路由交换综合配置实验

合集下载

计算机网络实验报告路由器配置

计算机网络实验报告路由器配置

计算机网络实验报告路由器配置计算机网络实验报告:路由器配置1.实验目的本实验旨在通过配置路由器,实现网络之间的通信和数据传输,以加深对计算机网络的理解和实践能力。

2.实验设备及环境2.1 实验设备- 路由器:型号,IP 地质:- 交换机:型号,IP 地质:- 计算机:型号,IP 地质:2.2 实验环境- 操作系统:Windows 10- 路由器配置软件:3.实验步骤3.1 网络拓扑设置3.1.1 将路由器与交换机连接,确保物理连接正常。

3.1.2 设定路由器和交换机的 IP 地质、子网掩码,确保网络正常通信。

3.2 路由器配置3.2.1 登录路由器管理界面。

3.2.2 进行基本配置,包括主机名、域名、IP 地质、网关等信息。

3.2.3 配置路由表,添加静态路由和动态路由。

3.2.4 进行网络地质转换(NAT)的配置,实现内网和外网的通信。

3.3 测试与调试3.3.1 在计算机上配置 IP 地质和默认网关,与路由器进行连接。

3.3.2 进行网络连通性测试,检查路由器的配置是否正确。

3.3.3 如有问题,进行排错和调试,重新检查配置。

4.实验结果4.1 配置路由器后,计算机可以与外网服务器进行通信。

4.2 数据传输稳定,无丢包和延迟问题。

4.3 路由器配置符合网络设计要求,满足网络拓扑的需求。

5.实验总结通过本实验,我们学习了路由器的基本配置和网络通信原理,并完成了网络设备的配置和测试。

通过实践,进一步加深了对计算机网络的理解和应用能力。

附件:- 实验拓扑图:- 路由器配置文件:法律名词及注释:1.IP 地质:Internet Protocol Address,互联网协议地质,用于标识网络中的设备。

2.子网掩码:Subnet Mask,用于划分 IP 地质的网络部分和主机部分。

3.网关:Gateway,网络中的出口节点,用于实现不同网络之间的通信。

全文结束 \。

计网实验报告3-路由器配置

计网实验报告3-路由器配置

计算机网络实验课程实验报告
实验名称路由器配置
一、实验目的
1、掌握路由器的基本配置及常用命令;
2、理解网络地址规划的原则及方法。

二、实验所用仪器(或实验环境)
路由器1台,交换机2台,PC机至少4台,RJ45双绞线。

Console控制电缆。

本次使用cisco packet tracer进行仿真。

三、实验基本原理及步骤(或方案设计及理论计算)
1、直连路由:用2个交换机组建两个LAN,用路由器将两个LAN连接;
2、基于三层交换机的VLAN间路由:用1个三层交换机组建两个LAN,用三层交换机的端口路由功能实现VLAN间的路由。

3、单臂路由:用1个二层交换机组建两个LAN,用路由器将两个LAN连接;(选作,有些设备不支持)
4、规划设置PC机的IP地址和掩码。

四、实验数据记录(或仿真及软件设计)
实验一
实验二
实验三
五、实验结果分析及回答问题(或测试环境及测试结果)实验一
实验二实验三
六、心得体会
可以熟练使用常用的路由器的操作指令;对于LAN和VLAN有了更深的理解和认识。

路由和交换实验报告

路由和交换实验报告

路由和交换实验报告路由和交换实验报告引言:在计算机网络中,路由和交换是两个重要的概念。

路由是指根据网络协议将数据包从一个网络节点传递到另一个网络节点的过程。

而交换则是指在局域网中传输数据包的过程。

本次实验旨在深入了解路由和交换的原理和工作方式,并通过实际操作验证其功能和效果。

一、实验背景计算机网络是由多个网络节点组成的,这些节点通过链路相互连接。

在数据传输过程中,需要根据目的地址将数据包从源节点传递到目的节点。

而路由和交换则是实现这一目标的关键技术。

二、实验设备和环境本次实验使用了一台路由器和若干台交换机。

路由器用于实现不同网络之间的数据传输,交换机则用于实现局域网内的数据传输。

实验环境为一个小型局域网,包含多个主机和服务器。

三、实验过程1. 路由配置首先,我们需要配置路由器的各项参数,包括IP地址、子网掩码、默认网关等。

这些参数将决定路由器的工作方式和网络连接性。

2. 路由表设置路由表是路由器中存储的一张表格,记录了不同网络之间的连接关系。

通过查找路由表,路由器可以确定数据包的下一跳目的地。

我们需要手动设置路由表,以确保数据包能够正确传递。

3. 交换机配置接下来,我们需要配置交换机的各项参数,包括VLAN、端口设置等。

VLAN是虚拟局域网的意思,通过划分不同的VLAN,可以实现不同的网络隔离和安全控制。

4. 数据传输测试配置完成后,我们可以进行数据传输测试。

通过在不同主机之间发送数据包,观察数据包的传输情况和延迟情况。

如果数据包能够正确传递,并且延迟较低,则说明路由和交换的配置是正确的。

四、实验结果经过测试,我们发现数据包能够在不同网络之间正确传递,并且延迟较低。

这表明路由器和交换机的配置是正确的,网络连接是正常的。

五、实验总结通过本次实验,我们深入了解了路由和交换的原理和工作方式。

我们学会了如何配置路由器和交换机,并通过实际操作验证了其功能和效果。

这对于我们理解计算机网络的工作原理和网络管理具有重要意义。

交换机、路由器综合实验(三)

交换机、路由器综合实验(三)

交换机、路由器综合实验(三)一、实验目的:掌握较复杂网络的交换机和路由器的配置问题。

二、实验环境:Cisco路由器3台;Catalyst 3550交换机1台;PC机3台。

图1说明:三层交换机将内网分割为三个子网192.168.0.0、192.168.1.0、192.168.2.0;路由器R1负责内网与外网的连接,并实现NAT功能;R1、R2、R3之间通过路由协议识别各个网络,由于内网采用了私有IP地址进行编址,它对外网应该是不可见的,所以启用路由协议时不要启用内部网络。

