缝隙天线与微带天线

合集下载

实验8-微带缝隙天线设计

实验8-微带缝隙天线设计

实验八:9.2微带缝隙天线设计
(自我认为仿真的最好的一个)
一、设计要求
设计一个微带缝隙天线,工作频率为3.75 GHz,采用内部端口馈电,开放边界条件(即基板处于空气中)。

基板的介电常数为2.33,厚度为30 mil,金属导带厚度为0.7 mil.
要求:建立天线的电磁结构模型,设计匹配网络使天线取得最大辐射功率。

对天线进行电磁仿真分析,观察电流及电场的分布情况。

记录微带天线的模型图、匹配电路图,以及名项电磁分析结果。

二、实验仪器
硬件:PC
软件:AWR软件
三、设计步骤
1、绘制缝隙天线
2、添加匹配结构
3、查看网格剖分
4、查看电流、电场分布
四、数据记录及分析
设置mil单位需要把Metric units去掉勾选!
1、绘制缝隙天线
测量天线反射特性:
在圆图中,S11参数距圆图中心很远,在矩形图中S11参数不到-10db,说明反射特性很差,还需要对天线进行匹配,使其能有最大辐射功率。

2、添加匹配结构
然后进行匹配调节:
这部分我觉得是这个实验我做的最后的一个部分!
进行匹配后,圆图S11在3.75Ghz时,非常接近圆心,x=-1.354×10^-5;在矩形图频率为3.75Ghz时,S11参数为-88.44dB。

3、查看网格剖分
4、查看电流、电场分布电流分布:
电场分布:。

微带缝隙天线原理

微带缝隙天线原理

微带缝隙天线原理微带缝隙天线是一种常见的天线结构,常用于微波通信和无线通信系统中。

它是一种紧凑、低剖面的天线设计,具有优异的性能和灵活的安装方式。

本文将从原理、结构和应用三个方面介绍微带缝隙天线。

一、原理微带缝隙天线的原理基于微带线的共振效应和辐射效应。

它由一块导电衬底、一层介质材料和一条导电缝隙构成。

当微带线处于共振状态时,导电缝隙处会产生电流分布,进而产生电磁波辐射。

微带缝隙天线的工作频率取决于导电缝隙的长度和宽度,并且可以通过调整这些参数来满足不同频段的通信需求。

二、结构微带缝隙天线的结构相对简单,一般由导电衬底、介质材料和导电缝隙组成。

导电衬底一般采用金属材料,如铜或铝,用于提供天线的支撑和导电功能。

介质材料一般采用绝缘材料,如FR4或聚酰亚胺,用于隔离导电衬底和导电缝隙,并提供电磁场的传输介质。

导电缝隙是微带缝隙天线的关键部分,它的长度和宽度直接影响天线的工作频率和辐射特性。

三、应用微带缝隙天线广泛应用于无线通信系统中,包括手机、无线局域网、卫星通信等。

由于微带缝隙天线具有紧凑、低剖面的特点,适合于集成在小型设备中。

此外,它的工作频率范围广泛,可以满足不同频段的通信需求。

另外,微带缝隙天线还具有较好的辐射特性和阻抗匹配能力,能够提供稳定的信号传输和接收性能。

总结微带缝隙天线是一种紧凑、低剖面的天线设计,具有优异的性能和灵活的安装方式。

它的原理基于微带线的共振效应和辐射效应,结构简单,由导电衬底、介质材料和导电缝隙组成。

微带缝隙天线广泛应用于无线通信系统中,适用于手机、无线局域网、卫星通信等领域。

通过调整导电缝隙的参数,可以实现不同频段的通信需求。

微带缝隙天线的应用将进一步推动无线通信技术的发展,为人们的通信需求提供更好的解决方案。

北大天线理论课件:第六章 微带天线

北大天线理论课件:第六章  微带天线

第六章缝隙天线与微带天线§6.1 缝隙天线缝隙天线:开在波导或谐振腔上缝隙,用以辐射或接收电磁波。

6.1.1 理想缝隙天线理想缝隙天线:开在无限大、无限薄的理想导体平面上的直线缝隙,用同轴传输线激励。

For personal use only in study and research; not for commercial useFor personal use only in study and research; not for commercial use假设位于yoz 平面上的无限大理想导体平面上开有宽度为ω(λω<<)、长度2/2λ=l 的缝隙。

