有机化学期末考试总结资料

合集下载

(完整版)大学有机化学知识点整理考试必备

(完整版)大学有机化学知识点整理考试必备

大学有机化学知识点提纲(一)绪论共价键价键理论(杂化轨道理论);分子轨道理论;共振论.共价键的属性:键能;键长;键角;键的极性.键的极性和分子极性的关系;分子的偶极矩.有机化合物的特征(二)烷烃和环烷烃基本概念烃及其分类;同分异构现象;同系物;分子间作用力;a键,e键;构型,构象,构象分析,构象异构体;烷基;碳原子和氢原子的分类(即1,2,3碳,氢;4碳);反应机理,活化能.对于基本概念,不是要求记住其定义,而是要求理解它们,应用它们说明问题.命名开链烷烃和环烷烃的IUPAC命名,简单的桥环和螺环的命名.烷烃和环烷烃的结构碳原子sp3杂化和四面体构型;环烷烃的结构(小环的张力).烷烃的构象开链烷烃的构象,能量变化;环烷烃的构象:重点理解环己烷和取代环己烷的构象及能量变化,稳定构象,十氢萘及其它桥环的稳定构象.烷烃的化学性质自由基取代反应—卤代反应及机理;碳游离基中间体—结构,稳定性;不同的卤素在反应中的活性和选择性;反应过程中的能量变化.环烷烃的化学性质自由基取代反应(与烷烃一致);小环(3,4元环)性质的特殊性—加成.(三)烯烃烯烃的结构特点碳的sp2杂化和烯烃的平面结构;键和键.烯烃的同分异构,命名碳架异构,双键位置异构,顺反异构(Z,E).烯烃的物理和化学性质烯烃的亲电加成及其机理,马氏规则;碳正离子中间体—结构,稳定性,重排.其它加成反应:催化加氢(立体化学,氢化热);硼氢化—氧化(加成取向,立体化学);羟汞化—脱汞(加成取向);与HBr/过氧化物加成(加成取向);其它游离基加成.氧化反应:羟基化反应—邻二醇的形成;KMnO4/H+的氧化,臭氧化反应,烯烃结构的测定.α-位取代反应:烯丙基型取代反应(高温卤代和NBS卤代)及机理—烯丙基自由基.(四)炔烃和二烯烃炔烃①结构:碳的sp杂化和碳-碳三键;sp杂化,sp2杂化和sp3杂化的碳的电负性的差异及相应化合物的偶极矩.②同分异构体③化学性质:末端炔烃的酸性及相关的反应;三键的加成:催化加氢,亲电加成,亲核加成;碳—碳三键与H2/Lindlar催化剂反应(顺式烯烃);碳—碳三键与Na/液氨的反应(反式烯烃);加卤素;加HX(马氏规则);加H2O(羰基化合物的形成);加HBr/过氧化物;硼氢化—氧化;加HCN及乙炔的二聚;氧化反应:KMnO4氧化和臭氧化.二烯烃①共轭二烯烃的稳定性:键能和键长平均化,共轭效应.②二烯烃的化学反应:1,2-加成和1,4-加成(反应机理);反应的动力学控制和热力学控制(反应过程中的能量变化);烯丙型碳正离子的稳定性(p-共轭);Diels-Alder反应.(五)波谱分析紫外光谱理解各种跃迁(,n,,n)和各自的吸收能量波长;发色团和助色团;溶剂效应;最重要的是能够从一张UV谱图中得到有用的信息(判断结构)(不要求利用经验规则去计算某化合物之吸收波长).红外光谱理解IR光谱之基本原理,最重要的是利用IR光谱(结合其它波谱)推测有机分子的结构,这就要求对各类官能团的红外吸收范围有清楚的了解,并清楚影响峰位置变化的因素.核磁共振谱(1H NMR)(碳谱不要求)了解基本原理;基本概念:化学位移,内标,外标,偶合,偶合常数,屏蔽,去屏蔽等.清楚不同类型的枝质子的化学位移范围及影响因素;最重要的是利用NMR谱(结合其它波谱)推测有机分子的结构.质谱了解基本原理;几种重要的开裂方式(包括重要的重排开裂如麦氏重排,逆Diels-Alder重排等);最重要的是利用MS得出的分子离子峰(并结合其它波谱方法)推测有机分子的结构.本章最重要的是利用几种波谱方法结合推测有机分子的结构.(六)芳香烃苯的结构和芳香性理解芳香性的概念和判断芳香性的Hückel规则,能用此规则判断一给定的分子(或离子)是否是芳香性的.苯的异构,同系物和命名苯及其同系物的物理性质和波谱性质主要了解其波谱特征,例如芳香烃的NMR谱学特征,不同取代苯在IR指纹区的特征等.化学性质亲电取代反应及机理;傅氏反应的特点及局限;氯甲基化反应;Gatterman-Koch反应;芳香环上取代基的定位效应;其它反应:侧链氧化;侧链取代;芳香环上的还原:催化加氢,Birch还原.萘的结构和化学性质(七)立体化学基本概念对映异构(体);手性分子;镜像;旋光性,旋光度;对映体;非对映体;差向异构体;内消旋体;外消旋体;手征性;手性中心.对映异构体构型的表示法R/S法(次序规则).熟悉各类手性分子含1—3个手性碳原子的手性分子;不含手性碳原子的手性分子;环状化合物.立体异构体的制备和反应熟悉能产生立体异构体的化学反应及机理,象烯烃与卤素的反式加成,环氧乙烷的开环,羰基化合物的加成(Cram规则)等等.(八)卤代烃异构,分类,命名波谱性质,尤其是NMR谱化学性质亲核取代反应及机理(SN1,SN2);影响亲核取代及机理的因素;亲核试剂的亲核性;SN2反应的立体化学;SN1反应中的重排;邻基参与.消除反应及机理(E1,E2,E1cb):消除反应的取向(Saytzeff规则)和立体化学;消除反应和取代反应的竞争.