三、实验工具:Boson Netsim模拟器四、实验内容:(1) 按图1所示连接网络;(2) 配置路由器R1:路由器的名字为R1;F0口的IP地址:192.168.0.1/24,设置F0口为NAT输入端;S0口的IP地址:200.1.1.1/24,设置S0口为NAT输出端;配置NAT池,地址范围为200.1.1.10~200.1.1.20,将内网中格式为192.168.*.* 的IP 地址转换为NAT池中的IP地址;配置静态路由,将目的网络为192.168.1.0 或192.168.2.0 的数据报发往192.168.0.2;配置OSPF路由协议,区域号为10,在它的外网地址上启用协议。

(3) 配置路由器R2:路由器的名字为R2;S0口的IP地址:222.2.2.1/24;S1口的IP地址:200.1.1.2/24;配置OSPF路由协议,区域号为10,在它的所有直连网络上启用协议。

(4) 配置路由器R3:路由器的名字为R3;F0口的IP地址:18.1.1.1/8;S0口的IP地址:222.2.2.2/24;配置OSPF路由协议,区域号为10,在它的所有直连网络上启用协议。

(5) 配置三层交换机:把F0/1口设置为三层路由口,IP地址为192.168.0.2/24;把F0/2口设置为三层路由口,IP地址为192.168.1.1/24;把F0/3口设置为三层路由口,IP地址为192.168.2.1/24;配置默认路由,方向为R1路由器的F0口;启用路由功能。