缝隙被激励后,只存在垂直于长边的切向电场,并对缝隙的中点呈对称驻波分布,其表达示为:()()[]y m ez l k E z E ˆsin --=m E ---缝隙中间波腹处的场强值。

缝隙相当于一个磁流源,由电场分布可得到等效磁流密度为:()[]()[]⎩⎨⎧<-->-=⨯-==0,ˆsin 0,ˆsin ˆ0x e z l k E x ez l k E E nJ z m z m z m等效磁流强度为:()[]()[]⎩⎨⎧<-->-=⋅=⎰0,sin 20,sin 2x z l k E x z l k E l d E I m m l m ωω 也就是说,缝隙可等效成沿Z 轴放置的、与缝隙等长的线状磁对称阵子。

根据对偶原理,磁对称阵子的辐射场可由电对称阵子的辐射场对偶得出。

对于电对称阵子,电流分布为:)(sin )(z l k I z I -=辐射场表达式:θθθsin )cos()cos cos(60kl kl r Ie j E jkr -=- ()()ϑϑπϕsin cos cos cos 2kl kl r Ie j H jkr -=- 由此得到0>x 半空间,磁对称阵子的辐射场为:()()ϑϑπωϕsin cos cos cos kl kl r e E j E jkr m m--=- ()ϑϑμεπωθsin cos cos cos klkl re E jH jkrm m-=- 在0<x 的半空间,电场和磁场的符号与上式相反。

微带缝隙天线原理

微带缝隙天线原理

微带缝隙天线原理微带缝隙天线是一种常见的天线结构,它利用微带线和缝隙的特性来实现辐射和接收电磁波的功能。

本文将介绍微带缝隙天线的原理以及其在通信领域中的应用。

一、微带缝隙天线的原理微带缝隙天线是一种基于微带线的射频天线,其结构主要由导体片、介质基板和接地板组成。

其中,导体片通过缝隙与接地板相连,形成一个闭合的电路环路。

当外界电磁波作用于导体片上时,导体片会受到激励并产生电流,从而实现电磁波的辐射和接收。

微带缝隙天线的工作原理可以用谐振模式来解释。

当微带缝隙天线处于谐振状态时,导体片上的电流会以特定的频率进行振荡。

这种谐振频率取决于导体片的几何形状、尺寸以及基板的电特性。

通过调整这些参数,可以使微带缝隙天线在特定的频段内表现出较好的工作性能。

二、微带缝隙天线的应用微带缝隙天线由于其简单的结构和良好的性能,在通信领域中得到了广泛的应用。

以下是几个常见的应用场景:1. 无线通信:微带缝隙天线可以用于手机、无线局域网、蓝牙等无线通信设备中,实现信号的传输和接收。

2. 卫星通信:微带缝隙天线可以用于卫星通信系统中,提供稳定的信号传输和接收能力。

3. 雷达系统:微带缝隙天线可以用于雷达系统中,实现目标的探测和跟踪功能。

4. 航空航天:微带缝隙天线可以用于航空航天领域,实现飞机和卫星的通信需求。

5. 军事通信:微带缝隙天线可以用于军事通信系统中,提供安全可靠的通信保障。

三、微带缝隙天线的优势与传统的天线相比,微带缝隙天线具有以下优势:1. 尺寸小巧:微带缝隙天线采用微带线作为辐射元件,具有尺寸小巧的特点,适用于对天线体积有限的场景。