卤代烃与Mg,Li,Na等的反应:Grignard试剂,有机锂试剂及其应用.(九)醇,酚,醚结构,分类,命名醇的物理性质和光谱性质氢键对其物理性质的影响;IR光谱和NMR谱的特征.醇的化学性质醇的酸性(与其它类型化合物如H2O,酚,羧酸酸性的比较);与酸性有关的反应(与金属如Na,Mg,Al的反应);醇的氧化(形成醛/酮,羧酸);熟悉各种氧化剂;醇的成酯反应:与无机酸成酯,与有机酸成酯(机理);卤化反应;用SOCl2卤化的立体化学及机理;用HX的卤代反应(Lucas试剂用来区别六个碳原子以下1,2和3醇);Wagner-Meerwein重排.醇的脱水反应:反应机理/扎依切夫规律;反应活性;重排;分子间脱水成醚.多元醇的反应:与HIO4或Pb(OAc)4的反应;片呐醇重排反应及机理.酚的物理性质和光谱性质酚的化学性质酸性及与之相关的反应;Fries重排;芳环上的亲电取代:卤代,硝化,磺化;其它亲电取代:与醛的作用;与CO2的作用;Reimer-Tiemann反应;酚的氧化反应.酚的制备方法异丙苯氧化法;氯苯水解法;苯磺酸碱熔法.醚的反应与HX的反应(醚键断裂)及机理;Claisen重排;环氧乙烷的反应.醚的合成方法Williamson合成法.(十)醛和酮醛酮的反应①加成反应,亲核加成以上反应适用于醛,脂肪族甲基酮和八个碳原子以下的环酮.②—碳原子上卤仿反应:③氧化和还原醛酮的制法①烃类氧化②醇的氧化及去氢③Friedel-Crafts酰化反应3.,—不饱和醛,酮的反应:(十一)羧酸及其衍生物羧酸的反应:①酸性:羧酸的酸性比碳酸强,比无机酸弱.②羧酸中羟基的取代反应③还原羧酸的制法①氧化法②水解法③Grignard试剂与二氧化碳作用羧酸衍生物的反应①水解都生成羧酸②醇解酰氯,酸酐和酯的醇解都生成酯,酯与醇作用生成原酸酯或酯.③氨解酰氯,酸酐和酯的氨解都生成酰胺④酸解生成平衡混合物羧酸衍生物的制法①酰氯:羧酸与无机酰氯作用;②酸酐:酰氯与羧酸盐作用;③酯:直接酯化: ④酰胺:羧酸的铵盐去水或酯的氨解;⑤腈:酰胺去水或卤代烃与氰化钠作用.(十二)取代羧酸卤代酸的反应①与碱的反应,产物与卤素和羧基的相对位置有关.-卤代酸羟基酸-卤代酸,-不饱和酸或-卤代酸内酯②Darzen反应诱导效应共轭效应醇酸的反应①去水,产物与羟基的相对位置有关-醇酸交酯-醇酸,-不饱和酸-醇酸内酯②分解:乙酰乙酸乙酯在合成上的应用①合成甲基酮:②合成酮酸丙二酸酯在合成上的应用①合成一元羧酸②合成二元羧酸(十三)胺和含氮化合物胺的化学性质①碱性②烃化③酰化(Hinsberg反应)④与亚硝酸的反应胺的制法①硝基混合物的还原②氨或胺的烃化③还原烃化④Gabriel合成法⑤Hofmann重排:芳香族重氮盐的反应①取代反应②还原反应③偶联反应(十四)含硫,含磷化合物硫醇的制备和性质①酸性和金属离子形成盐,还原解毒剂;②氧化反应,二硫化物,磺酸;③和烯键及炔键的加成反应.磺酸基的引入和被取代在合成上应用了解磺胺药物一般制备方法.磷Ylide的制备及Wittig反应在合成中的应用.(十五)杂环化合物杂环化合物的分类和命名呋喃,噻吩,吡咯的结构和芳香性.芳香性: 苯>噻吩>吡咯>呋喃离域能(kJ/mol—1) 150.6,121.3,87.6,66.9呋喃,噻吩,吡咯的性质①亲电取代:卤代,硝化,磺化,乙酰化;②呋喃易发生;Diels-Alder反应;③吡咯的弱碱性;④吡啶的碱性;⑤吡啶的氧化,还原性质;⑥Fischer吲哚合成法和Skraup喹啉合成法.(十六)周环反应在协同反应中轨道对称性守恒电环化反应的选择规律电子数基态激发态4n 顺旋对称4n+2 对旋顺旋环化加成反应的选择规律(同一边)电子数基态激发态4n 禁阻允许4n+2 允许禁阻迁移反应的选择规律(同一边)i+j 4n 4n+2基态禁阻允许Cope重排Claisen重排(十七)碳水化合物单糖的结构与构型①Fischer构型式的写法:羰基必须写在上端;②构型:编号最大手性碳原子上OH在竖线右边为D-型,在左边为L-型;③Haworth式:己醛糖的Haworth式中C1上的OH与C5上的CH2OH在环同一边为位异构体.单糖的反应①氧化:醛糖用溴水氧化生成糖酸,用稀硝酸氧化生成糖二酸②还原:用NaBH4还原生成多元醇③脎的生成:糖与苯肼作用——成脎.(十八)氨基酸,多肽,蛋白质1.①氨基酸的基本结构天然的-氨基酸,只有R取代基的差别.②等电点:等电点时氨基酸以两性离子存在,氨基酸溶解度最小;③氨基酸-茚三酮的显色的反应;④Sanger试剂及应用;⑤氨基酸的制备:a. -卤代酸的氨解,b. 醛和酮与氨,氢氰酸加成物水解,c. 二丙酸酯合成法;⑥多肽的合成方法.(十九)萜类和甾体化合物①掌握萜类化合物的基本结构:碳骨架由异戊二烯单位组成的;会划分萜类化合物中的异戊二烯单位.②掌握一些重要的萜类天然产物常规性质:如法尼醇;牛儿酮;栊牛儿奥;山道年;维生素A;叶绿醇;角鲨烯.-胡萝卜素.③了解甾体化合物的四环结构和命名.④了解萜类和甾体化合物的生物合成。

