硅的湿法化学腐蚀机理

合集下载

湿法刻蚀原理

湿法刻蚀原理

湿法刻蚀原理
湿法刻蚀是一种通过在硅片表面加工制作微电子元件的方法。

该方法主要通过化学反应来去除硅片表面的一定厚度,从而制造出所需的结构和器件。

在湿法刻蚀过程中,首先需要将待刻蚀的硅片放入含有氢氟酸等腐蚀剂的溶液中。

溶液中的腐蚀剂会与硅片表面的晶格结构发生反应,使得硅原子与氢氟酸中的氢离子结合,形成氟化硅离子,并释放出氢气。

氟化硅离子在溶液中会进一步反应,与硅片表面的硅原子结合,形成SiF4气体,并释放出新的氢气。

这一反应会不断重复,直到硅片表面被刻蚀掉一定厚度。

刻蚀速率取决于腐蚀液的配比、温度、浓度以及硅片的取向和晶格结构等因素。

利用不同的腐蚀液配比和工艺参数,可以控制刻蚀速率和刻蚀深度,从而制造出不同的结构和器件。

总的来说,湿法刻蚀是一种非常重要的微电子制造工艺,它可以制造出非常复杂和精密的微结构和器件,如微机械系统、光学器件、传感器等,为现代科技和生活带来了极大的便利和发展。

- 1 -。

刻蚀中湿法刻蚀机理

刻蚀中湿法刻蚀机理

刻蚀中湿法刻蚀机理刻蚀⽅法分为:⼲法刻蚀和湿法刻蚀,湿法刻蚀是将被刻蚀材料浸泡在腐蚀液内进⾏腐蚀的技术,这是各向同性的刻蚀⽅法,利⽤化学反应过程去除待刻蚀区域的薄膜材料,通常SiO2采⽤湿法刻蚀技术,有时⾦属铝也采⽤湿法刻蚀技术,国内的苏州华林科纳在湿法这块做得⽐较好。

下⾯分别介绍各种薄膜的腐蚀⽅法流程:⼆氧化硅腐蚀:在⼆氧化硅硅⽚腐蚀机中进⾏,国内⽬前腐蚀机做的⽐较好的有苏州华林科纳,腐蚀液是由HF、NH4F、与H2O按⼀定⽐例配成的缓冲溶液。

腐蚀温度⼀定时,腐蚀速率取决于腐蚀液的配⽐和SiO2掺杂情况。

掺磷浓度越⾼,腐蚀越快,掺硼则相反。

SiO2腐蚀速率对温度最敏感,温度越⾼,腐蚀越快。

具体步骤为:1、华林科纳设备⼯程师认为将装有待腐蚀硅⽚的⽚架放⼊浸润剂(FUJI FILM DRIWEL)中浸泡10—15S,上下晃动,浸润剂(FUJI FILM DRIWEL)的作⽤是减⼩硅⽚的表⾯张⼒,使得腐蚀液更容易和⼆氧化硅层接触,从⽽达到充分腐蚀;2、将⽚架放⼊装有⼆氧化硅腐蚀液(氟化铵溶液)的槽中浸泡,上下晃动⽚架使得⼆氧化硅腐蚀更充分,腐蚀时间可以调整,直到⼆氧化硅腐蚀⼲净为⽌;3、冲纯⽔;4、甩⼲。

⼆氧化硅腐蚀机理为:H2SiF6(六氟硅酸)是可溶于⽔的络合物,利⽤这个性质可以很容易通过光刻⼯艺实现选择性腐蚀⼆氧化硅。

为了获得稳定的腐蚀速率,腐蚀⼆氧化硅的腐蚀液⼀般⽤HF、NH4F与纯⽔按⼀定⽐例配成缓冲液。

由于基区的氧化层较发射区的厚,以前⼩功率三极管的三次光刻(引线孔光刻)⼀般基极光刻和发射极光刻分步光刻,现在⼤部分都改为⼀步光刻,只有少部分品种还分步光刻,⽐如2XN003,2XN004,2XN013,2XP013等。

但是由于基区的氧化层⼀般⽐发射区的厚,所以刻蚀时容易发⽣氧化区的侵蚀。

⼆氧化硅腐蚀后检查:1、窗⼝内⽆残留SiO2(去胶重新光刻);2、窗⼝内⽆氧化物⼩岛(去胶重新光刻);3、窗⼝边缘⽆过腐蚀(去胶重新光刻);4、窗⼝内⽆染⾊现象(报废);5、氧化膜⽆腐蚀针孔(去胶重新光刻);6、氧化膜⽆划伤等(去胶重新光刻)。

硅片腐蚀和抛光工艺的化学原理

硅片腐蚀和抛光工艺的化学原理

硅片腐蚀和抛光工艺的化学原理在半导体材料硅的表面清洁处理,硅片机械加工后表面损伤层的去除、直接键合硅片的减薄、硅中缺陷的化学腐蚀等方面要用到硅的化学腐蚀过程。

一、硅片腐蚀工艺的化学原理硅表面的化学腐蚀一般采用湿法腐蚀,硅表面腐蚀形成随机分布的微小原电池,腐蚀电流较大,一般超过100A/cm2,但是出于对腐蚀液高纯度和减少可能金属离子污染的要求,目前主要使用氢氟酸(HF),硝酸(HNO3)混合的酸性腐蚀液,以及氢氧化钾(KOH)或氢氧化钠(NaOH)等碱性腐蚀液。

现在主要用的是HNO3-HF 腐蚀液和NaOH 腐蚀液。

下面分别介绍这两种腐蚀液的腐蚀化学原理和基本规律。

1.HNO3-HF 腐蚀液及腐蚀原理通常情况下,硅的腐蚀液包括氧化剂(如HNO3)和络合剂(如HF)两部分。

其配置为:浓度为70%的HNO3和浓度为50%的HF 以体积比10~2:1,有关的化学反应如下:3Si+4HNO3=3SiO2↓+2H2O+4NO↑硅被氧化后形成一层致密的二氧化硅薄膜,不溶于水和硝酸,但能溶于氢氟酸,这样腐蚀过程连续不断地进行。

有关的化学反应如下:SiO2+6HF=H2[SiF6]+2H2O2.NaOH 腐蚀液在氢氧化钠化学腐蚀时,采用10%~30%的氢氧化钠水溶液,温度为 80~90℃,将硅片浸入腐蚀液中,腐蚀的化学方程式为Si+H2O+2 NaOH =Na2SiO3+2H2↑对于太阳电池所用的硅片化学腐蚀,从成本控制,环境保护和操作方便等因素出发,一般用氢氧化钠腐蚀液腐蚀深度要超过硅片机械损伤层的厚度,约为20~30um。