2. 制作简单:微带缝隙天线的制作工艺相对简单,成本低廉,适合大规模生产。

3. 宽带性能:微带缝隙天线在一定频段内具有较好的工作性能,能够实现宽带通信需求。

4. 方向性辐射:微带缝隙天线具有一定的方向性辐射特性,可以实现特定方向的信号传输和接收。

微带缝隙天线是一种基于微带线的射频天线,利用导体片和缝隙的特性实现电磁波的辐射和接收。

(天线技术)第8章缝隙天线和微带天线

(天线技术)第8章缝隙天线和微带天线
组装与固定
将切割好的导电材料与绝缘材料组装在一起,使用适当的粘合剂 或机械固定方式进行固定。
测试与调整
完成制作后,对缝隙天线进行测试和调整,确保其性能符合设计 要求。
05
微带天线的设计与实现
微带天线的设计方法
确定工作频率
根据应用需求,确定微带天线的工作频率。
设计贴片形状和尺寸
根据理论公式和仿真软件,设计出合适的贴 片形状和尺寸。
性能特点的比较
缝隙天线
结构简单、易于加工、成本低,但带 宽较窄,增益较低。
微带天线
体积小、重量轻、易于集成,具有宽 频带和多频段特性,但效率较低、功 率容量有限。
应用场景的比较
缝隙天线
广泛应用于通信、雷达、导航等领域,尤其适用于低成本、小型化要求较高的 场合。
微带天线
广泛应用于卫星通信、移动通信、电子战等领域,尤其适用于需要集成度高、 体积小的场合。
天线技术的未来展望
多样化应用场景
随着5G/6G通信、物联网、 智能终端等应用的普及, 天线技术的应用场景将更 加多样化。
创新性技术突破
未来天线技术将不断涌现 出新的理论和技术,推动 天线性能的不断提升和应 用领域的拓展。
绿色环保理念
随着社会对环保的重视, 天线技术将更加注重绿色 环保理念,推动可持续发 展。
缝隙天线的历史与发展
缝隙天线最早可以追溯到19世 纪末期,当时主要用于无线电
报通信。
随着技术的发展,缝隙天线 在20世纪得到了广泛的应用, 特别是在雷达、卫星通信无线通信技术的 快速发展,缝隙天线在移动通 信、WiFi通信等领域的应用也
越来越广泛。
02
微带天线概述
微带天线的定义
06

第5章缝隙微带天线

第5章缝隙微带天线
2 2
aλ g
πx1
a
x1
r
θ
⎛ λg r = 0.523⎜ ⎜λ ⎝
⎞ λ2 2 πλ 2 πx1 ⎟ ⎟ ab cos ( 4a ) cos ( a ) ⎠
3
b
g
π λ ⎞ ⎛ sinθ cos( sinθ ) ⎟ 3⎜ λg λ ⎜ 2 λg ⎟ r = 0.131 3 ⎜ ⎟ λ ab 2 ⎟ ⎜ 1− ( sinθ ) λg ⎠ ⎝
v v 1 W /2 h − jk ( r − x 'sin θ cos ϕ + z 'cos θ ) F = −e z dx ' dz ' ∫−W / 2 ∫−h E0e 4πr
其中考虑了接地板引起的正镜像
1 sin( kW cos θ ) v E 0 h sin( kh sin θ cos ϕ ) v 2 F = −ez e − jkr πr kh sin θ cos ϕ k cos θ
5.2.1 矩形微带天线
x
z
L≈λg /2
o o
W
vm v v J s = −e n × E
y
v E
接地板 介质基片 辐射贴片
vm Js
ε
r
h
Ex = E0 cos( y / L) π
通过贴片四周与接地板间的缝隙向外辐射
求解缝隙中等效面磁流密度的辐射场 z
vm v v v Js = −en × Ex = −E0ez
1 v v 2E0h sin(kh sinθ cosϕ ) sin(2 kW cosθ ) 1 E = eϕ j sinθ cos( kL sinθ sinϕ )e− jkr πr kh sinθ cosϕ cosθ 2