路由器交换机配置实验三

路由器交换机配置实验三

路由一配置:Router(config)#host R1R1(config-line)#exitR1(config)#in e0/0R1(config-if)#ip add 192.168.1.1 255.255.255.252R1(config-if)#no shutR1(config-if)#in e0/1R1(config-if)#ip add 172.16.128.1 255.255.255.0R1(config-if)#no shutR1(config-if)#in e0/2R1(config-if)#ip add 172.16.130.1 255.255.255.0R1(config-if)#no shutR1(config-if)#in e0/3R1(config-if)#ip add 172.16.138.1 255.255.255.0R1(config-if)#no shutR1(config-if)#router ospf 1R1(config-router)#network 192.168.1.0 0.0.0.3 area 1R1(config-router)#exitR1(config)#router ripR1(config-router)#network 172.16.0.0R1(config-router)#exitR1(config)#do show ip ospf neighbor2192.168.2.251/28 R2上学习到的192.168.3.0的路由只能有一条Neighbor ID Pri State Dead Time Address Interface 192.168.2.251 1 FULL/DR 00:00:36 192.168.1.2 Ethernet0/0 R1(config)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set172.16.0.0/24 is subnetted, 3 subnetsC 172.16.138.0 is directly connected, Ethernet0/3C 172.16.128.0 is directly connected, Ethernet0/1C 172.16.130.0 is directly connected, Ethernet0/2192.168.1.0/30 is subnetted, 1 subnetsC 192.168.1.0 is directly connected, Ethernet0/0192.168.2.0/28 is subnetted, 1 subnetsO IA 192.168.2.240 [110/20] via 192.168.1.2, 00:01:33, Ethernet0/0192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksO IA 192.168.3.0/25 [110/40] via 192.168.1.2, 00:01:09, Ethernet0/0O IA 192.168.3.248/30 [110/30] via 192.168.1.2, 00:01:23, Ethernet0/0R1(config)#router ospf 1R1(config-router)#redistribute rip subnets metric 30 metric-type 1R1(config-router)#exitR1(config)#router ripR1(config-router)#redistribute ospf 1 metric 2R1(config-router)#passive-interface e0/0R1(config-router)#exitR1(config)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set172.16.0.0/24 is subnetted, 3 subnetsC 172.16.138.0 is directly connected, Ethernet0/3C 172.16.128.0 is directly connected, Ethernet0/1C 172.16.130.0 is directly connected, Ethernet0/210.0.0.0/24 is subnetted, 1 subnetsO E1 10.1.1.0 [110/60] via 192.168.1.2, 00:01:38, Ethernet0/0 192.168.1.0/30 is subnetted, 1 subnetsC 192.168.1.0 is directly connected, Ethernet0/0192.168.2.0/28 is subnetted, 1 subnetsO IA 192.168.2.240 [110/20] via 192.168.1.2, 00:03:35, Ethernet0/0 192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksO IA 192.168.3.0/25 [110/40] via 192.168.1.2, 00:03:35, Ethernet0/0O IA 192.168.3.248/30 [110/30] via 192.168.1.2, 00:03:35, Ethernet0/0 R1(config)#do ping 10.1.1.1 source 172.16.130.1Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:Packet sent with a source address of 172.16.130.1Success rate is 100 percent (5/5), round-trip min/avg/max = 96/172/300 ms R1(config)#router ospf 1R1(config-router)#area 1 nssaR1(config-router)#summary-address 172.16.128.0 255.255.240.0R1(config-router)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is 192.168.1.2 to network 0.0.0.0172.16.0.0/16 is variably subnetted, 4 subnets, 2 masksC 172.16.138.0/24 is directly connected, Ethernet0/3C 172.16.128.0/24 is directly connected, Ethernet0/1O 172.16.128.0/20 is a summary, 00:01:04, Null0C 172.16.130.0/24 is directly connected, Ethernet0/2192.168.1.0/30 is subnetted, 1 subnetsC 192.168.1.0 is directly connected, Ethernet0/0O*IA 0.0.0.0/0 [110/11] via 192.168.1.2, 00:02:55, Ethernet0/0注:只有在重发布以后才可运行NSSA,NSSA的配置必须是双向的路由二配置:Router(config)#host R2R2(config)#in e0/0R2(config-if)#ip add 192.168.1.2 255.255.255.252R2(config-if)#no shutR2(config-if)#in e0/1R2(config-if)#ip add 192.168.2.251 255.255.255.240R2(config-if)#no shutR2(config-if)#router ospf 1R2(config-router)#network 192.168.2.240 0.0.0.15 area 0R2(config-router)#network 192.168.1.0 0.0.0.3 area 1R2(config-router)#exitR2(config)#do show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface 192.168.3.249 1 FULL/DR 00:00:37 192.168.2.243 Ethernet0/1 192.168.1.1 1 FULL/BDR 00:00:31 192.168.1.1 Ethernet0/0 R2(config)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set192.168.1.0/30 is subnetted, 1 subnetsC 192.168.1.0 is directly connected, Ethernet0/0192.168.2.0/28 is subnetted, 1 subnetsC 192.168.2.240 is directly connected, Ethernet0/1192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksO IA 192.168.3.0/25 [110/30] via 192.168.2.243, 00:01:22, Ethernet0/1O IA 192.168.3.248/30 [110/20] via 192.168.2.243, 00:01:37, Ethernet0/1R2(config)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set172.16.0.0/24 is subnetted, 3 subnetsO E1 172.16.138.0 [110/40] via 192.168.1.1, 00:01:48, Ethernet0/0O E1 172.16.128.0 [110/40] via 192.168.1.1, 00:01:48, Ethernet0/0O E1 172.16.130.0 [110/40] via 192.168.1.1, 00:01:48, Ethernet0/010.0.0.0/24 is subnetted, 1 subnetsO E1 10.1.1.0 [110/50] via 192.168.2.243, 00:01:48, Ethernet0/1 192.168.1.0/30 is subnetted, 1 subnetsC 192.168.1.0 is directly connected, Ethernet0/0192.168.2.0/28 is subnetted, 1 subnetsC 192.168.2.240 is directly connected, Ethernet0/1192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksO IA 192.168.3.0/25 [110/30] via 192.168.2.243, 00:03:45, Ethernet0/1 O IA 192.168.3.248/30 [110/20] via 192.168.2.243, 00:03:45, Ethernet0/1 R2(config)#router ospf 1R2(config-router)#area 1 nssa no-summaryR2(config-router)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set172.16.0.0/20 is subnetted, 1 subnetsO N1 172.16.128.0 [110/40] via 192.168.1.1, 00:01:09, Ethernet0/010.0.0.0/24 is subnetted, 1 subnetsO E1 10.1.1.0 [110/50] via 192.168.2.243, 00:01:09, Ethernet0/1 192.168.1.0/30 is subnetted, 1 subnetsC 192.168.1.0 is directly connected, Ethernet0/0192.168.2.0/28 is subnetted, 1 subnetsC 192.168.2.240 is directly connected, Ethernet0/1O IA 192.168.3.0/24 [110/20] via 192.168.2.243, 00:01:14, Ethernet0/1路由三配置:Router(config)#host R3R3(config)#in e0/1R3(config-if)#ip add 192.168.2.243 255.255.255.240R3(config-if)#no shutR3(config-if)#in e0/2R3(config-if)#ip add 192.168.3.249 255.255.255.252R3(config-if)#no shutR3(config-if)#router ospf 1R3(config-router)#network 192.168.3.248 0.0.0.3 area 2R3(config-router)#network 192.168.2.240 0.0.0.15 area 0R3(config-router)#do show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface 192.168.2.251 1 FULL/DR 00:00:32 192.168.2.251 Ethernet0/1 192.168.3.250 1 FULL/BDR 00:00:36 192.168.3.250 Ethernet0/2 R3(config-router)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set192.168.1.0/30 is subnetted, 1 subnetsO IA 192.168.1.0 [110/20] via 192.168.2.251, 00:01:31, Ethernet0/1192.168.2.0/28 is subnetted, 1 subnetsC 192.168.2.240 is directly connected, Ethernet0/1192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksO 192.168.3.0/25 [110/20] via 192.168.3.250, 00:01:31, Ethernet0/2C 192.168.3.248/30 is directly connected, Ethernet0/2R3(config-router)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set172.16.0.0/24 is subnetted, 3 subnetsO E1 172.16.138.0 [110/50] via 192.168.2.251, 00:02:01, Ethernet0/1O E1 172.16.128.0 [110/50] via 192.168.2.251, 00:02:01, Ethernet0/1O E1 172.16.130.0 [110/50] via 192.168.2.251, 00:02:01, Ethernet0/110.0.0.0/24 is subnetted, 1 subnetsO E1 10.1.1.0 [110/40] via 192.168.3.250, 00:02:01, Ethernet0/2192.168.1.0/30 is subnetted, 1 subnetsO IA 192.168.1.0 [110/20] via 192.168.2.251, 00:02:01, Ethernet0/1 192.168.2.0/28 is subnetted, 1 subnetsC 192.168.2.240 is directly connected, Ethernet0/1192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksO 192.168.3.0/25 [110/20] via 192.168.3.250, 00:02:01, Ethernet0/2 C 192.168.3.248/30 is directly connected, Ethernet0/2R3(config-router)#area 2 nssa no-summaryR3(config-router)#area 2 range 192.168.3.0 255.255.255.0R3(config-router)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set172.16.0.0/20 is subnetted, 1 subnetsO E1 172.16.128.0 [110/50] via 192.168.2.251, 00:03:59, Ethernet0/110.0.0.0/24 is subnetted, 1 subnetsO N1 10.1.1.0 [110/50] via 192.168.3.250, 00:03:59, Ethernet0/2 192.168.1.0/30 is subnetted, 1 subnetsO IA 192.168.1.0 [110/20] via 192.168.2.251, 00:03:59, Ethernet0/1 192.168.2.0/28 is subnetted, 1 subnetsC 192.168.2.240 is directly connected, Ethernet0/1192.168.3.0/24 is variably subnetted, 3 subnets, 3 masksO 192.168.3.0/25 [110/20] via 192.168.3.250, 00:03:59, Ethernet0/2 O 192.168.3.0/24 is a summary, 00:03:59, Null0C 192.168.3.248/30 is directly connected, Ethernet0/2路由四配置:Router(config)#host R4R4(config)#in e0/2R4(config-if)#ip add 192.168.3.250 255.255.255.252R4(config-if)#no shutR4(config-if)#in e0/1R4(config-if)#ip add 192.168.3.1 255.255.255.128R4(config-if)#no shutR4(config-if)#in e0/0R4(config-if)#ip add 10.1.1.1 255.255.255.0R4(config-if)#no shutR4(config-if)#router ospf 1R4(config-router)#network 192.168.3.248 0.0.0.3 area 2R4(config-router)#network 192.168.3.0 0.0.0.127 area 2R4(config-router)#exitR4(config)#router ripR4(config-router)#network 10.0.0.0R4(config-router)#exitR4(config)#do show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface 192.168.3.249 1 FULL/BDR 00:00:36 192.168.3.249 Ethernet0/2 R4(config)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set10.0.0.0/24 is subnetted, 1 subnetsC 10.1.1.0 is directly connected, Ethernet0/0192.168.1.0/30 is subnetted, 1 subnetsO IA 192.168.1.0 [110/30] via 192.168.3.249, 00:01:36, Ethernet0/2192.168.2.0/28 is subnetted, 1 subnetsO IA 192.168.2.240 [110/20] via 192.168.3.249, 00:01:36, Ethernet0/2 192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksC 192.168.3.0/25 is directly connected, Ethernet0/1C 192.168.3.248/30 is directly connected, Ethernet0/2R4(config)#router ospf 1R4(config-router)#redistribute rip subnets metric 30 metric-type 1R4(config-router)#exitR4(config)#router ripR4(config-router)#redistribute ospf 1 metric 2R4(config-router)#passive-interface e0/2R4(config-router)#exitR4(config)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set172.16.0.0/24 is subnetted, 3 subnetsO E1 172.16.138.0 [110/60] via 192.168.3.249, 00:01:19, Ethernet0/2O E1 172.16.128.0 [110/60] via 192.168.3.249, 00:01:19, Ethernet0/2O E1 172.16.130.0 [110/60] via 192.168.3.249, 00:01:19, Ethernet0/210.0.0.0/24 is subnetted, 1 subnetsC 10.1.1.0 is directly connected, Ethernet0/0192.168.1.0/30 is subnetted, 1 subnetsO IA 192.168.1.0 [110/30] via 192.168.3.249, 00:01:19, Ethernet0/2 192.168.2.0/28 is subnetted, 1 subnetsO IA 192.168.2.240 [110/20] via 192.168.3.249, 00:01:19, Ethernet0/2 192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksC 192.168.3.0/25 is directly connected, Ethernet0/1C 192.168.3.248/30 is directly connected, Ethernet0/2R4(config)#do ping 172.16.138.1 source 10.1.1.1Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 172.16.138.1, timeout is 2 seconds: Packet sent with a source address of 10.1.1.1Success rate is 100 percent (5/5), round-trip min/avg/max = 96/168/260 ms R4(config)#router ospf 1R4(config-router)#area 2 nssa no-summaryR4(config-router)#do show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is 192.168.3.249 to network 0.0.0.010.0.0.0/24 is subnetted, 1 subnetsC 10.1.1.0 is directly connected, Ethernet0/0192.168.3.0/24 is variably subnetted, 2 subnets, 2 masksC 192.168.3.0/25 is directly connected, Ethernet0/1C 192.168.3.248/30 is directly connected, Ethernet0/2O*IA 0.0.0.0/0 [110/11] via 192.168.3.249, 00:05:56, Ethernet0/2R4(config-router)#do ping 172.16.130.1 source 10.1.1.1Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 172.16.130.1, timeout is 2 seconds:Packet sent with a source address of 10.1.1.1Success rate is 100 percent (5/5), round-trip min/avg/max = 100/193/312 ms实验步骤总结:R1 1、OSPF ,RIP 2、查看邻接关系3、重发布4、完全NSSA5、地址汇总R2 1、OSPF 2、查看邻接关系3、完全NSSAR3 1、OSPF 2、查看邻接关系3、完全NSSA 4、地址汇总R4 1、OSPF ,RIP 2、查看邻接关系3、重发布4、完全NSSA。