二、抛光工艺的化学原理抛光分为两种:机械抛光和化学抛光,机械抛光速度慢,成本高,而且容易产生有晶体缺陷的表面。

现在一般采用化学-机械抛光工艺,例如铜离子抛光、铬离子抛光和二氧化硅-氢氧化钠抛光等。

1. 铜离子抛光铜离子抛光液由氯化铜、氟化铵和水,一般以质量比60:26:1000 组成,调节PH=5.8 左右,或者以质量比80:102.8:1000,其反应原理如下:Si+2CuCl2+6NH4F=(NH4)2[SiF6]+4NH4Cl+2Cu铜离子抛光一般在酸性(pH 为5~6)条件下进行,当pH﹥7 时,反应终止,这是因为pH=7 时铜离子与氨分子生成了稳定的络合物-铜氨络离子,这时铜离子大大减少,抛光作用停止了。

41-刘奎-硅湿法腐蚀工艺的研究现状及展望课件

41-刘奎-硅湿法腐蚀工艺的研究现状及展望课件

大连理工大学研究生试卷系别:机械制造及其自动化课程名称:微制造与微机械电子系统学号:21504029姓名:刘奎考试时间:2016年1 月11 日类别标准分数实得分数平时成绩10作业成绩90总分100授课教师刘冲签字硅湿法腐蚀工艺的研究现状及展望刘奎(机械工程学院模具研究所大连理工大学大连 116024)摘要:本文分析了MEMS工艺中常用的一种工艺,即湿法腐蚀技术。

重点研究了湿法腐蚀技术的两种方法:各向同性腐蚀与各向异性腐蚀。

并且分别了这两种方法的腐蚀机理,以及湿法腐蚀的工艺过程。

然后,介绍了湿法腐蚀技术的国内国外研究现状,并提出了发展展望。

关键词:MEMS 湿法腐蚀各向同性各向异性研究现状The Research Status and Perspective of Wet Etching Process ofSiliconLIU Kui(Institute of dies,Dalian University of Technology,Dalian 116024)Abstract:In this paper,a commonly used technology in the field of MEMS is analyzed ,namely wet etching technique. And the analysis focuses on the two wet etching methods:isotropic wet etching and anisotropic wet etching. Simultaneously,the principles of the two wet etching technique are described,as well as the procedure of the process. Then, some research status and development perspective both home and abroad is demonstrated.Key words:MEMS wet etching isotropic anisotropic research status1引言随着现代科学技术的快速发展,许多机械电子相关的产品设计与结构设计,越来越趋向轻量化,小型化,精密化,功能多样复杂化,产品设计集成度越来越高,性能越来越强大。

湿法腐蚀

湿法腐蚀

比如阳极自停止腐蚀pn结自停止腐蚀异自停止腐蚀重掺杂自停止腐蚀无电极自停止腐蚀还有利用光电效应实现自停止腐蚀等等
湿法腐蚀是将与腐蚀的硅片置入具有确定化学成分和固定温度 的腐蚀液体里进行的腐蚀。硅的各向同性腐蚀是在硅的各个腐 蚀方向上的腐蚀速度相等。比如化学抛光等等。常用的腐蚀液 是HF-HNO3腐蚀系统,一般在HF和HNO3中加H2O或者 CH3COOH。与H2O相比,CH3COOH可以在更广泛的范围 内稀释而保持HNO3的氧化能力,因此腐蚀液的氧化能力在使 用期内相当稳定。硅的各向异性腐蚀,是指对硅的不同晶面具 有不同的腐蚀速率。比如, {100}/{111}面的腐蚀速率比为 100:1。基于这种腐蚀特性,可在硅衬底上加工出各种各样 的微结构。各向异性腐蚀剂一般分为两类,一类是有机腐蚀剂, 包括EPW(乙二胺,邻苯二酸和水)和联胺等。另一类是无 机腐蚀剂,包括碱性腐蚀液,如:KOH,NaOH,LiOH, CsOH和NH4OH等。 在硅的微结构的腐蚀中,不仅可以利用各向异性腐蚀技术 控制理想的几何形状,而且还可以采用自停止技术来控制腐蚀 的深度。比如阳极自停止腐蚀、PN结自停止腐蚀、异质自停 止腐蚀、重掺杂自停止腐蚀、无电极自停止腐蚀还有利用光电 效应实现自停止腐蚀等等。

湿法腐蚀工艺研究综述

湿法腐蚀工艺研究综述

湿法腐蚀工艺研究综述硅湿法腐蚀工艺的研究现状摘要:随着MEMS技术的发展,通过光刻胶或硬掩膜窗口进行的湿法腐蚀工艺在MEMS器件制造的许多工艺过程中有大量的应用,本文介绍了湿法腐蚀工艺的发展历程,研究现状,以及未来的发展趋势,将湿法腐蚀工艺与干法腐蚀工艺进行对比,得出湿法腐蚀工艺的优缺点。

重点阐述了湿法腐蚀工艺的工艺过程,简单介绍了湿法腐蚀工艺在工业领域的一些应用。

关键词:MEMS 光刻胶湿法腐蚀工艺过程ResearchStatus ofWetEtching Technology onSiliconAbstract:Withthe development of Micro-Electr o-Mechanical System(MEMS) technology,Wet Etching technologywith photoresist orhardmask window has alarge number ofapplications inthe fabrication ofM EMS devices.This article describes the development processof wetetching process,as wellas theresearch status andfuture trends,comparing the Wet E tching processanddryetching process,we get the advantagesand disadvantages of Wet Etching.Thisarticlewill focuseson the process of Wet Etching,abrief introduction to some appli cations ofthe wet etch ingprocess in theindustrial field.Keywords:MEMS Photoresist WetEtchingProcess0前言在制造领域,人们对机械加工的的要求越来越高,工件尺寸越来越小,精度越来越高,功能却越来越多,这些要求促进了很多先进制造技术的产生,MEMS技术就是在这样的背景下产生的,MEMS,其实就是是微机电系统——Micro-Electro-Mechanical Systems的缩写,它可以批量制作,是集微型机构、传感器和执行器以及控制电路、直至接口、通信和电源等电子设备于一体的微型器件或系统[1]。

硅的腐蚀

硅的腐蚀

A world’s Leading Vertically-integrated PV Manufacturer

17
HF-HNO3腐蚀速度的分析 HF-HNO3腐蚀速度的分析 当硝酸过量时,氢氟酸少量的变化能明显改变 硅片的腐蚀速度。反应过程中硅片表面始终 覆盖着氧化膜,即使硝酸浓度有少量变化, 仍有足量的硝酸氧化硅表面,硝酸含量的减 小只能使氧化膜变得纤细。硅片腐蚀速度决 定于HF酸与氧化膜的接触速率即氢氟酸从溶 液中扩散到硅片表面的速率决定。
HF-HNO3体系中酸腐蚀的机理 HF-HNO3体系中酸腐蚀的机理
第二步氧化物的溶解过程
HF-HNO3体系中酸腐蚀的机理 HF-HNO3体系中酸腐蚀的机理
硅在体系中反应的总公式:
A world’s Leading Vertically-integrated PV Manufacturer