高中化学中有机化学的知识点总结8篇

高中化学中有机化学的知识点总结8篇

高中化学中有机化学的知识点总结8篇第1篇示例:高中化学中有机化学是高中化学课程中的重要部分,主要研究有机物的结构、性质、合成方法和反应机理等内容。

有机化学知识是高中化学学习的难点,掌握有机化学知识对于高中化学学习和日常生活都有重要意义。

下面就是有机化学的一些重要知识点总结:1. 有机物的定义有机化学研究的是含有碳元素的化合物,碳元素是有机物的主要组成元素,因此有机物也被称为碳化合物。

有机物包括烃类、醇类、醛酮类、羧酸类等多种化合物。

2. 有机化合物的分类有机化合物主要分为脂肪烃、环烷烃、环烯烃、芳香烃、醇、醚、醛、酮、羧酸、酯等多种类别,每种类别都有其独特的特性和反应规律。

3. 有机物的结构有机物的结构包括分子式、结构式、键式和构象式等不同表示方法,通过这些表示方法可以清晰地描述有机物的分子结构和化学键构型。

4. 有机物的性质有机物具有多样性和复杂性的性质,包括物理性质(如沸点、熔点、密度等)和化学性质(如稳定性、溶解性、反应性等)。

5. 有机合成方法有机化学是有机合成的基础,有机合成方法包括加成反应、取代反应、消除反应、重排反应等多种方法,通过这些方法可以合成各种有机化合物。

6. 有机反应机理有机反应机理是研究有机反应过程中的原子或基团之间的结合和断裂规律,包括亲核取代、亲电取代、自由基取代等不同类型的有机反应机理。

7. 有机化学在生活中的应用有机化学在生活中有广泛的应用,例如食品添加剂、药物、化妆品、材料合成等领域都离不开有机化学知识。

第2篇示例:高中化学中有机化学的知识点总结有机化学是化学的一个重要分支,研究有机物的结构、性质、合成和反应规律。

在高中化学课程中,有机化学是一个重要的部分,学生需要掌握一定的有机化学知识。

下面我们来总结一下高中化学中有机化学的知识点。

1. 有机物的结构有机物是由碳和氢组成的化合物,其中碳是主要元素。

有机物的结构可以分为链状结构、环状结构和支链结构。

根据碳原子之间的连接方式不同,有机物可以是直链烷烃、环烷烃、烯烃、炔烃、芳香烃等不同类型。

大学有机化学期末复习总结

大学有机化学期末复习总结

有机化学期末复习总结一、有机化合物的命名命名是学习有机化学的“语言”,因此,要求学习者必须掌握.有机合物的命名包括俗名、习惯命名、系统命名等方法,要求能对常见有机化合物写出正确的名称或根据名称写出结构式或构型式.1、俗名及缩写:要求掌握一些常用俗名所代表的化合物的结构式,如:木醇、甘醇、甘油、石炭酸、蚁酸、水杨醛、水杨酸、氯仿、草酸、苦味酸、肉桂酸、苯酐、甘氨酸、丙氨酸、谷氨酸、巴豆醛、葡萄糖、果糖等.还应熟悉一些常见的缩写及商品名称所代表的化合物,如:RNA、DNA、阿司匹林、福尔马林、尼古丁等.2、习惯命名法:要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法,掌握常见烃基的结构,如:烯丙基、丙烯基、正丙基、异丙基、异丁基、叔丁基、苄基等.3、系统命名法:系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则.其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视.要牢记命名中所遵循的“次序规则”.4、次序规则:次序规则是各种取代基按照优先顺序排列的规则1原子:原子序数大的排在前面,同位素质量数大的优先.几种常见原子的优先次序为:I>Br>Cl>S>P>O>N>C>H2饱和基团:如果第一个原子序数相同,则比较第二个原子的原子序数,依次类推.常见的烃基优先次序为:CH33C->CH32CH->CH3CH2->C H3-3不饱和基团:可看作是与两个或三个相同的原子相连.不饱和烃基的优先次序为: -C≡CH>-CH=CH2>CH32CH-次序规则主要应用于烷烃的系统命名和烯烃中几何异构体的命名烷烃的系统命名:如果在主链上连有几个不同的取代基,则取代基按照“次序规则”一次列出,优先基团后列出.按照次序规则,烷基的优先次序为:叔丁基>异丁基>异丙基 >丁基>丙基>乙基>甲基.(1)、几何异构体的命名:烯烃几何异构体的命名包括顺、反和Z、E两种方法.简单的化合物可以用顺反表示,也可以用Z、E表示.用顺反表示时,相同的原子或基团在双键碳原子同侧的为顺式,反之为反式.如果双键碳原子上所连四个基团都不相同时,不能用顺反表示,只能用Z、E表示.按照“次序规则”比较两对基团的优先顺序,较优基团在双键碳原子同侧的为Z型,反之为E型.必须注意,顺、反和Z、E是两种不同的表示方法,不存在必然的内在联系.有的化合物可以用顺反表示,也可以用Z、E表示,顺式的不一定是Z型,反式的不一定是E型.例如:CH3-CH2BrC=C 反式,Z型H CH2-CH3CH3-CH2CH3C=C 反式,E型H CH2-CH3脂环化合物也存在顺反异构体,两个取代基在环平面的同侧为顺式,反之为反式.