网络配置综合实验报告

网络配置综合实验报告

一、实验目的本次实验旨在通过实际操作,加深对网络配置原理和方法的理解,提高网络管理能力。

通过实验,掌握以下内容:1. 网络设备的基本配置方法;2. IP地址的分配与规划;3. 子网划分与VLAN的配置;4. 网络安全策略的配置;5. 路由协议的配置与调试。

二、实验环境1. 硬件设备:两台路由器(R1、R2)、两台交换机(SW1、SW2)、一台PC(PC1)、一台服务器(Server);2. 软件环境:路由器操作系统(如Cisco IOS)、PC操作系统(如Windows 10)、服务器操作系统(如Linux)。

三、实验内容1. 网络设备的基本配置(1)配置路由器R1的接口IP地址、子网掩码和默认网关;(2)配置交换机SW1的VLAN,并将端口分配到对应的VLAN;(3)配置PC1和服务器Server的IP地址、子网掩码和默认网关。

2. IP地址的分配与规划(1)根据网络规模,规划IP地址段;(2)为各设备分配静态IP地址;(3)检查IP地址是否冲突。

3. 子网划分与VLAN的配置(1)根据业务需求,对网络进行子网划分;(2)配置VLAN,并将端口分配到对应的VLAN;(3)检查VLAN配置是否正确。

4. 网络安全策略的配置(1)配置访问控制列表(ACL),限制网络访问;(2)配置IP安全协议(IPsec),实现端到端加密;(3)检查安全策略是否生效。

5. 路由协议的配置与调试(1)配置静态路由,实现路由器之间的通信;(2)配置动态路由协议(如OSPF、RIP),实现自动路由更新;(3)检查路由表,确保路由正确。

四、实验步骤1. 网络设备的基本配置(1)配置路由器R1:```R1> enableR1# configure terminalR1(config)# interface gigabitethernet 0/0R1(config-if)# ip address 192.168.1.1 255.255.255.0R1(config-if)# no shutdownR1(config-if)# exitR1(config)# interface gigabitethernet 0/1R1(config-if)# ip address 192.168.2.1 255.255.255.0R1(config-if)# no shutdownR1(config-if)# exitR1(config)# exit```(2)配置交换机SW1:```SW1> enableSW1# configure terminalSW1(config)# vlan 10SW1(config-vlan)# name VLAN10SW1(config-vlan)# exitSW1(config)# interface vlan 10SW1(config-if)# ip address 192.168.10.1 255.255.255.0SW1(config-if)# no shutdownSW1(config-if)# exitSW1(config)# exit```(3)配置PC1和服务器Server:```PC1> ipconfig /set /releasePC1> ipconfig /all```2. IP地址的分配与规划根据网络规模,规划IP地址段,如192.168.1.0/24、192.168.2.0/24等。

路由与交换实验报告

路由与交换实验报告

路由与交换实验报告一、实验目的本次路由与交换实验的主要目的是深入了解网络中路由和交换的工作原理,掌握相关设备的配置和管理方法,提高对网络架构和数据传输的理解与实践能力。