14
HF-HNO3腐蚀速度的分析 HF-HNO3腐蚀速度的分析
A world’s Leading Vertically-integrated PV Manufacturer

15
HF-HNO3腐蚀速度的分析 HF-HNO3腐蚀速度的分析
A world’s Leading Vertically-integrated PV Manufacturer

18
各种反应条件对腐蚀反应的影响 1、添加剂的影响 a、常用的添加剂是水和冰醋酸,二者 主要是稀释反应物质浓度。水的加入主 要降低了硝酸的浓度,从而减小了酸液 对硅片的氧化能力。当用冰醋酸做稀释 剂时,降低了硝酸的电离度,降低了反 应速度。

10
HF-HNO3体系中酸腐蚀的机理 HF-HNO3体系中酸腐蚀的机理

6(湿法腐蚀3)

6(湿法腐蚀3)

湿法腐蚀工艺
装置:
工作电极(WE): 接硅
辅助电极(CE): 腐蚀液中(Pt)
参考电极(RE): 测硅的电势,
(SCE饱和甘汞电极)
I—V曲线反应了不 同材料、导电类型 的普遍特征(Vocp: 开路电势;Vpp: 钝化势)
西安励德微系统科技有限公司
湿法腐蚀工艺
电钝化腐蚀机制:腐蚀反应分三个区
影响阳极腐蚀的因素:掺杂浓度、电压、HF浓度
掺杂:P型:随浓度降低略有下降
N型:小于2X1016cm-3—速率 很小
大于3X1018cm-3—与P型类 似
中间浓度:速率慢,表 面棕色(多孔硅)
•电化学抛光区 •多孔硅区 西安励德•微不系腐统科蚀技有区限公司

腐蚀速率与掺杂浓度关系 (10V,5%HF)
P-多孔硅孔隙网络较密,直径2~5nm P+直径较大,4~20nm N+随厚度增加,孔隙直径变大,孔隙度增大 N直径6nm~1微米
西安励德微系统科技有限公司
湿法腐蚀工艺
自停止腐蚀技术:浓硼掺杂、阳极腐蚀、电钝化
浓硼掺杂自停止腐蚀技术:KOH、EPW腐蚀,在掺杂浓度小 于阈值时,腐蚀速率为常数,大于阈值时,腐蚀速率急剧 降低—重掺杂导致腐蚀停止。
西安励德微系统科技有限公司
湿法腐蚀工艺
两极系统的缺点 N型外延层对腐蚀液电位难于精确控制,影响N层厚度均匀 性。需增加参考电极(RE)—三极系统 但P型区电位由于缺陷等原因导致短路,引起边界电流,钝 化P区。 即使理想的PN结也会因双极效应使腐蚀停在离PN结界面几 微米处
西安励德微系统科技有限公司
湿法腐蚀工艺
四电极系统—精度可到0.2微米
•适当恒压源加 在衬底,使腐 蚀电势处于P区 的Vocp附近 •Ve使PN结反 偏,外延层电 位略大于N区的 钝化势Vpp

硅的湿法腐蚀

硅的湿法腐蚀

硅的湿法腐蚀技术1 湿法腐蚀简介1.1 湿法腐蚀的历史与研究现状湿法腐蚀技术的历史可以追溯到15 世纪末或16 世纪初,人们以蜡作掩膜,用酸在盔甲上腐蚀出装饰图形。

而各向同性腐蚀是20 世纪50 年代开发的一项半导体加工技术。

各向异性湿法腐蚀技术可以追溯到20 世纪60年代中期,那时贝尔实验室用KOH、水和乙醇溶液进行硅的各向异性湿法腐蚀,后来改用KOH 和水的混合溶液[1]。

湿法腐蚀是使用液态腐蚀剂系统化的有目的性的移除材料,在光刻掩膜涂覆后(一个曝光和显影过的光刻胶)或者一个硬掩膜(一个光刻过的抗腐蚀材料)后紧接该步腐蚀。

这个腐蚀步骤之后,通常采用去离子水漂洗和随后的掩膜材料的移除工艺。

国外对硅的湿法腐蚀的研究起步较早,已取得相当多的研究成果。

国外对硅的湿法腐蚀的研究主要集中于腐蚀剂、腐蚀剂浓度、添加剂、温度、腐蚀时间等因素对腐蚀速率、腐蚀选择性、粗糙度等结果的影响。

1.2 湿法腐蚀的分类湿法化学腐蚀是最早用于微机械结构制造的加工方法。

所谓湿法腐蚀,就是将晶片置于液态的化学腐蚀液中进行腐蚀,在腐蚀过程中,腐蚀液将把它所接触的材料通过化学反应逐步浸蚀溶掉。

用于化学腐蚀的试剂很多,有酸性腐蚀剂,碱性腐蚀剂以及有机腐蚀剂等。

根据所选择的腐蚀剂,又可分为各向同性腐蚀和各向异性腐蚀剂。

各向同性腐蚀是指硅的不同方向的腐蚀速率相同。

各向异性腐蚀则是指硅的不同晶向具有不同的腐蚀速率,也即腐蚀速率与单晶硅的晶向密切相关。

图1.1给出了各向同性腐蚀和各向异性腐蚀的截面示意图[2]。

硅的各向同性腐蚀液对硅片的所有晶面都有着相近的腐蚀速率,并且腐蚀速率通常都相当大。

各向同性腐蚀的试剂很多,包各种盐类(如CN基、NH 基等)和酸,但是由于受到能否获得高纯试剂,以及希望避免金属离子的玷污这两个因素的限制,因此广泛采用HF—HNO3腐蚀系统。

各向异性湿法腐蚀是指腐蚀剂对某一晶向的腐蚀速率高于其他方向的腐蚀速率。

腐蚀结果的形貌由腐蚀速率最慢的晶面决定。

硅刻蚀

硅刻蚀

硅刻蚀技术简介在半导体制程中,单晶硅与多晶硅的刻蚀通常包括湿法刻蚀和干法刻蚀,两种方法各有优劣,各有特点。

湿法刻蚀即利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光刻胶掩膜覆盖的部分,而达到刻蚀的目的。

因为湿法刻蚀是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿法刻蚀过程为等向性。

湿法刻蚀过程可分为三个步骤:1) 化学刻蚀液扩散至待刻蚀材料之表面;2) 刻蚀液与待刻蚀材料发生化学反应; 3) 反应后之产物从刻蚀材料之表面扩散至溶液中,并随溶液排出。

湿法刻蚀之所以在微电子制作过程中被广泛的采用乃由于其具有低成本、高可靠性、高产能及优越的刻蚀选择比等优点。

但相对于干法刻蚀,除了无法定义较细的线宽外,湿法刻蚀仍有以下的缺点:1) 需花费较高成本的反应溶液及去离子水;2) 化学药品处理时人员所遭遇的安全问题;3) 光刻胶掩膜附着性问题;4) 气泡形成及化学腐蚀液无法完全与晶片表面接触所造成的不完全及不均匀的刻蚀。

