $\sqrt{z}$D. $\ln(z)$2. 复变函数在孤立奇点处的洛朗级数展开中,负幂项系数的含义是?()A. 函数在该点的留数B. 函数在该点的导数C. 函数在该点的极限D. 函数在该点的幅角3. 复变函数在解析区域内解析的充分必要条件是?()A. 柯西黎曼方程成立B. 洛朗级数展开存在C. 原函数存在D. 哈尔迪惠特尼定理成立A. 柯西积分定理B. 奇点定理C. 留数定理5. 复变函数在孤立奇点处的留数等于?()A. 奇点处的函数值B. 奇点处的导数C. 奇点处的极限D. 奇点处 Laurent 展开式中负幂项系数的和6. 复变函数的导数等于?()A. 实部关于 x 的偏导数B. 虚部关于 y 的偏导数C. 实部关于 x 的偏导数与虚部关于 y 的偏导数的和D. 实部关于 x 的偏导数与虚部关于 y 的偏导数的差7. 复变函数在区域 D 内解析,则其在 D 内的积分与路径无关的条件是?()A. D 为单连通区域B. D 为多连通区域C. D 为有界区域D. D 为无界区域8. 复变函数的泰勒级数展开式在收敛圆内的性质是?()A. 绝对收敛B. 条件收敛C. 无条件收敛D. 不能确定二、填空题(每题4分,共40分)1. 复变函数 $f(z) = e^z$ 在 $z=0$ 处的泰勒级数展开式为______。

2. 复变函数的导数 $f'(z)$ 满足______方程。

3. 若复变函数 $f(z)$ 在区域 D 内解析,则其在 D 内的积分与路径______。

4. 复变函数在孤立奇点处的留数等于该点______项系数的和。

5. 复变函数在解析区域内解析的充分必要条件是______。

6. 复变函数在区域 D 内解析,则其在 D 内的积分与路径无关的条件是 D 为______区域。

7. 复变函数的泰勒级数展开式在收敛圆内的性质是______。

复变函数考试题及答案

复变函数考试题及答案

复变函数考试题及答案一、单项选择题(每题2分,共10分)1. 复变函数中,以下哪个选项是解析函数的必要条件?A. 函数在定义域内连续B. 函数在定义域内可导C. 函数在定义域内满足柯西-黎曼方程D. 函数在定义域内处处有界答案:C2. 如果函数f(z)=u(x,y)+iv(x,y)是解析的,则以下哪个等式成立?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = -∂v/∂xC. ∂u/∂x = -∂v/∂yD. ∂u/∂y = ∂v/∂x答案:B3. 在复平面上,以下哪个区域是单连通的?A. 整个复平面B. 去掉原点的复平面C. 去掉实轴的复平面D. 去掉单位圆的复平面答案:A4. 复变函数的柯西积分定理适用于以下哪种情况?A. 函数在整个复平面上解析B. 函数在简单连通域内解析C. 函数在任意区域解析D. 函数在任意区域连续答案:B5. 对于解析函数f(z)=u(x,y)+iv(x,y),以下哪个等式是正确的?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = ∂v/∂xC. ∂u/∂x = ∂v/∂yD. ∂u/∂y = -∂v/∂x答案:D二、填空题(每题3分,共15分)1. 如果f(z)是解析函数,且f(z)=z^2,则f'(z)=________。