二、实验环境本次实验在网络实验室中进行,使用了以下设备和软件:1、若干台路由器和交换机,型号分别为_____和_____。

2、网络连接线若干。

3、计算机若干,安装了网络模拟软件_____。

三、实验原理(一)路由原理路由是指将数据包从一个网络转发到另一个网络的过程。

路由器根据数据包中的目标 IP 地址,查找路由表来确定转发路径。

路由表中包含了网络地址、子网掩码和下一跳地址等信息。

(二)交换原理交换是指在局域网内根据 MAC 地址进行数据帧的转发。

交换机通过学习连接到其端口的设备的 MAC 地址,建立 MAC 地址表,从而实现快速准确的数据转发。

四、实验内容及步骤(一)搭建网络拓扑首先,根据实验要求搭建了一个简单的网络拓扑结构。

该拓扑包括两个局域网,通过一台路由器进行连接。

(二)配置路由器1、进入路由器的特权模式,输入命令“enable”。

2、进入全局配置模式,输入命令“configure terminal”。

3、配置路由器的接口 IP 地址,例如“interface fastethernet 0/0”,然后输入“ip address 19216811 2552552550”。

4、配置路由协议,如静态路由或动态路由协议(RIP、OSPF 等)。

(三)配置交换机1、连接到交换机,进入特权模式。

2、进入全局配置模式,配置 VLAN 信息。

3、将交换机端口分配到不同的 VLAN 中。

(四)测试网络连通性在各台计算机上设置 IP 地址和网关,然后使用 Ping 命令测试不同网段计算机之间的连通性。

五、实验过程中遇到的问题及解决方法(一)IP 地址配置错误在配置计算机的 IP 地址和网关时,由于粗心导致输入错误,造成网络无法连通。

通过仔细检查和重新配置,解决了该问题。

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计
一、实验目的
本次实验的目的是通过Cisco Packet Tracer模拟网络环境,进行路由交换的综合实验,以加深对路由器配置和交换机互联的理解,提高实际操作技能。

二、实验环境
1. 软件准备:Cisco Packet Tracer软件
2. 设备准备:2台路由器、3台交换机、若干台电脑
三、实验内容
1. 实验一:路由器基本配置
步骤:
1)在Packet Tracer中拖动两台路由器到画布上,连接它们之间的Seria接口。

2)通过CLI界面对路由器进行基本配置,包括主机名、密码、IP地址、路由协议等。

3)通过ping测试和show命令验证路由器配置是否正确。

四、实验总结
通过以上实验,我们可以掌握路由器和交换机的基本配置方法、互联配置方法以及静态路由和动态路由的配置方法。

在实际工作中,我们需要根据网络规模和需求来选择合适的配置方式,以保障网络的稳定和高效运行。

五、注意事项
1. 在进行实验前,务必熟悉Cisco Packet Tracer的基本操作方法,了解设备的拓扑图和CLI配置界面。

2. 实验中涉及到的命令和配置方法,需要进行充分的练习和理解,避免因配置错误导致网络通信异常。

3. 在进行实验时,可以根据需要进行功能扩展,如配置DHCP服务、访问控制列表等,以提高实验的综合性和实用性。

通过本文的介绍,我们了解了基于Cisco Packet Tracer的路由交换综合实验的设计内容和步骤。

这些实验内容对于提升路由交换技术的实际操作能力和解决网络故障具有重要意义,希望读者能够通过实践不断提升自己的技能水平。

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计一、实验目的本实验旨在通过使用Cisco Packet Tracer软件,设计并实施一系列综合的路由交换实验,让学生能够深入理解网络的基本原理和实际应用技能。

通过实验,学生将学习如何配置路由器和交换机,以及如何使用基本网络服务和协议。

二、实验内容1. 实验一:基本的路由器配置在本实验中,学生将学习如何配置Cisco路由器的基本设置,包括主机名、IP地址、子网掩码、默认网关等,并测试与其他主机的连通性。

2. 实验二:静态路由配置本实验将涉及到静态路由配置,学生将学会如何手动配置路由表,以指定特定的目的地网络。

这将有助于学生理解路由器是如何根据路由表进行数据包转发的。

3. 实验三:动态路由配置在本实验中,学生将学习如何配置动态路由协议,比如RIP、OSPF等,让路由器可以自动学习网络拓扑信息,并进行自适应的路由选择。

4. 实验四:交换机基本配置本实验将涉及交换机的基本配置,包括VLAN创建、端口划分、STP协议等,学生将学会如何利用交换机实现局部段的分割和连接。

5. 实验五:VLAN间的路由配置在本实验中,学生将学会如何配置路由器实现不同VLAN间的互通。

这将有助于学生理解VLAN间通信的实现原理。

7. 实验七:交换机端口安全配置在本实验中,学生将学会如何进行交换机端口的安全配置,从而保障网络的安全性。

8. 实验八:虚拟网段的配置在本实验中,学生将学习如何配置虚拟网段,对网络进行逻辑划分,实现不同网段间的通信。

9. 实验九:VLAN和VTP的配置在本实验中,学生将学习如何配置VLAN和VTP,实现对交换机的集中管理和配置。

10. 实验十:路由器的IOS升级在本实验中,学生将学习如何进行路由器的IOS升级和备份,确保路由器的正常运行和安全性。

2. 实验二:静态路由配置(1)建立一个网络拓扑,在其中加入两台路由器和几台主机。

(2)手动配置路由表,指定特定的目的地网络。

三层交换机路由功能配置实验总结

三层交换机路由功能配置实验总结

三层交换机路由功能配置实验总结三层交换机作为一种网络交换设备,除了基本的交换功能外,还具备了路由功能。

在网络中,路由功能是至关重要的,因为它可以实现不同子网之间的通信。

本文将介绍如何通过三层交换机实现路由功能,并进行实验总结。

一、实验环境本次实验环境如下:1. 三台计算机,分别连接在三个不同的子网中,IP地址分别为:- 192.168.1.2/24- 192.168.2.2/24- 192.168.3.2/242. 三层交换机,具备路由功能,连接以上三个子网。