基于以上种种原因,这里就以下三个方面着重介绍下干法刻蚀。

1、硅等离子体刻蚀工艺的基本原理干法刻蚀是利用射频电源使反应气体生成反应活性高的离子和电子,对硅片进行物理轰击及化学反应,以选择性的去除我们需要去除的区域。

被刻蚀的物质变成挥发性的气体,经抽气系统抽离,最后按照设计图形要求刻蚀出我们需要实现的深度。

干法刻蚀可以实现各向异性,垂直方向的刻蚀速率远大于侧向的。

其原理如图所示,生成CF基的聚合物以进行侧壁掩护,以实现各向异性刻蚀。

刻蚀过程一般来说包含物理溅射性刻蚀和化学反应性刻蚀。

对于物理溅射性刻蚀就是利用辉光放电,将气体解离成带正电的离子,再利用偏压将离子加速,溅击在被蚀刻物的表面,而将被蚀刻物质原子击出(各向异性)。

对于化学反应性刻蚀则是产生化学活性极强的原(分)子团,此原(分)子团扩散至待刻蚀物质的表面,并与待刻蚀物质反应产生挥发性的反应生成物(各向同性),并被真空设备抽离反应腔。

硅的湿法化学腐蚀机理

硅的湿法化学腐蚀机理

第34卷 第2期 半 导 体 情 报 V o l134,N o12 1997年4月 SE M I CONDU CTOR I N FORM A T I ON A p r11997硅的湿法化学腐蚀机理摘要 我们从晶体生长学的观点评述了单晶的湿法化学腐蚀。

出发点是晶体存在光滑表面和粗糙表面。

光滑表面的动力学是由粗糙表面所缺乏的成核势垒控制,所以后者腐蚀速率要快几个数量级。

对金刚石晶体结构的分析表明,在此晶格中(111)面是唯一的光滑表面,其它面只不过由于表面重构有可能是光滑的。

这样,我们解释了〈001〉方向在KO H∶H2O中的最小腐蚀速率。

关于接近〈001〉方向具有最小腐蚀速率时的腐蚀状态和在H F∶HNO3基溶液中从各向同性腐蚀向各向异性腐蚀转换的两个关键假设,都用实验进行了检测。

结果与理论一致。

1 引言单晶Si、GaA s和石英的各向异性湿法化学腐蚀是微系统制造的关键技术之一。

然而,在特定腐蚀液(例如:KO H∶H2O、ED P、TM A H)中腐蚀速率强烈的各向异性,以及在其它一些腐蚀液(例如:H F∶HNO3∶H2O)中的各向同性至今很难理解。

腐蚀速率的各向异性大部分与在不同结晶方向上晶体表面的化学反应有关。

在这方面,Seidel等人所提出的[1]也许是最新图象,他们假设了一个O H离子与悬挂键接触时的复杂性,相对于两个O H离子与具有两个主键的Si原子接触的情况来讲,它是以一种不同的方式改变了具有三个主键的Si 原子的主键能量。

但是,难点是Si原子不仅在(111)面,而且在(110)面也有三个主键,所以在这些结晶方向上的腐蚀速率和激活能相对实验证据应是可比的。

最近,有人建议用晶体生长的理论来分析单晶的湿法化学腐蚀数据[2],这样,许多实验结果就能很容易地被理解。

从晶体生长的基本理论可直接得知以下观点:(1)在某溶液中腐蚀速率的各向同性和在其它溶液中的各向异性,能给出决定腐蚀速率是否是各向同性或各向异性的判据,并且该判据与实验结果相当。

硅片清洗原理与方法介绍

硅片清洗原理与方法介绍

硅片清洗原理与方法介绍1引言硅片经过切片、倒角、研磨、表面处理、抛光、外延等不同工序加工后,表面已经受到严重的沾污,清洗的目的就是为了去除硅片表面颗粒、金属离子以及有机物等污染。

2硅片清洗的常用方法与技术在半导体器件生产中,大约有20%的工序和硅片清洗有关,而不同工序的清洗要求和目的也是各不相同的,这就必须采用各种不同的清洗方法和技术手段,以达到清洗的目的。

由于晶盟现有的清洗设备均为Wet-bench类型,因此本文重点对湿法化学清洗的基本原理、常用方法及其它与之密切相关的技术手段等进行论述3.1湿法化学清洗化学清洗是指利用各种化学试剂和有机溶剂与吸附在被清洗物体表面上的杂质及油污发生化学反应或溶解作用,或伴以超声、加热、抽真空等物理措施,使杂质从被清除物体的表面脱附(解吸),然后用大量高纯热、冷去离子水冲洗,从而获得洁净表面的过程。

化学清洗又可分为湿法化学清洗和干法化学清洗,其中湿法化学清洗技术在硅片表面清洗中仍处于主导地位,因此有必要首先对湿法化学清洗及与之相关的技术进行全面的介绍。

3.1.1常用化学试剂、洗液的性质常用化学试剂及洗液的去污能力,对于湿法化学清洗的清洗效率有决定性的影响,根据硅片清洗目的和要求选择适当的试剂和洗液是湿法化学清洗的首要步骤。

表一、用以清除particle、metal、organic、nature-oxide的适当化学液3.1.2溶液浸泡法溶液浸泡法就是通过将要清除的硅片放入溶液中浸泡来达到清除表面污染目的的一种方法,它是湿法化学清洗中最简单也是最常用的一种方法。

它主要是通过溶液与硅片表面的污染杂质在浸泡过程中发生化学反应及溶解作用来达到清除硅片表面污染杂质的目的。

选用不同的溶液来浸泡硅片可以达到清除不同类型表面污染杂质的目的。

如采用有机溶剂浸泡来达到去除有机污染的目的,采用1号液(即SC1,包含H2O2、NH3OH化学试剂以及H2O)浸泡来达到清除有机、无机和金属离子的目的,采用2号液(即SC2,包含HCL、H2O2化学试剂以及H2O)浸泡来达到清除AL、Fe、Na等金属离子的目的。

硅在水溶液中的反应机理

硅在水溶液中的反应机理

硅在水溶液中的反应机理硅在常温下,化学性质十分稳定,但在高温下(300℃以上),硅几乎能与所有物质发生化学反应。

1 单晶硅在酸性条件下的腐蚀:硅常温下不与水、盐酸,硝酸,氢氟酸和王水发生反应。

但很容易与富氧化剂——络合剂发生反应,该腐蚀机理属于电化学腐蚀,与硅原子在晶面的排列无关,所以各晶面的腐蚀速率都相同,称为各向同性腐蚀。

如硅与H2O2 – HF 、HNO3– HF– HAc [1]混酸的反应,HNO3,H2O2为氧化剂,HF 为络合剂。

阳极反应:Si-4e → Si4+ Si4++2H2O → SiO2+4H+阴极反应:HNO3 +2H++ 2e → HNO2SiO2难溶于HNO3,但容易溶于HF,SiO2+6HF → H2SiF6+2H2O2 碱性条件下的硅腐蚀(又称各向异性湿法腐蚀):各向异性湿法腐蚀是指腐蚀剂对某一晶向的腐蚀速率高于其他方向的腐蚀速率。