第5章 缝隙天线与微带天线解析

第5章  缝隙天线与微带天线解析
非辐射缝隙:f
第5章 缝隙天线与微带天线
三、 缝隙天线阵(Slot Arrays)
为了加强缝隙天线的方向性,可以在波导上按一定的规律开 出一系列尺寸相同的缝隙,构成波导缝隙阵。
1. 谐振式缝隙阵
特点:波导上所有缝隙都得到同相激励,最大辐射方向与天线轴 垂直,为边射阵,波导终端采用短路活塞。
缺点:波导波长λg大于自由空间波长,缝隙阵会出现栅瓣,同时
振子辐射场的极化方
f ( ) cos(kl cos ) cos kl
向相互正交,其它特
sin
H面 性完全相同。
第5章 缝隙天线与微带天线
半 波 缝 隙 天H面线 方的 向 图 z
y
x< 0
x> 0
(a)电力线;
(b)磁力线
二、 第缝5章隙天缝线隙天线与微带天线
最基本的缝隙天线是由开在矩形波导壁上的半波谐振缝隙构成的。
成非谐振式缝隙阵。
由传输线理论可知,图a相邻缝隙的相位依次落后
2 g
d
对于图 (b)的缝隙天线阵,相邻缝隙除行波的波程差
2 g
d
之外,
还有附加的180°相移,所以相邻缝隙之间的相位差将沿行波方向
依次落后
。 2 d g
第5章 缝隙天线与微带天线
非谐振缝隙天线阵的特点: 1、最大辐射方向偏离阵法线的角度为:
是曲面形状。
(a)
(b)
(a)圆突—矩形波导缝隙天线;(b)扇面波导缝隙天线 工程上波导缝隙天线阵的方向系数的估算公式:
D 3.2N
第5章 缝隙天线与微带天线
第二节 微带天线
微带天线(Microstrip Antennas):
由导体薄片粘贴在背面有导体接地板的介质基片上形成的天线。 优点: 1、体积小,重量轻,低剖面,能与载体共形; 2、制造成本低,易于批量生产;天线的散射截面较小; 3、能得到单方向的宽瓣方向图,最大辐射方向在平面的法线方向; 4、易于和微带线路集成; 5、易于实现线极化和圆极化,容易实现双频段、双极化等多功能

缝隙天线与微带天线

缝隙天线与微带天线

1.2 缝隙天线 最基本的缝隙天线是由开在矩形波导壁上的半波 谐振缝隙构成的。由电磁场理论,对 TE10 波而言,如 图5―1―3所示,在波导宽壁上有纵向和横向两个电流分 量,横向分量的大小沿宽边呈余弦分布,中心处为零, 纵向电流沿宽边呈正弦分布,中心处最大;
c h a g b f d
e
图5―1―3 TE10波内壁电流分布与缝隙配置示意图
参见图5―1―2,但是两者具有相同的方向性,其方向函 数为
cos(kl cos ) cos kl f ( ) sin
(5―1―7)
例如,理想半波缝隙天线(2l=λ /2)的H面方向图如 5―1―2(b)图所示,而其E面无方向性。理想缝隙天线同 样可以计算其辐射电阻。如果以缝隙的波腹处电压值 Um=Emw为计算辐射电阻的参考电压,缝隙的辐射功 率Pr,m与辐射电阻Rr,m之间的关系为
而波导窄壁上只有横向电流,且沿窄边均匀分布。如 果波导壁上所开的缝隙能切割电流线,则中断的电流 线将以位移电流的形式延续,缝隙因此得到激励,波 导内的传输功率通过缝隙向外辐射,这样的缝隙也就 被称为辐射缝隙,例如图5―1―4所示的缝隙a、b、c、 d、e。当缝隙与电流线平行时,不能在缝隙区内建立 激励电场,这样的缝隙因得不到激励,不具有辐射能 力,因而被称为非辐射缝隙,如缝隙f。
I
m

l
E dl
(5―1―3)
对于x>0的半空间内,其等效磁流强度为
I 2Em sin[k (l z )]
m
(5―1―4)
上式中的磁流最大值为2Emw。
z
= ∞
2l
y
图5―1―1 理想缝隙的坐标图
根据电磁场的对偶原理,磁对称振子的辐射场可 以直接由电对称振子的辐射场对偶得出为