二、实验步骤1. 配置三层交换机的接口IP地址三层交换机需要为每个接口分配IP地址,以便能够在不同的子网之间进行路由转发。

在本次实验中,我们需要为三个接口分别配置IP 地址:- 接口 VLAN 1:192.168.1.1/24- 接口 VLAN 2:192.168.2.1/24- 接口 VLAN 3:192.168.3.1/24可以通过以下命令进行配置:```interface vlan 1ip address 192.168.1.1 255.255.255.0no shutdowninterface vlan 2ip address 192.168.2.1 255.255.255.0no shutdowninterface vlan 3ip address 192.168.3.1 255.255.255.0no shutdown```2. 配置路由为了实现不同子网之间的通信,需要在三层交换机中配置路由。

在本次实验中,我们需要将两个子网之间的路由添加到路由表中。

假设需要从192.168.1.0/24子网中的计算机访问192.168.3.0/24子网中的计算机,需要将192.168.3.0/24子网的路由添加到路由表中。

可以通过以下命令进行配置:```ip route 192.168.3.0 255.255.255.0 192.168.2.2```其中,192.168.3.0 255.255.255.0表示需要访问的目标子网,192.168.2.2表示下一跳路由器的IP地址。

计算机网络交换路由综合实验报告

计算机网络交换路由综合实验报告

计算机网络交换路由综合实验报告交换路由综合试验1 交换试验1.1交换机的基本配置1.1.1试验目的学会交换机的基本配置,并了解如何查看交换机的系统和配置信息。

1.1.2试验内容使用交换机的命令行管理界面,学会交换机的全局配置、端口配置办法,察看交换机的系统和配置信息。

1.1.3技术原理交换机的管理方式基本分两种:带内管理和带外管理。

通过交换机的Console口管理交换机属于带外管理,不占用交换机的网络端口,其特点是需要使用配置线缆,近距离配置。

第一次配置必需利用Console端口举行。

配置交换机的设备名称和配置交换机的描述信息必需在全局配置模式下执行。

Hostname 配置交换机的设备名称,Banner motd配置每日提醒信息,Banner login配置交换机的登陆提醒信息。

察看交换机的系统和配置信息命令要在特权模式下进,Show######命令可以察看对应的信息,如Show version可以察看交换机的版本信息,类似可以用Show mac-address-table、Show running-config 等。

1.1.4试验功能更改交换机的提醒信息,配置交换机的端口。

1.1.5试验设备交换机(二层)一台,交换机(二层)一台1.1.6试验步骤s21a1#configure terminals21a1(config)# interface fastethernet 0/3 !举行F0/3的端口模式s21a1(config-if)#speed 10 !配置端口速率为10Ms21a1(config-if)#duplex half !配置端口为半双工模式s21a1(config-if)#no shutdown !开启该端口,使之转发数据s21a1(config-if)#exits21a1#show interface fastethernet 0/3 !查看端口的状态s21a1# show version !查看交换机的版本信息s35a1#configure terminals35a1(config)# interface fastethernet 0/3 !举行F0/3的端口模式s35a1(config-if)#speed 10 !配置端口速率为10Ms35a1(config-if)#duplex half !配置端口为半双工模式s35a1(config-if)#no shutdown !开启该端口,使之转发数据s35a1(config-if)#exits35a1#show interface fastethernet 0/3 !查看端口的状态s35a1# show version !查看交换机的版本信息1.2虚拟局域网VLAN1.2.1试验目的学会配置VLAN,包括一个交换机下的和跨交换机的。

路由与交换技术 综合实验报告

路由与交换技术 综合实验报告
B2(config-router)#network 10.1.80.0 0.0.0.255 area 0
HQ(config-router)#end
6.用PC1、PC2、PC3、PC4、PC5、PC6 ping Web Server,File Server,Intranet通。
7.点对点协议(PPP)为在点对点连接上传输多协议数据包提供了一个标准方法,PPP封装提供了不同网络层协议同时在同一链路传输的多路复用技术,PPP协议是一种点—点串行通信协议。
B2(config)#in s 0/0/0
B2(config-if)#en ppp
B2(config-if)#ppp authentication chap
HQ:
HQ(config)#username B2 password 0 cisco123
HQ(config)#in s 0/0/1
HQ(config-if)#en ppp
HQ(config)#access-list 10 deny 10.1.10.0 0.0.0.255
HQ(config)#access-list 10 permit any
测试:PC5 ping PC1
未配置ACL:
配置后:
2)拒绝主机10.1.10.5访问主机10.1.50.7,允许所有其它主机访问10.1.50.7。在B1上使用ACL编号115配置ACL。
在B1上配置如下:
B1(config)#in f 0/0
B1(config-if)#ip acc
B1(config-if)#ip access-group 115 in
B1(config-if)#exit
B1(config)#access-list 115 deny ip host 10.1.10.5 host 10.1.50.7

路由器交换机配置实验报告

路由器交换机配置实验报告

路由器交换机配置实验报告路由器交换机配置实验报告一、实验目的本次实验的目的是通过配置路由器和交换机,实现网络设备的互联和通信。

通过实际操作,掌握路由器和交换机的基本配置方法,并了解网络设备的工作原理和功能。

二、实验环境本次实验使用的设备包括一台路由器和两台交换机。

路由器用于连接不同的网络,实现不同网络之间的通信。

交换机用于连接多台计算机,实现内部局域网内的通信。

三、实验步骤1. 连接设备首先,将路由器和交换机通过网线连接起来。

将路由器的一个接口连接到交换机的一个接口,再将另一个交换机的接口连接到另一个接口。

确保连接正确无误。

2. 配置路由器进入路由器的配置界面,通过命令行输入用户名和密码进行登录。

登录成功后,进入路由器的配置模式。

3. 配置路由器接口在路由器的配置模式下,输入命令配置路由器的接口。

首先,选择一个接口进行配置,输入命令"interface interface-name",将interface-name替换为实际接口的名称。

然后,配置接口的IP地址和子网掩码,输入命令"ip address ip-address subnet-mask",将ip-address和subnet-mask替换为实际的IP地址和子网掩码。

4. 配置路由器的路由表在路由器的配置模式下,输入命令配置路由器的路由表。

通过输入命令"iproute destination-network subnet-mask next-hop",将destination-network、subnet-mask和next-hop替换为实际的目标网络、子网掩码和下一跳地址。