双官能团化合物的命名:双官能团和多官能团化合物的命名关键是确定母体.常见的有以下几种情况:①当卤素和硝基与其它官能团并存时,把卤素和硝基作为取代基,其它官能团为母体.②当双键与羟基、羰基、羧基并存时,不以烯烃为母体,而是以醇、醛、酮、羧酸为母体.③当羟基与羰基并存时,以醛、酮为母体.④当羰基与羧基并存时,以羧酸为母体.⑤当双键与三键并存时,应选择既含有双键又含有三键的最长碳链为主链,编号时给双键或三键以尽可能低的数字,如果双键与三键的位次数相同,则应给双键以最低编号.官能团的优先顺序:-COOH羧基>-SO3H磺酸基 > -COOR酯基>-COX卤基甲酰基 > -CONH2氨基甲酰基 > -CN 氰基> -CHO醛基> -CO- 羰基> -OH醇羟基> -OH 酚羟基 >-SH 巯基> -NH2氨基 > -O- 醚基> 双键 > 叁键4、杂环化合物的命名由于大部分杂环母核是由外文名称音译而来,所以,一般采用音译法.要注意取代基的编号.二、有机化合物的基本反应1、加成反应:根据反应历程不同分为亲电加成、亲核加成和游离基加成.(1)、亲电加成:由亲电试剂的进攻而进行的加成反应.要求掌握不对称烯烃进行亲电加成反应时所遵循的马氏规则,即试剂中带正电核的部分加到含氢较多的双键碳原子上,而负性部分加到含氢较少的双键碳原子上.烯烃加卤素、卤化氢、硫酸、次卤酸、水,炔烃加卤素、卤化氢、水以及共轭双烯的1,2和1,4加成都是亲电加成反应.烯烃进行亲电加成反应时,双键上电子云密度越大,反应越容易进行.2、亲核加成:由亲核试剂进攻而进行的加成反应.要掌握亲核试剂的概念、亲核加成反应的历程简单加成及加成─消除、不同结构的羰基化合物进行亲核加成反应的活性顺序及影响反应活性的因素.羰基化合物与氰氢酸、亚硫酸氢钠、醇、格氏试剂、氨及氨衍生物的加成都是亲核加成反应. 羰基化合物进行亲核加成反应的活性顺序为:HCHO>CH3CHO>RCHO>C6H5CHO>CH3COCH3>RCOCH3>C6H5COCH3>C6H5COC6H53、自由基加成:由自由基引发而进行的加成反应.烯烃在过氧化物存在下与溴化氢进行的加成是自由基加成.不对称烯烃与溴化氢进行自由基加成时得到反马氏规则的产物,即氢加到含氢较少的双键碳原子上.加成反应除上述三种类型之外,还有不饱和烃的催化氢化,共轭二烯的双烯合成等.2、消除反应从一个化合物分子中脱去较小分子如H2O、HX、NH3而形成双键或三键的反应叫消除反应.卤代烃脱卤化氢和醇脱水是重要的消除反应.1、卤代烃脱卤化氢:卤代烃的消除反应是在强碱性条件下进行.不同结构的卤代烃进行消除反应的活性顺序为:三级>二级>一级.要掌握卤代烃进行消除反应时所遵循的查依采夫规则,当卤代烃中不只含有一个β碳时,消除时脱去含氢少的β碳上的氢原子,或者说总是生成双键碳上连有烃基较多的烯烃,亦即仲卤代烷和伯卤代烷发生消去反应时, 主要生成双键上连接烃基最多的烯烃.要注意,卤代烃的消除和水解是竞争反应.2、醇的消除:醇的消除反应在强酸性条件下进行,消除方向也遵循查依采夫规则.要掌握不同结构的醇进行消除反应的活性顺序:叔醇>仲醇>伯醇.3、取代反应根据反应历程的不同可分为亲电取代、亲核取代、游离基取代.⑴、亲电取代:由于亲电试剂的进攻而引发的取代反应称亲电取代反应.苯环上的卤化、硝化、磺化、付氏烷基化和酰基化以及重氮盐的偶合反应等,都是亲电取代反应,萘环和芳香杂环上也能发生亲电取代反应.要注意苯环上有致钝基团时不能进行付氏反应,苯环上进行烷基化时会发生异构化现象.掌握萘环上进行亲电取代反应的规律,第一个取代基主要进入α位,第二个取代基是进入同环还是异环由原取代基的定位效应决定.掌握五员、六员芳香杂环化合物的亲电取代反应以及它们与苯环比较进行亲电取代反应活性的差异,呋喃、噻吩、吡咯进行亲电取代反应的活性比苯大,而吡啶比苯小.⑵、亲核取代由亲核试剂的进攻而引起的取代反应称亲核取代反应.卤代烃的水解、醇解、氰解、氨解,醇与氢卤酸的反应,醚键的断裂,羧酸衍生物的水解、醇解、氨解等都是亲核取代反应.卤代烃的亲核取代反应可按两种历程进行,单分子历程SN 1和双分子历程SN2,伯卤代烃易按SN2历程反应,叔卤代烃一般按SN1历程反应,仲卤代烃则两者兼而有之.要在理解反应历程的基础上掌握不同卤代烃进行亲核取代反应的活性,SN1反应支链越多活性越强,反应速率越快,SN2反应支链越多,反应活性越弱,反应速率越慢.如:下列化合物按SN1历程反应的活性由大到小排序为:CH33CI > CH33CBr > CH32CHBr. 要注意,在碱性条件下卤代烃的取代和消除是互相竞争的反应,叔卤代烃容易发生消除,伯卤代烃易发生取代,强极性溶剂如水有利于取代,而弱极性溶剂如醇和强碱如醇钠有利于消除,高温有利于消除.⑶、自由基取代:由自由基的引发而进行的取代称自由基取代.烷烃的卤代,烯烃和烷基苯的α卤代是自由基取代反应.反应条件是高温、光照或过氧化物存在.自由基的稳定性和中心碳原子上所连的烷基数目有关,烷基越多,稳定性越大.