答案:2z2. 函数f(z)=1/z在z=0处是________。

答案:无定义的3. 函数f(z)=e^z的导数是________。

答案:e^z4. 函数f(z)=z^n(n为正整数)的n阶导数是________。

答案:n!5. 函数f(z)=sin(z)的解析延拓是________。

答案:sin(z)三、计算题(每题10分,共20分)1. 计算积分∮_C z^2 dz,其中C是由z=1和z=i围成的矩形的边界。

答案:02. 计算积分∮_C (z^2-1)/z dz,其中C是单位圆|z|=1的正向边界。

答案:2πi四、证明题(每题15分,共30分)1. 证明如果f(z)是解析函数,且f(z)在某个区域内有界,则f(z)在该区域内是常数函数。

复变函数与积分变换期末考试复习题及参考答案-高起本

复变函数与积分变换期末考试复习题及参考答案-高起本

《复变函数与积分变换》复习题一、判断题1、cos z 与sin z 在复平面内有界. ( )2、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )3、若函数()f z 在0z 处解析,则它在该点的某个邻域内可以展开为幂级数. ( )4、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )5、若()f z 在区域D 内解析, 则对D 内任一简单闭曲线C ()0Cf z dz .( )6、若()f z 在0z 的某个邻域内可导,则函数()f z 在0z 解析. ( )7、若{}n z 收敛,则{Re }n z 与{Im }n z 都收敛. ( )8、若()f z 在区域D 内解析,且'()0f z ,则()f z C (常数).( )9、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点. ( )10、若0lim ()zz f z 存在且有限,则0z 是函数()f z 的可去奇点.( )二、选择题 1.arg13i ( )A.-3π B.3πC.32πD.3n 2π+2 2.2z 在0z 复平面上( )A.不连续B.可导C.不可导D.解析3.设z xyi ,则下列函数为解析函数的是( )A.22()2f z x y xyB.()f z x iyC. ()2f z x i yD.()2f z xiy7.0z 是3sin zz 的极点,其阶数为( ) A.1 B.2 C.3 D.410.整数0k 则Res[cot ,]z =( )A.1kB.0C.1kD.k11、设复数1cossin33z i ,则arg z ( )A.-3B.6C.3D.2312、2w z 将z 平面上的实轴映射为w 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴13、下列说法正确的是( )。