天线第十一讲-缝隙天线与微带天线201505112

天线第十一讲-缝隙天线与微带天线201505112

South China University of Technology
第11讲内容
缝隙天线 微带天线
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
South China University of Technology
(b)互补磁屏
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
(c)互补电屏
对偶原理
South China University of Technology
电荷、电流产生的场
South China University of Technology
无限大导体平面上的半波长缝隙天线与互补的半 波长对称振子的方向图相同,但电场E和磁场H互 换。
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
South China University of Technology
【电屏与互补电屏的互补原理】
如图源
rr J,M
分布在z<0的有限区域中,z=0面上分三
种情况:
(1)无任何屏,场为
rr Ei , Hi
(2)放置一开孔的无限大理想导体平面,孔面积为A,
导体面积为S,场为
rr Ete , Hte

缝隙天线与微带天线

缝隙天线与微带天线

振子的波腹处电流值Iem应满足下面的等式:
Um 60 I
e m
(5―1―9)
第5章 缝隙天线与微带天线
因为电对称振子的辐射功率Pr,e与其辐射电阻Rr,e的
关系为
1 e2 Pr ,e I m Rr ,e 2
(5―1―10)
由式(5―1―8 )、( 5―1―9 )和式(5―1―10),
可推导出理想缝隙天线的辐射电阻与其互补的电对称振
度的理想缝隙天线的输入阻抗、辐射阻抗均可以由与 其互补的电对称振子的相应值求得。由于谐振电对称 振子的输入阻抗为纯阻,因此谐振缝隙的输入电阻也 为纯阻,并且其谐振长度同样稍短于λ/2,且缝隙越宽, 缩短程度越大。
第5章 缝隙天线与微带天线
5.1.2 缝隙天线
最基本的缝隙天线是由开在矩形波导壁上的半波 谐振缝隙构成的。由电磁场理论,对 TE10 波而言,如
图5―1―3所示,在波导宽壁上有纵向和横向两个电流
分量,横向分量的大小沿宽边呈余弦分布,中心处为 零,纵向电流沿宽边呈正弦分布,中心处最大;
第5章 缝隙天线与微带天线
c h a g b f d
e
图5―1―3 TE10波内壁电流分布与缝隙配置示意图
第5章 缝隙天线与微带天线
而波导窄壁上只有横向电流,且沿窄边均匀分布。如
果波导壁上所开的缝隙能切割电流线,则中断的电流 线将以位移电流的形式延续,缝隙因此得到激励,波
导内的传输功率通过缝隙向外辐射,这样的缝隙也就
被称为辐射缝隙,例如图 5―1―4 所示的缝隙 a 、 b 、 c 、 d 、 e 。当缝隙与电流线平行时,不能在缝隙区内建立 激励电场,这样的缝隙因得不到激励,不具有辐射能 力,因而被称为非辐射缝隙,如缝隙f。

13-缝隙天线与微带天线 天线原理

13-缝隙天线与微带天线 天线原理
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
South China University of Technology
电磁场等效原理
考虑下图a所示的原问题。如果把v1中的场变为Eb、
South China University of Technology
Love场等效原理
令等效问题v1中的场为零场,则S面上的等效面流为
Js nˆ H a,Ms nˆ E a
情况1:设v1中媒质分布与v2中相同,则等效问题
就是自由空间中源辐射问题。 情况2:设v1中填充理想导体。因为理想导体表面
r
2M 2nˆ E
缝隙天线
等效磁流
对偶的导体 对称振子
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
电磁场巴比涅原理
South China University of Technology
J M /
M J E H
波阻抗
H E /
Research Institute of Antennas & RF Techniques School of Electronic & Information Engineering
于是,互补关系为
Ete
H
e t
H 1
d t
Etd
Ei Hi
South China University of Technology