自由基的稳定次序为:三级>二级>一级>·CH34、氧化还原反应包括氧化反应和还原反应两种类型.⑴、氧化反应烯、炔、芳烃侧链以及醇、酚、醛、酮等都易发生氧化反应要掌握几种常用的氧化剂,如高锰酸钾、重铬酸钾的硫酸溶液、氧气空气、臭氧以及托伦试剂、斐林试剂、次卤酸钠等.掌握氧化反应在实际中的应用,如臭氧氧化可用来推测烯烃的结构,托伦试剂和斐林试剂的氧化可用来鉴别醛和酮等.⑵、还原反应 不饱和烃的催化氢化、醛、酮、羧酸及酯还原为醇,硝基苯还原为苯胺等都是还原反应.要掌握几种常用的还原剂,如H 2/Ni 、 Na+C 2H 5OH 、Fe+HCl 、NaBH 4、、 、LiAlH 4、异丙醇/异丙醇铝等,注意后面三种是提供负氢离子的还原剂,只对羰基选择加氢,与双键、三键不发生作用.还要掌握羰基还原为亚甲基的两种方法,注意,进行克莱门森还原时反应物分子中不能存在对酸敏感的基团,如醇羟基、双键等,用伍尔夫─吉日聂尔还原及黄鸣龙改进法时,反应物分子中不能带有对碱敏感的基团,如卤素等.5、缩合反应 主要包括羟醛缩合和酯缩合.1羟醛缩合 含有α氢的醛在稀碱条件下生成β—羟基醛,此化合物不稳定受热容易脱水,生成α、β不饱和醛.因此,此反应常用来增长碳链制备α、β不饱和醛.要求掌握羟醛缩合的反应条件.2克莱森酯缩合 含有α氢的酯在强碱条件下发生克莱森酯缩合,两分子酯之间脱去一分子醇生成β酮酸酯.要掌握反应条件及在实际中的应用,有机合成中广泛应用的乙酰乙酸乙酯就是通过此反应制备的.除了上述五种类型的反应之外,还要求掌握重氮化反应、芳香重氮盐的取代反应、脱羧反应等,注意反应条件、产物及其在实际中的应用.三、有机化合物的转化及合成方法要求掌握有机化合物各类官能团之间的转化关系、增长和缩短碳的方法,在此基础上设计简单有机化合物的合成路线.熟练掌握苯进行付氏烷基化、酰基化、炔化物的烃化、羟醛缩合、格氏试剂法等都可以增长碳链;炔化物的烃化、格氏试剂法及芳香重氮盐等在有机合成中应用非常广泛.1、炔化物的烃化具有炔氢的炔烃与氨基钠作用得炔钠,炔钠与伯卤代烃反应得到烷基取代得炔烃.此反应可增长碳链,制备高级炔烃.2、格氏试剂法格氏试剂在有机合成中应用极为广泛,它与环氧乙烷、醛、酮、酯反应可用来制备不同结构的醇等.这些反应既可增长碳链,又可形成所需的官能团.3、重氮盐取代法芳香重氮盐的重氮基可被氢原子、卤素、羟基、氰基取代,由于苯环上原有取代基定位效应的影响而使某些基团不能直接引入苯环时,可采用重氮盐取代的方法.要注意被不同基团取代时的反应条件.四、有机化学的知识点1、两类定位基:邻对位定位基:使新进入的取代基主要进入它的邻位和对位邻位和对位异构体之和大于60%;同时一般使苯环活化卤素等例外.例如—O-,—NCH32,—NH2,—OH,OCH3,—NHCOCH3,—OCOCH3,—R,—XCl,Br ,I,—C6H5等.间位定位基:使新进入的取代基主要进入它的间位间位异构体大于40%;同时使苯环钝化.例如—NCH33,—NO2,—CN,—SO3H,—CHO,—COCH3,—COOH,—COOCH3,—CO NH2,—NH3等.2、两类电子基:吸电子基:使电子云密度减小的基团,如-COOH,-COOR,-NO2,-X,-HSO3,-CHO,-CO-R等.供电子基:使电子云密度增大的基团,如-R,-OH,-OR,-NH2,-NHCOR等.3、相同C原子有机物的熔沸点:支链越多沸点越低,对称性越高,熔点越高,如下列化合物沸点由低到高排列为:正戊烷 < 3,3-二甲基戊烷 < 2-甲基己烷 <正庚烷 < 2-甲基庚烷.五、有机化合物的鉴别烯烃、二烯、炔烃及三、四元的脂环烃:溴的四氯化碳溶液,溴腿色含有炔氢的炔烃:硝酸银或氯化亚铜的氨溶液,生成炔化银白色沉淀或炔化亚铜红色沉淀.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀.醇:与金属钠反应放出氢气鉴别6个碳原子以下的醇;用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化.酚或烯醇类化合物:用三氯化铁溶液产生颜色.苯酚与溴水生成三溴苯酚白色沉淀.羰基化合物:2,4-二硝基苯肼,产生黄色或橙红色沉淀;区别醛与酮用托伦试剂,醛能生成银镜,而酮不能;区别芳香醛与脂肪醛或酮与脂肪醛,用斐林试剂,脂肪醛生成砖红色沉淀,而酮和芳香醛不能;鉴别甲基酮和具—CH—结构的醇用碘的氢氧化钠溶液,有CH3OH生成黄色的碘仿沉淀.甲酸:用托伦试剂,甲酸能生成银镜,而其他酸不能.胺:区别伯、仲、叔胺有两仲方法1.用苯磺酰氯或对甲苯磺酰氯,在NaOH溶液中反应,伯胺生成的产物溶于NaOH;仲胺生成的产物不溶于NaOH溶液;叔胺不发生反应.2.用NaNO2+HCl:脂肪胺:伯胺放出氮气,仲胺生成黄色油状物,叔胺不反应.芳香胺:伯胺生成重氮盐,仲胺生成黄色油状物,叔胺生成绿色固体.糖:葡萄糖与果糖:用溴水,葡萄糖能使溴水腿色,而果糖不能.麦芽糖与蔗糖:用托伦试剂或斐林试剂,麦芽糖可生成银镜或砖红色沉淀,而蔗糖不能.。