5. 配置交换机进入交换机的配置界面,通过命令行输入用户名和密码进行登录。

登录成功后,进入交换机的配置模式。

6. 配置交换机的VLAN在交换机的配置模式下,输入命令配置交换机的VLAN。

通过输入命令"vlanvlan-id",将vlan-id替换为实际的VLAN号码。

路由思科综合实验报告

路由思科综合实验报告

路由思科综合实验报告实验名称:路由思科综合实验实验目的:1. 学习和了解思科路由器的基本配置和操作。

2. 掌握常用的路由协议和路由表的配置。

3. 能够解决和排除路由故障。

实验步骤:1. 连接设备:使用思科路由器和交换机搭建实验环境。

2. 配置基本网络设置:为路由器和交换机设置IP地址、子网掩码和网关。

3. 配置路由协议:使用静态路由和动态路由协议配置路由器的路由表。

4. 验证网络连接:使用ping命令测试两台主机之间的连通性。

5. 故障排除:根据故障情况使用跟踪命令、调试命令等排除故障。

6. 总结和分析:根据实验结果总结经验,并分析遇到的问题和解决方法。

实验结果:通过本次实验,我成功地搭建了思科路由器和交换机的实验环境,并配置了基本的网络设置。

我使用静态路由和动态路由协议,成功地配置了路由器的路由表。

我使用ping命令测试了两台主机之间的连通性,发现网络连接正常。

在实验过程中,我遇到了一些问题,例如配置路由表时出现了错误的路由路径,导致网络不能正常工作。

我通过查找资料和请教同学,解决了这个问题,并成功地修复了路由路径。

我还遇到了一些网络故障,例如一台主机无法访问另一台主机。

我使用跟踪命令和调试命令,找到了故障的原因,并采取相应的措施解决了问题。

通过本次实验,我对思科路由器和交换机的配置和操作有了更深入的了解。

我学会了如何使用静态路由和动态路由协议来配置路由器的路由表,以及如何使用ping命令来测试网络连通性。

我还学会了如何使用跟踪命令和调试命令来排除路由故障。

总结和分析:在本次实验中,我遇到了一些挑战和问题,但通过不断学习和实践,我成功地解决了这些问题,并完成了实验目标。

通过实验,我不仅掌握了思科路由器的基本配置和操作,还加深了对路由协议和路由表的理解。

我相信这些知识和技能对我今后的网络工作和学习会有很大的帮助。

在以后的学习和工作中,我会继续深入学习和探索网络路由技术,提高自己的能力。

我还会多进行实验和实践,加强对网络故障排除的能力。

综合实验交换机、路由器配置模拟

综合实验交换机、路由器配置模拟
交换机的配置模式包括用户模式、特 权模式和全局配置模式等,不同模式 下可执行不同的命令。
交换机端口配置
1 2 3
端口类型
交换机的端口类型包括接入端口、汇聚端口和核 心端口等,不同类型的端口具有不同的功能和配 置方法。
端口速率和双工模式
交换机的端口速率包括10M、100M、1000M等, 双工模式包括半双工和全双工。需要根据实际需 求进行配置。
拓扑结构应简洁明了,避免不 必要的复杂性和冗余。
可扩展性
设计应考虑到未来可能的扩展 需求,方便添加新设备和服务

安全性
确保网络的安全性,通过合理 的设备布局和访问控制策略来
降低安全风险。
高可用性
关键设备和链路应具备高可用 性,以减少单点故障对网络的
影响。
拓扑结构设计
核心层设计
采用高性能交换机或路由器作 为核心设备,负责高速数据转
实验环境的规模和复杂性有限,不能完全模拟真实网络环境的复杂性和多样性。
对未来学习的建议
01
深入学习交换机、路由器的配置和管理,掌握更多高级功能 和配置技巧。
02
了解更多网络协议和技术,提高对网络系统的整体认识和理 解。
03
通过参加实际项目和实践活动,积累更多的实践经验和解决 问题的能力。
THANKS
基本配置命令
包括设置主机名、配置接口IP地 址、启用路由协议等。
路由器端口配置
端口类型
路由器端口包括物理端口和逻辑 端口,物理端口如以太网口、串 口等,逻辑端口如VLAN、子接口
等。
端口参数
端口参数包括端口速率、双工模式、 流量控制等,需要根据实际需求进 行配置。
端口安全
为保障网络安全,需要对路由器端 口进行安全配置,如启用访问控制 列表(ACL)、设置端口安全策略 等。

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计【摘要】本文主要介绍了基于Cisco Packet Tracer的路由交换综合实验设计。

在引言部分中,介绍了实验的背景和重要性,明确了实验的目的和实验环境。

在正文部分中,详细介绍了实验的设计原理、实验步骤、实验内容、实验结果和实验总结。

结论部分总结了实验的成果和价值,同时展望了未来可能的研究方向。

通过本文的阐述,读者可以了解到基于Cisco Packet Tracer的路由交换综合实验的具体实现方法和实验效果,为相关领域的研究提供了重要参考和指导。

【关键词】路由交换、Cisco Packet Tracer、综合实验设计、引言、设计原理、实验步骤、实验内容、实验结果、实验总结、结论、实验成果、实验价值、展望未来1. 引言1.1 介绍基于Cisco Packet Tracer的路由交换综合实验设计是计算机网络领域的一个重要实践项目。

通过这个实验,可以加深对路由器和交换机的理解,掌握它们的工作原理和配置方法,提高网络管理和维护的能力。

在实验中,我们将搭建一个小型网络,包括路由器、交换机和若干台主机。

通过配置路由器和交换机的各项参数,实现不同主机之间的通信,了解数据包的传输过程和路由选择原则。

我们还将学习如何实现VLAN划分、静态路由配置、ACL配置等内容,提升网络安全性和管理效率。

通过参与这个实验,我们可以深入了解网络设备的运作机制,熟练掌握Cisco Packet Tracer软件的使用方法,提升自己的网络技术水平。

这也是一个很好的实践机会,可以将理论知识转化为实际操作经验,为将来的工作和学习奠定坚实基础。

希望通过这个实验,能够帮助大家更好地理解和运用路由交换技术,为网络建设和维护提供有力支持。

1.2 实验目的本实验的目的是通过基于Cisco Packet Tracer的路由交换综合实验设计,帮助学生深入理解网络路由器和交换机的基本原理和功能,掌握网络配置和管理的基本技能。