第5章 缝隙天线与微带天线

第5章  缝隙天线与微带天线
x
宽为W、长 为L的一段 微带传输线
z L
O
W y
r
辐射电磁波
第5章 缝隙天线与微带天线
终端(y=L边)处开路,形成电压波腹和电流的波节点。L≈λg/2, y=0 边也呈现电压波腹和电流的波节点。
x z L
电场可近似表达为:
O
W y
J sm
E
E x E0 cos(
y
L
)
贴片四周窄缝上等效的面磁流密度为:
3、能得到单方向的宽瓣方向图,最大辐射方向在平面的法线方向;
第5章 缝隙天线与微带天线
微带线示意图:
导带 介质 接地板 主模:准TEM
可以传输的模式:TEM、TE、TM
一、 矩形微带天线
第5章 缝隙天线与微带天线
矩形微带天线是由矩形导体薄片粘贴在背面有导体接地板 的介质基片上形成的天线。利用微带传输线或同轴探针 来馈电,通过贴片四周与接地板之间的缝隙向外辐射。
Ls L
TM10 和 介 于 TM10 与 TM20 之 间 的
模式。
z
l W h
Wp
同轴线馈缝隙负载贴片天线结构
第5章 缝隙天线与微带天线
W=15.5mm,L=11.5mm,l=0.5mm,W1=d=1mm,Wp=5.5mm, εr=2.2、h=0.8mm时,利用FDTD(时域有限差分法)计算该天线 的s11参数随馈电位置的频率变化曲线。
谐振式缝隙天线阵中的缝隙都是匹配缝隙,不在波导中产生反射, 波导终端接匹配负载,就构成了匹配偏斜缝隙天线阵。 适当地调整缝隙对中线的偏移x1和斜角δ,各缝隙可以得到同相,
最大辐射方向与宽壁垂直。
/2
x1

g /2
匹配偏斜缝隙天线

缝隙天线

缝隙天线

•式中Em为缝隙中波腹处的场强值。 式中 为缝隙中波腹处的场强值。
一般:缝隙的宽度 远小于波长 而其长度2l为 。 远小于波长, 一般:缝隙的宽度w远小于波长,而其长度 为λ/2。
不论激励(实际缝隙是由外加电压或电场激励的)方式如何 不论激励(实际缝隙是由外加电压或电场激励的)方式如何, 缝隙中的场总垂直于缝的长边, 如图( )所示。 缝隙中的场总垂直于缝的长边 如图(a)所示。 因此理想缝隙天线可等效为由磁流源激励的对称缝隙, 因此理想缝隙天线可等效为由磁流源激励的对称缝隙,如图 (b)所示。 )所示。 与之相对偶的是尺寸相同的板状对称振子,如图( )所示。 与之相对偶的是尺寸相同的板状对称振子,如图(c)所示。
–对于远场,可以将缝隙视为线状磁对称振子,根据与全电 对于远场,可以将缝隙视为线状磁对称振子, 流定律对偶的全磁流定律,即磁流回路定理: 流定律对偶的全磁流定律,即磁流回路定理:
半空间, 轴上的等效磁流强度为 轴上的等效磁流强度为: –可得在x>0半空间,z轴上的等效磁流强度为: 可得在 半空间
–由电磁场的对偶原理,磁对称振子的辐射场可由电对称振 由电磁场的对偶原理, 子的辐射场直接写出: 子的辐射场直接写出:
–由电对称振子辐射功率与辐射电阻的关系: 由电对称振子辐射功率与辐射电阻的关系:
–使两辐射功率相等,可得两互补天线的辐射电阻有如下关 使两辐射功率相等, 系:
–因此,理想半波缝隙天线的辐射电阻为: 因此,理想半波缝隙天线的辐射电阻为:
–与之对应的辐射电导: 与之对应的辐射电导:
•辐射阻抗和输入阻抗: 辐射阻抗和输入阻抗: 阻抗和输入阻抗 –可由上两互补天线的辐射电阻公式,直接推广到辐射阻抗 可由上两互补天线的辐射电阻公式, 电阻公式 和输入阻抗(不是纯电阻) 和输入阻抗(不是纯电阻)。