期末复习有机化学--烃

期末复习有机化学--烃

这三种单体的结构简式分别 CH2=CH—CN CH2=CH—CH=CH2
是:
.
六、煤和石油 (1)石油是由各种烷烃、环烷烃和芳香烃组成的 复杂混合物; 煤是有机物和无机物组成的复杂混合物。 (2)石油黑色或深棕色粘稠液体,混合物,比水轻; 煤是黑色固体,不溶于水,比水重。 (3)石油的分馏原理; 实验装置、工业设备、常压分馏、减压分馏、 馏分。 (4)石油裂化、裂解和催化重整的目的; 汽油的质量、数量。C原子少的烃。 (5)煤的干馏和干馏产物。
结构特点
链烃、 C—C键 链烃、 C=C键 链烃、 C≡C键 链烃、有2个 C=C键 芳香烃、 一个苯环
重要化学性质
稳定、取代(特征反应)、氧化(指燃 烧)、裂解 不 稳 定 , 加 成 (特 征 反 应 )、 氧 化 (KMnO4溶液)、加聚 不稳定,加成(特征反应)、氧化 (KMnO4溶液)、加聚 不稳定,加成(1,2加成和1,4加 成)、氧化、加聚 稳定,易取代,加成,难氧化,侧 链易被酸性KMnO4溶液氧化
C
)
3、制溴苯
练习讲评
五、几种有关烃的有机反应分析
1、取代反应的特征: 在与卤素单质发生取代反应的过程中,烷烃分 子每去掉一个氢原子换上一个卤素原子要消耗1个 卤素分子,另外一个卤素原子则与换下来的氢原 子结合生成卤化氢(这一点与加成反应是不同的)。 烷烃与卤素单质发生取代反应的最大物质的量 之比为: CnH2n+2~(2n+2)X2(卤素单质)
⑴A、B、C、D装置可盛放的试剂是(可重复使用): A a ,B b ,C a ,D d ;
a.品红溶液 b.NaOH溶液 c.浓H2SO4 d.酸性KMnO4溶液 ⑵能说明SO2气体存在的现象是: 装置A中品红溶液褪色 ; ⑶使用装置B的作用是 除SO2气体, 以免干扰乙烯的检验 ; ⑷使用装置C的目的是 检验SO2是否除尽 ;

大学有机化学期末总结5篇

大学有机化学期末总结5篇

大学有机化学期末总结5篇大学有机化学期末总结篇1忙碌又充实的教育教学工作接近尾声了,担任x年级音乐课有一个学期了,我一直都以新课标的要求为教学理念,从美的角度出发,让学生学会发现美、追求美、并创造美。

我细细的回顾一下自己在这一学期的教育教学工作情况,喜忧参半,下面我就从几个方面对我这学期的工作做以总结:一、思想方面作为一名教师,我能全面贯彻执行党的教育方针和九年制义务教育,注意培养自己良好的师德,关心和爱护每一位学生,做他们学习和生活中的良师益友,时时处处为人师表;在思想政治上,时刻能以党员的标准来严格要求自己,关心集体,以校为家。

响应学校号召,积极参加学校组织的各项活动,注重政治理论的学习。

抓住每一个学习的机会提高自己的业务水平。

每周按时参加升旗仪式,从不缺勤,服从学校安排。

二、教学方面本学期,我担任x年级的音乐课教学任务。

由学生于年龄小,又是刚刚升入小学的孩子,爱玩还是他们这时的天性,所以我抓住他们的这个特点,让他们尽量在玩的过程中去学习音乐,并且爱上音乐,让音乐也成为他们的好朋友。