腐蚀结果的形貌由取决于硅晶体微观结构参数。

常用的化学腐蚀试剂一般分为两类,一类是无机碱腐蚀剂,包括氢氧化钾(KOH)、氢氧化钠(NaOH)等,一般加醇类(如丙醇、异丙醇、丁醇)都能降低腐蚀剂对硅的腐蚀速率,Irena Zubel[2]等学者运用醇羟基的吸附理论做了详尽的解释。

另一类是有机碱腐蚀剂,包括EDP或EPW(乙二胺,邻苯二酚,水)、四甲基氢氧化铵(简称TMAH [(CH3)4OH])和联胺等。

2.1 单晶硅在碱性水溶液的腐蚀原理硅在各种碱性溶液中的化学腐蚀特性比较相似,H2O和OH-在反应过程中起主导作用,而阳离子的作用较次要。

下面简述硅的(100)面在碱性溶液中腐蚀的化学反应过程[3]。

硅的(100)面的悬空键假定为Si—H键。

第一步,OH-侵袭表面的Si—H键,生成Si—OH键并产生一个H2分子。

第二步,另外一个Si—H键也被Si—OH键取代,产生另一个H2分子。

第三步,硅表面存在的Si—OH基团使得硅表面原子的背键(Si—Si键)强度降低。

【半导体抛光】硅片腐蚀和抛光工艺的化学原理

【半导体抛光】硅片腐蚀和抛光工艺的化学原理

在半导体材料硅的表面清洁处理,硅片机械加工后表面损伤层的去除、直接键合硅片的减薄、硅中缺陷的化学腐蚀等方面要用到硅的化学腐蚀过程。

下面讨论硅片腐蚀工艺的化学原理和抛光工艺的化学原理。

一、硅片腐蚀工艺的化学原理硅表面的化学腐蚀一般采用湿法腐蚀,硅表面腐蚀形成随机分布的微小原电池,腐蚀电流较大,一般超过100A/cm2,但是出于对腐蚀液高纯度和减少可能金属离子污染的要求,目前主要使用氢氟酸(HF),硝酸(HNO3)混合的酸性腐蚀液,以及氢氧化钾(KOH)或氢氧化钠(NaOH)等碱性腐蚀液。

现在主要用的是HNO3-HF 腐蚀液和NaOH 腐蚀液。

下面分别介绍这两种腐蚀液的腐蚀化学原理和基本规律。

1.HNO3-HF 腐蚀液及腐蚀原理通常情况下,硅的腐蚀液包括氧化剂(如HNO3)和络合剂(如HF)两部分。

其配置为:浓度为70%的HNO3和浓度为50%的HF 以体积比10~2:1,有关的化学反应如下:3Si+4HNO3=3SiO2↓+2H2O+4NO↑硅被氧化后形成一层致密的二氧化硅薄膜,不溶于水和硝酸,但能溶于氢氟酸,这样腐蚀过程连续不断地进行。

有关的化学反应如下:SiO2+6HF=H2[SiF6]+2H2O12.NaOH 腐蚀液在氢氧化钠化学腐蚀时,采用10%~30%的氢氧化钠水溶液,温度为80~90℃,将硅片浸入腐蚀液中,腐蚀的化学方程式为Si+H2O+2 NaOH =Na2SiO3+2H2↑对于太阳电池所用的硅片化学腐蚀,从成本控制,环境保护和操作方便等因素出发,一般用氢氧化钠腐蚀液腐蚀深度要超过硅片机械损伤层的厚度,约为20~30um。

二、抛光工艺的化学原理抛光分为两种:机械抛光和化学抛光,机械抛光速度慢,成本高,而且容易产生有晶体缺陷的表面。

现在一般采用化学-机械抛光工艺,例如铜离子抛光、铬离子抛光和二氧化硅-氢氧化钠抛光等。

1. 铜离子抛光铜离子抛光液由氯化铜、氟化铵和水,一般以质量比60:26:1000 组成,调节PH=5.8 左右,或者以质量比80:102.8:1000,其反应原理如下:Si+2CuCl2+6NH4F=(NH4)2[SiF6]+4NH4Cl+2Cu铜离子抛光一般在酸性(pH 为5~6)条件下进行,当pH﹥7 时,反应终止,这是因为pH=7 时铜离子与氨分子生成了稳定的络合物-铜氨络离子,这时铜离子大大减2少,抛光作用停止了。

单晶硅各向异性湿法腐蚀机理的研究进展

单晶硅各向异性湿法腐蚀机理的研究进展

化 工 纵 横《Co mment s &Review s in C 1I 1》单晶硅各向异性湿法腐蚀机理的研究进展王 涓 孙岳明 黄庆安3 周再发3(东南大学化学化工系,江苏南京210096;3东南大学ME MS 重点实验室,江苏南京210096)摘要 介绍了硅各向异性腐蚀的含义、特点、用途以及常用的腐蚀剂等基本要素;着重论述了试图解释硅各向异性腐蚀行为的几种典型机理,并在此基础上对各腐蚀机理做了简要分析。

关键词 硅 各向异性 湿法腐蚀收稿日期:2004-04-27作者简介:王涓(1980~),女,研究生。

孙岳明(1965~),男,教授,博导,从事配合物的能带结构,催化机理等方面的研究工作。

R esearch Development on Wet Anisotropic E tchingMechanism of Crystal SiliconWang Juan 1 Sun Y ueming 1 Huang Qingan 2 Zhou Z aifa 2(1Depatment of Chemistry and Chemical Engineering ,S outheast University ,nanjing 210096,China ;2Microelectronic Center ,S outheast University ,nanjing 210096,China )Abstract The meanings ,characteristics ,purposes of the anis otropic etching of silcon and frequently used etchants etc.are introduced.And especially the explanations of anis otropic etching mechanisms of crystal silicon are em phasized on.Then a survey of the analysis on the etching mechanisms refered is made.K ey w ords silicon anis otropy wet etching 硅腐蚀技术是硅微机械(Micromachining )加工中最基础、最关键的技术[1],它通常有两种:干法腐蚀和湿法腐蚀。