实验四-路由交换综合实验

实验四-路由交换综合实验

实验四Packet Tracer路由交换综合实验实验要求:使用Packet Tracer模拟器搭建实验拓扑,并对交换机、路由器、PC 和服务器进行相应配置,配置最后结果,能实现PC之间的ping互通,能通过PC的浏览器访问服务器网站。

配置步骤如下:Step1:搭建实验拓扑如下图所示:设备接口IP地址网关R1 Fa0/0 172.17.10.1/24 Fa0/1 172.17.20.1/24 Fa1/0 192.168.12.1/24R2 Fa0/0 172.17.30.1/24 Fa0/1 172.17.40.1/24 Fa1/0 192.168.12.2/24 Fa1/1 209.165.201.1/24PC1 快速以太网口172.17.10.100/24 172.17.10.1PC2 快速以太网口172.17.20.100/24 172.17.20.1PC3 快速以太网口172.17.30.200/24 172.17.30.1PC4 快速以太网口172.17.40.200/24 172.17.40.1SERVER 快速以太网口209.165.201.254/24 209.165.201.1 请注意:在配置PC机的IP地址时,切记一定要配网关IP地址。

Step3:路由器及交换机基本配置:一、配置路由器R1、R2,交换机S1、S2的主机名分别为Router1、Router2、Switch1、Switch2。

Switch>enableSwitch#configure terminalEnter configuration commands, one per line. End with CNTL/Z.Switch(config)#hostname Switch1Switch1(config)#Switch>enableSwitch#configure terminalEnter configuration commands, one per line. End with CNTL/Z.Switch(config)#hostname Switch2Switch2(config)#Router>enableRouter #configure terminalEnter configuration commands, one per line. End with CNTL/Z.Router (config)#hostname Router1Router1 (config)#Router>enableRouter #configure terminalEnter configuration commands, one per line. End with CNTL/Z.Router (config)#hostname Router2Router2 (config)#二、根据IP地址规划表配置各设备IP地址、掩码、网关。

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计

基于Cisco Packet Tracer的路由交换综合实验设计一、实验目的本实验旨在通过Cisco Packet Tracer软件模拟网络环境,设计并实现基于路由器和交换机的综合网络实验。

通过此实验,学习者将能够了解和掌握路由器和交换机的基本配置和操作,理解网络设备之间的连接方式和通信原理,掌握子网划分和路由器之间的连接以及交换机的VLAN配置等内容。

二、实验环境1. Cisco Packet Tracer软件2. 三台路由器3. 三台交换机4. 五台电脑5. 网线、串口线等相关线材三、实验步骤1. 搭建网络拓扑我们需要在Cisco Packet Tracer中搭建网络拓扑。

在软件中选择合适的路由器和交换机设备,将它们拖拽到工作区,并通过适当的线缆将设备连接起来。

在本实验中,我们可以使用三台路由器和三台交换机来搭建一个完整的网络拓扑,确保设备之间的连接是正确的、稳定的。

2. 路由器的基本配置接下来,我们需要对路由器进行基本的配置。

我们需要为路由器分配IP地址,并为其配置静态路由。

在Cisco Packet Tracer中,我们可以使用命令行界面或者图形化界面来完成路由器的配置工作。

通过配置路由器,我们可以实现不同网络之间的通信,保证数据在不同网络之间的正常传输。

3. Vlan的配置在实验中,我们还需要配置交换机的VLAN。

VLAN(Virtual Local Area Network)是一种将网络设备划分成多个逻辑上的局域网的技术,可以提高网络的安全性和管理性。

通过配置VLAN,我们可以将不同的网络设备划分到不同的虚拟局域网中,实现互不干扰的数据通信。

4. 子网划分和配置我们还需要对网络进行子网划分和配置。

子网划分可以有效地管理IP地址资源,提高网络的使用效率。

在实验中,我们可以通过路由器来进行子网划分和配置,为不同的子网分配合适的IP地址,实现子网之间的正常通信。

5. 路由器之间的连接我们还需要实现不同路由器之间的连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

路由交换综合基本实验
实验名称:路由交换综合配置实验
实验目的:掌握路由器和交换机的基本配置、交换机上VLAN的划分、单臂路由协议实现VLAN间通信、动态路由协议配置、路由重分发的
配置、DHCP中继代理配置、服务器配置等。

实验环境:构建如下网络拓扑结构图。

实验步骤:
按要求配置好后全网所有PC机、服务器之间均可相互通信。

1、按下图的拓朴结构选择设备并连接,对各设备的参数(IP地址等)进行
规划并标注。

这一步非常关键!要做到所有的IP地址心中有数!
2、配置各PC机和服务器的IP地址。

(略)这一步非常关键!要做到所有的IP地址心中有数!
3、配置各服务器的服务配置,配置DHCP服务器IP地址池分配地址范围为
192.168.110.50/24~192.168.110.100/24,默认网关为192.168.110.254,DNS
服务器为192.168.100.2。

4、交换机VLAN的配置将交换机SW0和交换机SW1的端口Fa0/1~Fa0/10
分别划分到VLAN 10;将交换机SW0和交换机SW1的端口Fa0/11~Fa0/20分别划分到VLAN 20,并配置两个交换机之间的端口类型为trunk。

1)交换机SW0的配置如下:
2)交换机SW1上的配置相类似。

略!
5、路由器R1上配置单臂路由,使得VLAN 10和VLAN 20的PC机能互相
通信,配置命令如下:
注:在配置之前要将交换机SW0的F0/24端口设置为TRUNK模式
6、R1和R0之间配置RIP路由协议;在R2和R0之间配置OSPF路由协议,
配置好后显示路由协议信息。

1)路由器R0的配置:
2)路由器R1上的配置:
3)路由器R2的配置:
7、在R0上进行路由注入(路由重分布)配置,配置不同路由协议之间的互
相学习分发,使得PC0-PC3可以和服务器相互通信。

8、在路由器R2上进行DHCP中继代理配置,使得PC4~PC5的计算机能自
动获取到DHCP服务器分配的IP地址。

实验检测:
设备配置后,所有的PC机之间、PC机与服务器之间可以相互通信!。

相关文档
最新文档