第六章缝隙天线与微带天线

第六章缝隙天线与微带天线


1 2
um 2 Rr,m
缝隙辐射电阻
若理想缝隙天线与其互补的电对称振子
的辐射功率相等,则
Um

60
I
e m
缝隙波腹处电流值
因为电对称振子的辐射功率Pr,e与其辐射
电阻Rr,e的关P系r,e 为 12
I
e m
2
Rr,e
推导出理想缝隙天线的辐射电阻与其互补的电对称振子
的辐射电阻之间关系式:
Rr,mRr,e (60 )2
传输线模型
分析微带天线的最简单而又适合某些工 程应用的理论模型是传输线模型。 该模型将矩形微带贴片看成场沿横向(a 边)没有变化的传输线谐振器.场沿纵 向(b边)呈驻波变化,辐射主要由两开 路端(a边)处的边缘场产生。因此,微 带天线可表示为相距b的两条平行缝隙 (长a宽h)。
传输线模型
y=0处的缝隙等效面磁流为
为了加强缝隙天线的方向性,可以在 波导上按一定的规律开出一系列尺寸相 同 的 缝 隙 , 构 成 波 导 缝 隙 阵 ( Slot Arrays)。由于波导场分布的特点,缝 隙天线阵的组阵形式更加灵活和方便, 但主要有以下两类组阵形式。
谐振式缝隙阵(Resonant Slot Arrays)
波导上所有缝隙都得到同相激励。 最大辐射方向与天线轴垂直,为边射阵

1
90

a
0
2
Gs

1 a
120 0

1
60 2
1 a
120 0
(a 0.350 ) (0.350 a 20 ) (a 20 )
矩形贴片天线的传输线模型
除辐射电导外,开路端缝隙的等效导纳 还有一电容部分。它由边缘效应引起, 其电纳可用延伸长度Δl来表示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I
m
E dl E dl
ll
对于x>0的半空间内,其等效磁流强度为
I 2Em sin[k (l z )]
m
根据电磁场的对偶原理,磁对称 振子的辐射场可以直接由电对称振子的 辐射场对偶得出为 Em cos(kl cos ) cos(kl ) jkr m E j e e r sin Em cos(kl cos ) cos( kl ) jkr m H j e e r sin
2l
y
E( z) Em sin[k (l z ]ey
在x>0的半空间内,缝隙相当于一个等效磁流源,其等效磁 流密度为
J m n E
x0
Em sin[k (l z )]ez

缝隙最终可以被等效成一个片状的、 沿z轴放置的、与缝隙等长的磁对称振子。
讨论远区的辐射问题时,可将缝隙视为线状磁对称振子,根 据与全电流定律对偶的全磁流定律
目受到限制,增益较低,因此实际中较少采用。
g g / 2
g
(a ) 活塞
纵向谐振缝隙阵二
图中对应的螺钉需要交替地分布在中心线两侧。Leabharlann g / 2g / 2
(c)
/2 纵向谐振缝隙阵三
g
对于开在窄壁上的斜缝,相邻斜缝之间的距离为λg/2,斜缝通过切入宽壁的深度 来增加缝隙的总长度,并且依靠倾斜角的正负来获得附加的 π相差,以补偿横向 g / 2 电流λg/2所对应的π相差而得到各缝隙的同相激励。
5.1 缝隙天线
5.1.1 理想缝隙天线
理想缝隙天线是开在无限大、无限薄的 理想导体平面上(yOz)的直线缝隙, 可以由 同轴传输线激励。
缝隙的宽度 w 远小于波长, 而其长度 2l 通常为λ/2。
z
= ∞
坐标图
2l
y
辐射场
z
= ∞
无论缝隙被何种方式激励 , 缝隙中只存在切向的电场强 度, 电场强度一定垂直于缝隙 的长边, 并对缝隙的中点呈上 下对称的驻波分布, 即
(c)

(d )
非谐振式缝隙阵(Nonresonant Slot Arrays) 在谐振式缝隙阵的结构中,如果将波 导末端改为吸收负载,让波导载行波, 并且间距不等于 λg/2 ,就可以构成非谐 振式缝隙阵。 显然,非谐振缝隙天线各单元不再同 相。
根据均匀直线阵的分析,非谐振缝隙天 线阵的最大辐射方向偏离阵法线的角度为
x> 0
缝隙的场矢量线分布图 (a)电力线;(b)磁力线
理想缝隙天线 辐射电阻
以缝隙波腹处电压值Um=Emw为计算辐射 电阻的参考电压,则
缝隙的辐射功率
Pr ,m
1 um 2 Rr ,m
2
缝隙辐射电阻
若理想缝隙天线与其互补的电对称振子 的辐射功率相等,则
Um 60 I
e m
缝隙波腹处电流值
谐振式缝隙阵(Resonant Slot Arrays)
波导上所有缝隙都得到同相激励。 最大辐射方向与天线轴垂直,为边射阵