复变函数期末考试分章节复习题

复变函数期末考试分章节复习题

第一章复习题1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D.142. z=2-2i ,|z 2|=( ) A. 2 B.8 C. 4 D. 83. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线B.双曲线C.抛物线D.圆4. 设z=x+iy,则(1+i )z 2的实部为( ) A.x 2-y 2+2xyB.x 2-y 2-2xyC.x 2+y 2+2xyD.x 2+y 2-2xy5. arg(2-2i)=( ) A.43π-B.4π-C.4πD.43π 6.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=w C .6arg π-=wD .3arg π-=w7.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于18.设11z i=-+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( )A. e 2+2xB. e |2i+2z|C. e 2+2zD. e 2x 10. Re(e 2x+iy )=( )A. e 2xB. e yC. e 2x cosyD. e 2x siny11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1D.Im z<012. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线13 .下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2314.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1D.π≤<πargz 2116.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D . 1≤||z i -≤417. arg(3-i)=___________.18. arg (-1+3i )= .19. 若i3i1z -+=,则z =___________.20.设i z 101103+-=,则=_z ____________.21. 若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.22. 复数1-3i 的三角表达式是_________________.23. 求方程z 3+8=0的所有复根. 24. 解方程z 4=-1.25 计算复数z=327-的值.26.求z =(-1+i )6的共轭复数z 及共轭复数的模|z |.27.设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 28. 设t 为实参数,求曲线z=re it +3 (0≤t <2π的直角坐标方程. 29.设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线.30.用θcos 与θsin 表示θ5cos .第二章复习题1. ln(-1)为( ) A.无定义的B.0 C .πi D.(2k+1)πi(k 为整数)2.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +3.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg 43) B .ln5+i(π-arctg 43) C .ln5+i(-π-arctg 34)D .ln5+i(π-arctg 34)4. 设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2B.3xy 2-x 3C.3x 2y-y 3D.3y 3-3x 35. 设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( ) A. -3 B. -1 C. 1 D. 36. 设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( ) A. -3 B. 1 C. 2 D. 37. 若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( ) A.xy+x B.2x+2y C.2xy+y D.x+y 8. 若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=( )A. e x (ycosy-xsiny)B. e x (xcosy-xsiny)C. e x (ycosy-ysiny)D. e x (xcosy-ysiny)9. 设v(x,y)=e axsiny 是调和函数,则常数a=( )A. 0 B. 1 C.2 D.310. 设f(z)=z 3+8iz+4i ,则f ′(1-i)=( ) A. -2i B. 2i C. -2D. 211.正弦函数sinz=( )A .i e e iz iz 2-- B .2iziz ee --C .i e e iz iz 2-+D .2iziz e e -+12. 对数函数w=ln z 的解析区域为___________. 13.已知f(z)=u+iv 是解析函数,其中u =)ln(2122y x +,则=∂∂y v .14. 若sinz=0,则z=___________. 15. 若cosz=0,则z=________. 16.方程i z 31ln π+=的解为____________. 17. tgz 的所有零点为_________________.18. 设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.19.设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20. 设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.21.函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22. 已知调和函数v=arctg xy,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=,求),(y x v .24.设u=x 2-y 2+xy 是解析函数f(z)的实部,其中z=x+iy.求f ′(z)并将它表示成z 的函数形式. 25.设v=e ax siny ,求常数a 使v 成为调和函数.26.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式.27. 设u=e 2x cos 2y 是解析函数f(z)的实部,求f(z).28.已知z ≠0时,22x yu x y -=+为调和函数,求解析函数()f z u iv =+的导数f ′(z),并将它表示成z 的函数形式.29.求方程sin z +cos z =0 的全部根.第三章复习题1.设C 为正向圆周|z|=1,则⎰=C2zdz ( )A. 0 B. 1 C.πiD. 2πi2.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A. i B. 2i C.-i D. -2i3.设C 为正向圆周|z|=1,则⎰=-Czdz 1e z sin ( )A.2πi ·sin 1B.-2πiC.0D.2πi4.⎰==-2|z |2)i z (dz ( ) A. 0 B. 1 C. 2π D. 2πi5.⎰=-=2|1z |dz z zcos ( ) A. 0 B. 1 C. 2π D. 2πi 6.⎰+=i220zdz ( ) A. i B. 2i C. 3i D. 4i7.设C 为正向圆周|z-a|=a(a>0),则积分⎰-Ca z dz22=( )A. ai2π-B. aiπ-C.ai2πD. ai π8.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( )A.0 B.πiC.2πiD.6πi9.设C 为正向圆周|z |=1,则⎰=c z d z c o t ( )A. -2πi B. 2πi C.-2π D.2π10.⎰=-3|i z |z dz=( ) A. 0 B. 2π C. πi D. 2πi 11.⎰=---11212z z sinzdz |z |=( )A. 0 B. 2πisin1 C. 2πsin1 D.1sin 21i π 12.⎰32dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin913.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6 B .i π4 C .iπ2D .014.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2π D .i e 22π-15.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( )A .i e3πB .e6πC .ei π2D .i e 3π 16.复积分iiz e dz ⎰的值是( )A . 1(1)e i ---B .1e i -C .1(1)e i --D .1e i --17.复积分|1|2zz i e z i --=-⎰dz 的值是( )A .i e B .i e - C .2πi ieD .2πi ie -18.设C为正向圆周⎰=ξ-ξξ=<=ξC3d )z (2sin )z (f 1|z |1||时,,则当___________.19.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则___________. 20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.设C 为正向圆周|z |=1,则=-⎰dz ie cz22π. 22. 设C 为正向圆周|z|=1,则积分⎰=Cdz z1___________. 23.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.24.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C3_)(____________.25.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.26.|3|1cos z z i e zdz -=⎰=______________.27. 设C 为正向圆周|z|=1,计算积分⎰+-=C 2.dz )2z )(21z (zsin I28. 计算积分⎰-=C3z dz )a z (e I ,其中C 为正向圆周|z|=1,|a|≠1.29. 计算积分⎰+-=C2dz z)i 1(z 1I ,其中C 为正向圆周|z|=2.30. 求积分⎰++-Cdz i z 22z 3I )(=的值,其中C:|z|=4为正向. 31. 求积分⎰-C4z dz z3e I =的值,其中C:|z|=1为正向.32.设C 为正向圆周|z|=1,求I=dz zec z ⎰21.33.设C 为正向圆周|z-i |=21,求I =⎰+c z z dz )1(2. 34.设C 为正向圆周|z|=1,求I=⎰C zdz ze 5.35. 求积分I=⎰+Cdz z i 的22值,其中C :|z|=4为正向. 36. 求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向.37.设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π 38.计算积分I=2()cx y ix dz -+⎰,其中C 为从0到1+i 的直线段.39.计算积分I=221(1)(1)Cdz z z -+⎰,其中C 为正向圆周2220x y x +-= 第四章复习题1. 复数列i 2n n e z π=的极限为( ) A.-1 B.0 C.1D.不存在2. 设∑∞==0n n!n z )z (f ,则f (10)(0)为( )A.0 B.!101C.1D.10!3.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 4.幂级数∑∞=+0)1(1n nn z i 的收敛半径为( ) A .2 B .1 C .21 D .05. 下列级数中绝对收敛的是( )A.∑∞=+1!)43(n nn i B.nn i∑∞=+1)231( C. ∑∞=1n nni D.∑∞=+-11)1(n n n i6. 1e 1)z (f z -=在z=πi 处的泰勒级数的收敛半径为( )A. πiB. 2πiC. πD. 2π 7. 处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( )A. 0B. 1C. 2D. 38. f(z)=211z+在z=1处的泰勒展开式的收敛半径为( ) A.23B. 1C.2D.3 9. f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.310. z=2i 为函数222z )4z (z e )z (f +=的( )A.可去奇点B.本性奇点C.极点D.解析点11. 以z=0为本性奇点的函数是( )A.z zsin B.)1z (z 1- C.2z z cos 1- D.z1sin12.