湿法腐蚀硅制作PDMS微流控芯片

湿法腐蚀硅制作PDMS微流控芯片

湿法腐蚀硅制作PDMS微流控芯片湿法腐蚀硅(Wet Etching Silicon)是一种常见的制作PDMS微流控芯片的方法。

PDMS微流控芯片是一种用于生物、化学和医学领域的微流控设备,它可以实现样品的分离、混合、传输和检测等功能。

本文将介绍湿法腐蚀硅制作PDMS微流控芯片的原理、步骤和优缺点。

湿法腐蚀硅是一种利用化学反应来去除硅表面的方法。

它基于硅与一种或多种酸性或碱性溶液之间的化学反应,通过这种反应来腐蚀掉硅表面的一部分,从而形成所需的结构。

湿法腐蚀硅可以实现微米级别的结构加工,并且可以控制结构的形状和尺寸。

制作PDMS微流控芯片的步骤如下:1.硅片准备:首先,需要准备一块晶圆硅片作为芯片的基材。

硅片的表面应该光滑而无缺陷。

2.光刻处理:将要制作的结构图案通过光刻技术转移到硅片的表面。

这一步骤主要包括:涂覆光刻胶,软烘干,光刻胶曝光,显影等操作。

3.腐蚀处理:将经过光刻处理的硅片放入腐蚀液中进行腐蚀。

不同的腐蚀液可以实现不同的效果。

腐蚀的时间、温度和腐蚀液的浓度可以控制腐蚀的速率和深度。

4.清洗和干燥:腐蚀后,需要将芯片用去离子水清洗干净,去除其中的腐蚀液和杂质。

然后,将芯片在干燥箱中加热干燥。

5.PDMS制备:将PDMS预聚物和交联剂按一定比例混合,并在真空中除气。

混合好的PDMS溶液倒入模具中,使其均匀分布。

6.PDMS表面处理:在PDMS溶液倒入模具前,可以对模具进行表面处理,例如硅化处理,以增加PDMS与模具之间的附着力。

7.PDMS硬化与剥离:将装有PDMS溶液的模具放入高温烘箱中,以使PDMS发生硬化反应。

然后,将PDMS从模具上剥离下来,得到PDMS微流控芯片。

优点:1.制作过程简单:湿法腐蚀硅制作PDMS微流控芯片的步骤相对简单,需要的设备和材料较为常见和易得。

2.结构精度高:湿法腐蚀硅可以实现微米级别的结构加工,可以控制结构的形状和尺寸。

3.成本低廉:湿法腐蚀硅制作PDMS微流控芯片的成本相对较低,不需要昂贵的设备和材料。

第六讲 湿法腐蚀

第六讲 湿法腐蚀
腐蚀速率由hno3浓度控制开始阶段困难易变在一定周期内硅表面缓慢生长氧化层腐蚀受氧化还原反应控制趋于依赖晶向腐蚀速率受hf溶解形成的sio2的速率控制反应有自钝化特点表面覆盖sio23050a基本限制来自去除硅的复合物腐蚀各向同性抛光作用真空干燥又名解析干燥是一种将物料置于负压条件下并适当通过加热达到负压状态下的沸点或着通过降温使得物料凝固后通过溶点来干燥物料的干燥方式
Polycrystalline Si Single-Crystal Si (SOI)
Dielectric
Dielectric
Silicon Etching (Anisotropic)
KOH EPW TMAH
EDP/EPW湿法腐蚀系统
EPW腐蚀系统:乙二胺(NH2(CH2)2NH2) E 邻苯二酚(C6H2(OH)2) P 水 W
outline
Si --Anisotropic ----KOH, TMAH, EPW --Isotropic ----HNA SiO2-Glass, PSG --Isotropic ----HF, BHF Si3N4 --Isotropic ----Boiled H3PO4 Example
Etching stop method?
Etch Stops
Often, it is required that one etch a region of silicon and stop on a well defined “etch-stop” that then stops the etch abruptly. There are several etch stop techniques, including concentration-dependent, electrochemical, and dielectric. These etch stops allow one to control the thickness of a microstructure accurately (<1m), and have very uniform and reproducible characteristics

3.湿法刻蚀详解

3.湿法刻蚀详解

工艺准备: 1、工装工具准备: 备齐用于工艺生产的PVC手套、口罩、防护眼罩、防 护面罩、防护套袖、防护服、防酸碱手套、防酸碱胶 鞋等。 2、设备准备: 确认设备能正常运行,DI水、压缩空气等压力及流量 正常。确认设定的刻蚀工艺,碱洗工艺和HF腐蚀工 艺名称及参数。 3、工艺洁净管理:穿好净化服,戴口罩,操作时戴 洁净PVC手套。 4、原材料准备: 观察外观是否正常。常见的不合格片包括含缺角、裂 纹、手印、孔洞的硅片等。
工艺原理: Rena Inoxide刻蚀工艺主要包括三部分: 硫酸、硝酸、氢氟酸 氢氧化钾 氢氟酸 本工艺过程中,硝酸将硅片背面和边缘氧化,形成二 氧化硅,氢氟酸与二氧化硅反应生成络合物六氟硅酸, 从而达到刻蚀的目的。 刻蚀之后经过KOH溶液去除硅片表面的多孔硅,并将 从刻蚀槽中携带的未冲洗干净的酸除去。 最后利用HF酸将硅片正面的磷硅玻璃去除。并用DI水 冲洗硅片,最后用压缩空气将硅片表面吹干。
注意事项 (1)生产中的操作必须带手套,佩带口罩,并经常 更换手套,保证生产的清洁。 (2)要随时注意硅片在设备内的传输状况,以免发 生大量卡片现象。如在腐蚀槽发生卡片,可用耐酸 工具对其进行疏导。情况严重时要立即进行Drain Bath操作,将酸液排到TANK中,穿好整套防护装备, 手动取出卡片。 (3)除设备维护,更换药液,使用DI-水喷枪时, 严禁将水流入药液槽。 (4)工艺过程中:定时检查设备运行情况,传输速 度、气体流量等参数以及各槽液位情况。 (5)完工后详细填写完工转交单,要求字迹工整、 各处信息准确无误,与硅片一同转入PECVD工序。 表面合格的硅片才可转入下工序。
湿法刻蚀
工艺目的:通过化学反应腐蚀掉硅片背面及四 周的PN结,以达到正面和背面绝缘的目的,同 时去除正面的磷硅玻璃层。 工艺材料:合格的多晶硅片(扩散后)、 H2SO4(98%,电子级)、HF(40%,电子 级)、KOH(50%,电子级)、HNO3(65%, 电子级)、DI水(大于15 MΩ·cm)、压缩空气 (6 bar,除油,除水,除粉尘)、冷却水(4 bar)等。