于是,在课堂教学中我安排了三个学习环节听、唱、演。

这三个环节是环环相扣,相互联系的。

现将其总结如下:1、用心倾听音乐是听觉的艺术。

在学习音乐的过程中首先要学会用耳去听,我们的音乐课更要如此。

_版的教材上也刚好安排了欣赏这一部分,意旨就在于让学生初步学会欣赏音乐,感受音乐。

所以,在上这部分知识的时候,我在听之前会提出问题,如在听这部分音乐的时候,小朋友们你们想到了什么,心情是怎么样的,然后请学生闭上眼睛认真地听。

在回答的过程中,我则主张赏识教育,只要学生能够说,并且符合音乐的情境,哪怕是一个音,我都会赞扬他们,并且鼓励他们再加油。

所以学生在上欣赏的时候,课堂纪律很活跃,也爱回答问题。

2、尽情歌唱这里我所说的尽情是用自己的感情去歌唱。

小学x年级学生不宜过多的给学生讲歌唱的方法和练声,如果方法讲太多,小孩子学习起来反而会厌烦唱歌,所以,我每次都是要求学生用听的声音、最自然的声音去唱歌就是最棒的。

大学有机化学复习总结(全)-大学有机化学

大学有机化学复习总结(全)-大学有机化学

大学有机化学复习总结(全)-大学有机化学大家好,我是你们的有机化学老师,今天我要给大家讲一下大学有机化学的复习总结。

我要告诉大家一个秘密,其实有机化学并不可怕,只要你用心去学,一定会有所收获。

好了,不多说了,让我们开始吧!一、基础知识1.1 烷基和烯基烷基和烯基是有机化学的基础,它们是构成有机分子的基本单元。

烷基是由碳、氢和一个或多个氧原子组成的链状烃基,常见的烷基有甲烷、乙烷、丙烷等。

烯基是由碳、氢和一个氧原子组成的支链状烃基,常见的烯基有乙烯、丙烯等。

1.2 烃的取代反应烃的取代反应是指在烃分子中加入一个或多个原子或原子团的过程。

例如,将一个氢原子加到甲烷分子中,就可以得到甲基甲烷(CH3)。

这个过程可以用下面的方程式表示:CH3 + H2 → CH3CH21.3 羟基和胺的反应羟基和胺的反应是指羟基与胺分子中的氨基反应生成酰胺的过程。

这个反应在医药工业中有广泛的应用,例如制备青霉素等抗生素。

这个过程可以用下面的方程式表示:NH2 + OH -> NH2OHNH2OH + RCOOR' -> RCOOR' + NH3 + H2O二、官能团及其性质2.1 羧酸和酚的性质羧酸和酚都是含有羧基(-COOH)的化合物,它们的性质有很多相似之处。

例如,它们都可以发生酯化反应、酰胺化反应等。

羧酸和酚还可以通过缩合反应形成醚类化合物。

例如,苯酚可以与甲醛缩合生成环氧树脂。

2.2 醛和酮的性质醛和酮都是含有羰基(C=O)的化合物,它们的性质有很多相似之处。

例如,它们都可以发生氧化反应、还原反应等。

醛和酮还可以通过缩合反应形成高分子化合物。

例如,甲醛可以与苯酚缩合生成酚醛树脂。

三、合成路线设计3.1 基本合成路线设计方法合成路线设计是有机化学研究的核心内容之一。

基本的合成路线设计方法包括以下几个步骤:确定目标产物;选择合适的原料;设计反应条件;优化合成路线;进行实验验证。

在设计合成路线时,要充分考虑原料的来源、价格、易得性等因素。

生化期末知识总结

生化期末知识总结

生化期末知识总结生物化学作为生物学和化学的交叉学科,研究生物体内物质的组成、结构和特性,以及生物体内的化学反应和能量转化过程。

在生化学的学习中,我们需要掌握大量的知识点,包括有机化学、无机化学、酶学、代谢等内容。

下面是一篇生化期末知识总结,希望对你的学习有所帮助。

一、有机化学有机化学是生化学的基础。

有机分子是一类含有碳(C)原子的化合物,通常还含有氢(H)、氧(O)、氮(N)、磷(P)等元素。

在有机化学中,我们需要了解基本的有机化合物的命名、结构和性质。

以下是一些重要的有机化学知识点:1.有机化合物命名有机化合物的命名方法很多,主要有系统命名法和常用命名法。

在系统命名法中,根据化合物结构的不同特点,可以分为烷烃、烯烃、炔烃、醇、醚、酮、酸、酯等不同类别。

在常用命名法中,常用的有烷基、烯基、氨基等术语来修饰命名,如甲基(CH3)、乙基(C2H5)等。

2.有机化合物结构有机化合物的分子结构主要有分子式和结构式两种表示方法。

分子式是由化合物中各元素的符号和原子数量表示的,如甲烷(CH4)、乙醇(C2H5OH)等。

结构式是用连线和原子符号表示化合物中原子与原子之间的连接关系,如乙酸(CH3COOH)的结构式为CH3-COOH。

3.有机化合物性质有机化合物的性质与其结构有关,主要包括化学惰性、酸碱性、稳定性、溶解性和极性等。

化学惰性较强的有机化合物通常不容易发生化学反应,如饱和的烃类。

酸碱性取决于有机化合物中含有的酸基或碱基的性质,如羧基 (-COOH)是常见的酸基。

有机化合物的稳定性与它们的链长、官能团、分子结构等有关。

溶解性主要受到分子极性的影响,如极性物质易溶于极性溶剂。

二、无机化学无机化学主要研究无机物质的组成、结构和性质,也是生化学的一部分。

无机化学涉及的内容很广泛,包括无机元素、酸碱、锌、镁、铁、铜等。

以下是一些常见的无机化学知识点:1.无机元素无机元素是构成地球壳、大气和生物体的基本物质,根据元素的性质可分为金属元素和非金属元素。

高中有机化学知识归纳和总结(完整版)