点z=-1是f(z)=(z+1)5sin)1(1+z 的( )A.可去奇点B.二阶极点C.五阶零点D.本性奇点13. z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点14.z=0是函数2zcos 1z-的( )A .本性奇点B .可去奇点C .一阶极点D .二阶极点15. 2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( )A.∑∞=-0n nnz )1( B.∑∞=-0n n2z )1z (1 C.∑∞=--0n nn )1z ()1(D. ∑∞=---0n 2n n)1z ()1(16. 可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞ C. 0<|z-2|<2 D. 0<|z-2|<+∞17. f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( )A.∑∞=-01n nn z )( B.∑∞=-021n nz )z ( C.∑∞=-02n n )z ( D.∑∞=---0121n n n)z ()(18. 设i 1a a limn 1n n +=+∞→,则幂级数∑∞=+0n n n z 1n a 的收敛半径为___________. 19. 幂级数∑∞=0n n nz 3n的收敛半径是___________.20. 幂级数∑∞=1n n nz n!n 的收敛半径是________.21.若在幂级数∑∞=0n nn z b 中,i b bnn n 43lim 1+=+∞→,则该幂级数的收敛半径为____________.22.幂级数∑∞-12n nn nz 的收敛半径是____________.23.设n z z f nn n2)1()(0∑∞=-=,则)0()10(f =___________.24. z =0是f(z)=zz )1ln(+的奇点,其类型为 . 25. f(z)=21z z -在圆环域0<|z|<1内的罗朗展开式为 . 26.设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.27. 求f(z)=ln z 在点z=2的泰勒级数展开式,并求其收敛半径.28 将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数.29.求)2)(1(1)(--=z z z f 在z =0处的泰勒展开式.30. 将函数f(z)=ln(3+z)展开为z 的泰勒级数.31.将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.32. (1)求z 1在圆环域1<|z-1|<+∞内的罗朗级数展开式; (2)求2z1在圆环域1<|z-1|<+∞内的罗朗级数展开式.33. 将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.34. 将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数.35.求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.36.将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.第五章复习题1. 设函数22iz )1z (e )z (f +=,则Res[f(z),-i]=( )A.0 B.4ie-C.4ie D.4e 2. 设f(z)=1z z22-,则Res[f(z),1]=( ) A.0 B.1 C.πD.2π3. 若f(z)=tgz ,则Res[f(z),2π]=( ) A. -2π B. -π C. -1 D. 04.函数z z tan 在z =0点的留数为( )A .2B .iC .1D .05.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -6.Re [cot ,1]s z π=( ) A .1π- B .1πC .-2iD .2i 7.设f(z)= +--++--+---nn z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= . 8.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I9.(1)求)4z )(1z (1)z (f 22++=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分⎰+∞∞-++=)4x )(1x (dx I 22.10.(1)求2z2i z4e)z (f +=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 211.(1)求f(z)=12+z z在上半平面内的孤立奇点,并指出其类型; (2)求f(z)e iz 在以上奇点的留数; (3)利用以上结果,求I=⎰+∞∞-+dx x x x 1sin 2.12. 利用留数计算积分I=⎰C zsinzdz,其中C 为正向圆周|z|=1.13.(1)求f(z)=iz e zz21+在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分I=⎰+∞∞-+x d x 1xsinx214.求)(1)(3i z z z f -=在各个孤立奇点处的留数.15.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 16.利用留数计算积分I=22(1)zc e dz z -⎰,其中C 为正向圆周||z =2. 17.(1)求242()1z f z z z =++在上半平面内的所有孤立奇点.(2)求)(z f 在以上各孤立奇点的留数. (3)利用以上结果计算积分I=2421x dx x x +∞-∞++⎰.第六章复习题1. 把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-=B.z 1)1z (i w -+=C.z 11z w -+= D.1z )1z (i w +-=2. w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面3. 线性变换z1z2+=ω( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<14. 线性变换ω=iz zi +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0 B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<15.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .3π-<ϕ<0 C .0<ϕ<3πD .0<ϕ<3π6. 映射z1=ω是关于___________的对称变换.7. 线性映射ω=z 是关于________的对称变换.8.分式线性映射i z i z +---=11ω把上半平面Imz>0映射成___________. 9. 设D 是上半单位圆:Im z>0,|z|<1,求下列保角映射: (1)w 1=f(z)把D 映射为第Ⅱ象限D 1,且f(1)=0; (2)w 2=g(w 1)把D 1映射为第Ⅰ象限D 2; (3)w=h(w 2)把D 2映射为上半平面D 3; (4)求把D 映射为D 3的保角映射w=F(z).10. 设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0; (3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0; (4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3. 11.设D 为Z 平面的单位圆盘去掉原点及正实轴的区域. 求下列保角映射: (1)w 1=f 1(z)把D 映射成W 1平面的上半单位圆盘D 1;(2)w=f 2(w 1)把D 1映射成W 平面的第一象限;(3)w=f(z)把D 映射成W 平面的第一象限..12. 设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π; (3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0; (4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z). 13.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.14.设Z 平面上区域D :||z <2且||z i ->1.试求以下保角映射:(1))(11z f =ω把D 映射成W1平面上的带形域D1:41<Im 1ω<21;(2))(122ωωf =把D1映射成W2平面上的带形域D2:0<Im 2ω<π; (3))(23ωωf =把D2映射成W 平面上的区域D3:Im ω>0;(4)综合以上三步,求保角映射)(z f =ω把D 映射成Im ω>0.第二篇复习题1.δ函数的傅氏变换F )]t ([δ为( )A.-2B.-1C.1D.22. 函数f(t)=t 的傅氏变换F [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω) 3.函数f(t)=π2122t e -的傅氏变换F [])(t f 为( )A . 2ω-eB . 22ω-eC . 22ωeD . 2ωe4.求函数)t (f 3)t (2-δ的傅氏变换,其中⎩⎨⎧≤>=-.0t ,00t ,te )t (f t5.求函数3f(t)+2sint 的付氏变换,其中 f(t)=⎩⎨⎧>≤1||,01||,1t t6. (1)求e -t 的拉氏变换F [e -t ];(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0,y ′(0)=1,求F [y ′(t)]、F [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t7.(1)求e t 的拉氏变换L [e t ];(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0,y ′(0)=0,求L [y ′(t)]、L [y ″(t)]; (3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t000028.求函数222)4(4)(-+=p p p F 的拉氏逆变换9.(1)求sint 的拉氏变换(sint ); (2)设F (p )=[])(t y ,其中函数)(t y 可导,且1)0(-=y ,求[])(t y '.(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧-==+'1)0(sin y ty y全国2009年4月自考复变函数与积分变换试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( )A .-1B .-21C .21D .12.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π 3.设n 为整数,则Ln (-ie )=( )A .1-2πiB .)22(πn π-iC .1+)i π(n π22-D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =15.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2 D .π26.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23-B .i π3-C .i π43D .i π23 7.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i π D .2i π 8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <3 10.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21D .1 二、填空题(本大题共6小题,每小题2分,共12分) 11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________. 14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________. 16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程.18.(本题6分)设C 是正向圆周⎰+-=-C z dz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域.20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值.22.(本题7分)设v (x ,y )=arctan )(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(2dz z z e I Cz⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