太阳能电池湿法刻蚀工艺的技术探讨

太阳能电池湿法刻蚀工艺的技术探讨

一、概述太阳能电池作为一种清洁、可再生的能源产品,已经在全球范围内得到了广泛的应用。

太阳能电池的生产过程中,刻蚀工艺是其中的重要环节之一。

湿法刻蚀是太阳能电池刻蚀工艺中的一种重要手段,它通过化学溶液对硅片表面进行分子级的刻蚀,以提高太阳能电池的电池效率。

本文将就太阳能电池湿法刻蚀工艺的技术探讨进行详细阐述。

二、湿法刻蚀工艺的原理1. 刻蚀原理湿法刻蚀是利用化学溶液对硅片表面进行腐蚀,从而达到去除不需要的部分、形成想要的结构或形貌的目的。

在太阳能电池生产中,主要是通过湿法刻蚀来去除硅片表面的氧化层和局部受损区域,以提高硅片的电池转换效率。

2. 刻蚀液的选择刻蚀液的选择在湿法刻蚀工艺中起着至关重要的作用。

一般来说,常用的刻蚀液包括氢氟酸(HF)、硝酸(HNO3)、硝酸铜(Cu(NO3)2)、氢氧化钠(NaOH)等。

不同的刻蚀液有着不同的特性和刻蚀效果,需要根据具体的生产需求来选择合适的刻蚀液。

三、湿法刻蚀工艺的优缺点1. 优点(1)刻蚀速度快:湿法刻蚀工艺可以在较短的时间内完成对硅片的刻蚀,从而提高了生产效率;(2)成本低廉:相对于干法等其他刻蚀工艺,湿法刻蚀具有成本较低的优势;(3)刻蚀均匀性好:湿法刻蚀可以实现对硅片表面的均匀刻蚀,从而确保了生产出的太阳能电池具有较高的电池转换效率。

2. 缺点(1)刻蚀液处理难度大:湿法刻蚀所产生的废液需要进行严格的处理,以防止对环境造成污染;(2)刻蚀过程中对设备要求高:湿法刻蚀的具体过程中需要严格控制温度、浓度等参数,对设备的要求较高。

四、湿法刻蚀工艺的应用领域目前,湿法刻蚀工艺在太阳能电池的生产中得到了广泛应用。

湿法刻蚀工艺也逐渐应用于半导体器件、集成电路等领域。

五、湿法刻蚀工艺的发展趋势1. 环保化随着社会对环保要求的提高,湿法刻蚀工艺的发展趋势将更加倾向于环保化。

研究和开发更加环保的刻蚀液,减少废液的排放,将成为湿法刻蚀工艺未来的发展方向。

2. 自动化在硅片刻蚀过程中,自动化设备的应用将成为未来湿法刻蚀工艺的趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第34卷 第2期 半 导 体 情 报 V o l134,N o12 1997年4月 SE M I CONDU CTOR I N FORM A T I ON A p r11997硅的湿法化学腐蚀机理摘要 我们从晶体生长学的观点评述了单晶的湿法化学腐蚀。

出发点是晶体存在光滑表面和粗糙表面。

光滑表面的动力学是由粗糙表面所缺乏的成核势垒控制,所以后者腐蚀速率要快几个数量级。

对金刚石晶体结构的分析表明,在此晶格中(111)面是唯一的光滑表面,其它面只不过由于表面重构有可能是光滑的。

这样,我们解释了〈001〉方向在KO H∶H2O中的最小腐蚀速率。

关于接近〈001〉方向具有最小腐蚀速率时的腐蚀状态和在H F∶HNO3基溶液中从各向同性腐蚀向各向异性腐蚀转换的两个关键假设,都用实验进行了检测。

结果与理论一致。

1 引言单晶Si、GaA s和石英的各向异性湿法化学腐蚀是微系统制造的关键技术之一。

然而,在特定腐蚀液(例如:KO H∶H2O、ED P、TM A H)中腐蚀速率强烈的各向异性,以及在其它一些腐蚀液(例如:H F∶HNO3∶H2O)中的各向同性至今很难理解。

腐蚀速率的各向异性大部分与在不同结晶方向上晶体表面的化学反应有关。

在这方面,Seidel等人所提出的[1]也许是最新图象,他们假设了一个O H离子与悬挂键接触时的复杂性,相对于两个O H离子与具有两个主键的Si原子接触的情况来讲,它是以一种不同的方式改变了具有三个主键的Si 原子的主键能量。

但是,难点是Si原子不仅在(111)面,而且在(110)面也有三个主键,所以在这些结晶方向上的腐蚀速率和激活能相对实验证据应是可比的。

最近,有人建议用晶体生长的理论来分析单晶的湿法化学腐蚀数据[2],这样,许多实验结果就能很容易地被理解。

从晶体生长的基本理论可直接得知以下观点:(1)在某溶液中腐蚀速率的各向同性和在其它溶液中的各向异性,能给出决定腐蚀速率是否是各向同性或各向异性的判据,并且该判据与实验结果相当。

(2)与最小腐蚀速率(和生长速率)有关的结晶方向。

(3)腐蚀速率的各向异性的程度。

(4)腐蚀速率的温度关系的各向异性(激活能)。

(5)晶体的平衡形式(由表面自由能,即表面张力决定)与腐蚀速率的各向异性的关系。

(6)最小腐蚀速率的状态,即腐蚀速率随取向偏差趋于最小时的函数而变化。

本文中我们补充了许多新的实验结果支持上述观点。

特别是,我们仔细研究了晶向接近〈100〉时Si在KO H中的腐蚀速率的相关性。

并研究了Si在H F∶HNO3∶CH3∶COO H中腐蚀时向各向异性腐蚀的转换。

在本文的后部分,我们从晶体生长的观点出发,简单回顾了湿法化学腐蚀,然后描述了实验及其结果,最后是讨论和结论。

2 理论在晶体生长动力学中,仅应格点对生长和溶解起着关键作用。

这些反应格点是与晶体和液体(或气体)连接的键数目相同的原子,这样一个格点叫作一个K ink 位。

在简单的立方晶格中,K ink 位上的原子如图1(a )所示。

深图1 K ink 位和晶体腐蚀(从(a )到(c ))与生长(从(c )到(a ))的基本动力学过程示意图阴影的原子与晶体之间有3个键,与液体之间有3个键。

在溶解情况下,通常认为这个原子将扩散过表面(如图1(b )),直到它又发现一个K ink 位或者从液相的晶体解除吸附,扩散出去(如图1(c )所示)。

在生长情况下,原子从液体扩散到晶体(图1(c )),它扩散过晶体表面(图1(b )),直到它被解除吸附或者发现一个K ink 位(图1(a ))。

这样,动力学速率(对于生长和溶解)主要取决于晶体表面K ink 位的数量。

在讨论单晶如Si 、石英、GaA s 的腐蚀速率时,这方面一直被忽略掉,整个过程仅考虑了几个部分:化学反应速率(对于吸附过程和K ink 位积累过程,这是很重要的,过去一直错误地认为是各向异性)在液体中的扩散(各向同性)和临界层的厚度。

我们认为最重要的各向异性效应是由K ink 的数量造成的。

K ink 位的数量随结晶取向的不同以惊人的方式变化,这是很容易理解的,在金刚石晶格中,完整的(111)面没有K ink 位(3个主键,每个原子有一个悬挂键),但在Si 的(001)面上,每个原子有两个主键和两个悬挂键——每个位置是一个K ink 位。