波导终端通常采用短路活塞。
下面介绍常见的谐振式缝隙阵
开在宽壁上的横向谐振缝隙阵
为保证各缝隙同相,相邻缝隙的间距应取为λg。由于波导波长λg大于自由空 间波长,这种缝隙阵会出现栅瓣,同时在有限长度的波导壁上开出的缝隙数
因为电对称振子的辐射功率 Pr,e 与其辐射 电阻Rr,e的关系为1 e 2
Pr ,e 2 I m Rr ,e
推导出理想缝隙天线的辐射电阻与其互补的电对称振子
的辐射电阻之间关系式:
Rr,m Rr ,e (60 )
Rr ,m
2
因此,理想半波缝隙天线的辐射电阻为
(60 )2 500 73.1
max
arcsin 2 d
非谐振缝隙天线适用于频率扫描天线,因为α与频率有关,波束指向θmax 可以随之变化。 非谐振式天线的优点是频带较宽,缺点是效率较低。
匹配偏斜缝隙阵
如果谐振式缝隙天线阵中的缝隙都是
匹配缝隙,即不在波导中产生反射,波导
终端接匹配负载,就构成了匹配偏斜缝隙
天线阵。
在 x<0的半空间内,由于等效磁流的方向相反,因此电场 和磁场表达式分别为上两式的负值。
通常称理想缝隙与和它对偶的电对称振子 为互补天线,因为它们相结合时形成单一的 导体屏而没有重叠或孔隙。 它们的区别在于场的极化不同: H面(通 过缝隙轴向并且垂直于金属板的平面)、E面 (垂直于缝隙轴向和金属板的平面)互换。
Gr,m≈0.002S
理想半波缝隙天线的辐射电导
理想缝隙天线
输入电阻
和半波振子类似,理想半波缝隙天线的 输入电阻也为500Ω,该值很大,所以在用 同轴线给缝隙馈电时存在困难,必须采用 相应的匹配措施。
6.2波导缝隙天线阵
为了加强缝隙天线的方向性,可以在 波导上按一定的规律开出一系列尺寸相 同 的 缝 隙 , 构 成 波 导 缝 隙 阵 ( Slot Arrays )。由于波导场分布的特点,缝 隙天线阵的组阵形式更加灵活和方便, 但主要有以下两类组阵形式。
方向性
理想缝隙与和它对偶的电对称振子具有 相同的方向性,其方向函数为
cos(kl cos ) cos kl f ( ) sin

理想半波缝隙天线(2l=λ/2),H面方向图如右图所示,而 其E面无方向性。
半波缝隙天线的 H 面方向图 半波缝隙天 H面 线 方 的向 图
z
y
x< 0
矩形波导缝隙天线阵的方向图可用方向图乘积定理求出,单元天线的方向图 即为与半波缝隙互补的半波对称振子的方向图,阵因子决定于缝隙的间距以 及各缝隙的相对激励强度和相位差。
方向系数
工程上波导缝隙天线阵的方向系数可用下式估算:
D 3.2 N
式中N为阵元缝隙个数。
波导缝隙阵列应用 波导缝隙阵列由于其低损耗、高辐射效率 和性能稳定等一系列突出优点而得到广泛应 用。
/2
x1

g /2
图示的波导宽壁上的匹配偏斜缝隙天线阵,适当地调整缝隙对中线的偏移x1和 斜角δ,可使得缝隙所等效的归一化输入电导为1,其电纳部分由缝隙中心附近 的电抗振子补偿,各缝隙可以得到同相,最大辐射方向与宽壁垂直。
带宽
匹配偏斜缝隙天线阵能在较宽的频带内与 波导有较好的匹配,带宽主要受增益改变的 限制,通常是5%~10%。其缺点是调配元件 使波导功率容量降低。 方向图
相关文档
最新文档