复变函数复习考卷及其答案好!

复变函数复习考卷及其答案好!

专业课原理概述部分一、选择题(每题1分,共5分)1. 复变函数中,下列哪个函数是全纯函数?A. f(z) = z^2 + 1B. f(z) = |z|C. f(z) = Re(z)D. f(z) = z + |z|2. 复变函数f(z)在z=a处解析的充分必要条件是?A. f(z)在z=a处可导B. f(z)在z=a处的导数存在C. f(z)在z=a处的极限存在D. f(z)在z=a处的 Laurent 级数展开收敛3. CauchyRiemann方程中,u和v分别表示什么?A. u表示实部,v表示虚部B. u表示虚部,v表示实部C. u表示模,v表示幅角D. u表示幅角,v表示模4. 复变函数f(z)的Taylor级数展开式中,系数an与下列哪个量有关?A. f(z)在z=0处的导数B. f(z)在z=0处的值C. f(z)在z=0处的n阶导数D. f(z)在z=0处的Laurent级数5. 复变函数积分中,下列哪种方法不能用来计算复变函数积分?A. 定积分B. 不定积分C. Cauchy积分公式D. 复合积分法二、判断题(每题1分,共5分)1. 复变函数的导数与实变函数的导数定义相同。

()2. 复变函数的积分路径可以任意选取。

()3. 复变函数的Taylor级数展开一定收敛。

()4. 复变函数的Laurent级数展开中,负幂项表示奇点。

()5. 复变函数在孤立奇点处的留数总是唯一确定的。

()三、填空题(每题1分,共5分)1. 复变函数f(z) = z^2的导数为______。

2. 复变函数f(z)在z=0处的Taylor级数展开为______。

3. Cauchy积分公式中,积分路径C必须围绕______。

4. 复变函数f(z)在z=a处的留数是______。

5. 复变函数f(z) = e^z的Laurent级数展开为______。

四、简答题(每题2分,共10分)1. 简述复变函数的可导与解析的关系。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档