考虑图2中描述的两个位置的能量差异,在图2(a )中Si (111)面是简单地沿(111)面解理获得的,悬挂键用亮点表示。

在图2(b )中,我们去掉表面的一个原子,并把它放回晶体表面的其它位置。

在这个过程中必须切断强度为Υ的3个键,而把原子放回表面又建立一个键。

所以总的能量差为∃E =2Υ。

在图3中可以看出,Si 的(001)面上情形则完全不同。

相同的过程——产生一个吸附原子2空位对——不消耗能量,因为从(001)面上移走一个原子,必须切断两个键,而把它放回该面的任何位置时,又得到两个键。

图3 在金刚石晶格的未再构的(001)面上产生一个空位2吸附原子对所需的能量,∃E =0能量差∃E 除以kT (绝对温度乘以波尔兹曼常数)是Jack son 所用的Α因子[3],它在晶体生长理论中起关键作用。

在足够低的温度下,kT Α与产生或消除台阶的自由能Χ成正比。

Si 的(111)和(001)面之间的根本差异是:在平衡状态下,(111)面在足够低的温度时是平滑的,(001)面是粗糙的,产生或消除台阶的自由能Χ在Si 的(111)面上是有限的,在Si 的(001)面上是零。

空位2吸附原子对的数量与exp (2Α)成正比。

在低温下,该数量在Si 的(111)面上是非常小的,但是在Si 的(001)面上任何温度下都是1。

Si 的(110)面就是所谓的台阶面[4],该表面是由(110)方向上的原子链组成,这些链之间没有横向连接。

有可能拿走一个链,并把它放回该表面的其它位置而不做功。

所以(110)面是粗糙的[4]。

光滑和粗糙晶面之间在温度T R下存在一个相的转变,高于该温度时Χ消失[5]。

对于简单系统,这是一个连接相转变的过程。

ΑR=∃% kT R仅决定于晶面的对称性。

假如不存在表面再构,则在金刚石晶格中,仅在(111)面上有一个限定的ΑR(≈4),而其它面上ΑR都是无限的[6,7](包括(100)和(110)面)。

不管怎样,表面再构是很重要的,这将在下面谈到。

晶体仅在非平衡状态下溶解或生长。

在晶相和液相下,原子的化学势∃Λ之间必存在差异。

腐蚀速率和生长速率取决于∃Λ,对于光滑和粗糙面,这种依赖关系是很不同的[4,5]。

为了把原子从光滑面移走,必须造一个台阶。

考虑一个包括N个空格点的空位(N个原子已被移走),这意味着系统增加的自由能等于N∃Λ。

显然,N与空位表面的形状成比例,对于一个圆形的空位,它正比于半径的平方。

但是,已形成一个台阶,且正的台阶自由能增加时,N则正比于台阶的长度。

可见,该项与空位的半径成线性正比关系。

考虑了这些作用后,我们可以通过造一个临界半径为最大空位,得到全部自由能变化的关系。

类似于从超饱和蒸汽中冷凝水滴的例子,存在一个成核势垒,只有大于临界尺寸的空位,才有机会生长。

太小的空位大部分将可能会消失。

具体细节在参考文献[2]中给出。

所以为了腐蚀,必须克服一个二维成核势垒。

腐蚀速率将包含一个exp{-∃G3 kT}因子,其中∃G3是临界晶核的自由能:∃G3=Ν 2 ∃Λ(1)其中 是产生或消除台阶的自由能,Ν是一个大致上由原子占据晶面的程度而决定的几何因子。

如果∃G3 kT大,则腐蚀速率将非常小,这就是浅欠饱和与大的台阶自由能的情形。

台阶的产生存在第二个机制,即产生K ink 位,这可能使光滑面被腐蚀[8]。

在图4(a)中,我们描述了一个螺旋位错。

任何穿过表面的一个螺旋位错将产生一个台阶,当晶体生长(4(b))或被腐蚀(4(c))时,该台阶会移动。

图4 由螺旋位错引起的晶面上的台阶(a),晶体生长(b)和被腐蚀(c)时台阶的移动当用相衬显微镜或干涉显微镜观察晶体表面时,常常能看到最后产生的生长螺旋,对晶体进行腐蚀时,也可以看到。

非完美晶体的生长 腐蚀速率正比于∃Λ2[8]。

粗糙晶面以与∃Λ成正比的速率进行腐蚀或生长[5]。

该理论有以下的推论:(1)粗糙晶面比光滑晶面腐蚀速度快。

初步分析预计金刚石晶格中唯一的光滑面是(111)面[6]。

不过由于表面再构和 或吸附,可能存在着更多的平坦表面[10],主要是(001)和(110)面。

(111)面具有最大的台阶自由能,并以最慢的速率腐蚀。

(2)光滑晶面的激活能包括临界晶核的自由能。

在液态下,化学反应和转换的能量势垒对激活能有贡献,后者的贡献是各向同性的,前者的贡献是各向异性的,不过在粗糙表面上均不起作用。

台阶自由能越大,激活能越大,腐蚀速率就越小。

(111)面应该具有最大的激活能,这与实验结果吻合得很好。

(3)∃Λ和 都取决于腐蚀类型。

这些参数可用来理解腐蚀速率的变化,各向异性的程度和腐蚀液对温度的关系。

这方面有待于进一步研究。

(4)偏离光滑表面意味着台阶的存在,为了腐蚀则不需要成核。

因为台阶密度与偏离的角度成正比,如果台阶之间间距不太大,则腐蚀速率应与角度成正比,这样新空位的成核是非常有可能的。

已在接近(111)面的腐蚀中观察到这个现象[1]。

我们在图5中复制了Seidel 的结果。

图5 在〈001〉晶向的Si晶片上接近(111)面的欠腐蚀速率的变化。

摘自参考文献[1]中的图11,ED P型,温度69℃(5)腐蚀数据的分析为实际晶体表面的物理状态提供了依据。

实际上Si的(111)面可能不具有图2中所示的蜂窝状态结构,但是具有同样著名的7×7表面再构[11]。

显然,(001)面也存在再构[10]。

这个观点认为悬挂键彼此独立,这些附加键使(001)面上的台阶自由能成为限定的。

然而,表面再构的直接依据仅适用于与真空接触的Si表面,但与水或KO H或其它物质接触的Si表面,情况就很不同了。

(6)晶体的平衡形式由具有最小表面自由能(“表面张力”)[12]的平面决定,这些面的台阶自由能大,生长和腐蚀的速度慢。

所以,一旦已知表面张力或平衡形式,人们就可以很好地推测出生长的形式和腐蚀速率慢的表面。

(7)如果欠饱和程度深,即∃G3νkT,则成核势垒被破坏。

每一个单原子空位作为一个晶核,它是由大量的热起伏产生的。

所考虑的晶面以与粗糙平面相当的腐蚀速率进行腐蚀,这种情形被称为动力学上的不平坦[13]。

如果所有的面都处于动力学的不平坦状态,则腐蚀速率成为各向同性。

我们认为这就是在H F∶HNO3基的腐蚀剂中的情形。

由∃Λ的变化引起的各向异性程度的变化预料可在两种情况下发生:例如在KO H中刚刚开始腐蚀时,欠饱和程度非常深,则腐蚀应是各向同性的。

相关文档
最新文档