高中有机化学知识归纳和总结(完整版)
由心到边,排布由对到邻到间。 ⑵ 具有官能团的化合物如烯烃、炔烃、
醇、酮等,它们具有碳链异构、官能 团位置异构、异类异构,书写按顺序 考虑。一般情况是碳 链 异 构 → 官 能 团位置异构→异类异构。 ⑶ 芳香族化合物:二元取代物的取代基 在苯环上的相对位置具有邻 、间 、对 三种。
3、 判 断 同 分 异 构 体 的 常 见 方 法 :
2FeI + 3Br = 2FeBr + 2I 2
2 3 2 △
Mg + Br2 === MgBr2
(其中亦有 Mg 与 H+、Mg 与 HBrO 的反应)
⑷ Zn、Mg 等单质 如
⑸ -1 价的 I(氢碘酸及碘化物)变色
⑹ NaOH 等强碱、Na2CO3 和 AgNO3 等盐
Br2 + H2O = HBr + HBrO 2HBr + Na2CO3 = 2NaBr + CO2↑+ H2O HBrO + Na2CO3 = NaBrO + NaHCO3
七、能萃取溴而使溴水褪色的物质
上层变无色的(ρ>1):卤代烃(CCl4、
有机化学知识点归纳(一)
第 13 页 共 42 页
氯仿、溴苯等)、CS2 等; 下层变无色的(ρ<1):直馏汽油、煤焦
油、苯及苯的同 系物、低级酯、 液态环烷烃、液 态饱和烃(如己 烷等)等
八 、能 使 酸 性 高 锰 酸 钾 溶 液 褪 色 的 物 质
醇、邻二甲苯与间二甲苯及对二甲
苯。 ⑶ 异类异构:指官能团不同而造成的异
构,也叫官能团异构。如 1—丁炔与 1,3—丁二烯、丙烯与环丙烷、乙醇
有机化学知识点归纳(一)
第 2 页 共 42 页

吉林大学《有机化学》期末考试学习资料(三)

吉林大学《有机化学》期末考试学习资料(三)

吉大《有机化学》(三)
第四-五章芳香烃&卤代烃
一、苯的结构
X-射线分析和电子衍射证明:
轨道杂化理论认为:
C:sp2杂化
苯形成了一个电子云密度完全平均化了的没有单双键之分的大π键。

苯的结构式表示为:
二、苯及其同系物的化学性质有哪些
苯环是一个非常稳定的体系,与烯烃性质有显著区别,具有特殊的芳香性,主要表现在易取代,不易加成和氧化
1、亲电取代反应——芳香烃的特征反应
1)卤化反应
卤素的反应活性:
2)硝化反应
3)磺化反应
2、苯环侧链上的取代反应
4)Friedel—Crafts烷基化反应烷基化反应。

(完整版)大学有机化学期末复习知识点总结

(完整版)大学有机化学期末复习知识点总结

3)空间效应:体积较大的基团总是取代到空间位阻较小的位置。

4)定位规律:芳烃亲电取代反应的规律,有邻、对位定位基,和间位定位基。

5)查依切夫规律:卤代烃和醇消除反应的规律,主要产物是双键碳上取代基较多的烯烃。

6)休克尔规则:判断芳香性的规则。

存在一个环状的大π键,成环原子必须共平面或接近共平面,π电子数符合4n+2规则。

7)霍夫曼规则:季铵盐消除反应的规律,只有烃基时,主要产物是双键碳上取代基较少的烯烃(动力学控制产物)。

当β-碳上连有吸电子基或不饱和键时,则消除的是酸性较强的氢,生成较稳定的产物(热力学控制产物)。

8)基团的“顺序规则”3. 反应中的立体化学烷烃:烷烃的自由基取代:外消旋化烯烃:烯烃的亲电加成:溴,氯,HOBr(HOCl),羟汞化-脱汞还原反应-----反式加成其它亲电试剂:顺式+反式加成烯烃的环氧化,与单线态卡宾的反应:保持构型烯烃的冷稀KMnO4/H2O氧化:顺式邻二醇烯烃的硼氢化-氧化:顺式加成烯烃的加氢:顺式加氢环己烯的加成(1-取代,3-取代,4-取代)炔烃:选择性加氢:Lindlar催化剂-----顺式烯烃Na/NH3(L)-----反式加氢亲核取代:S N1:外消旋化的同时构型翻转S N2:构型翻转(Walden翻转)中间体:自由基:反应类型:烯烃、炔烃的过氧化效应。

3.亲电加成反应机理中间体:环鎓离子(溴鎓离子,氯鎓离子)反应类型:烯烃与溴,氯,次卤酸的加成中间体:碳正离子,易发生重排。

反应类型:烯烃的其它亲电加成(HX,H2O,H2SO4,B2H6,羟汞化-去汞还原反应)、炔烃的亲电加成,小环烷烃的开环加成,共轭二烯烃的亲电加成。

或环鎓离子):4. 亲电取代反应机理:中间体:σ-络合物(氯代和溴代先生成π络合物)反应类型:芳烃亲电取代反应(卤代,硝化,磺化,烷基化,酰基化,氯甲基化)。

5. 亲核加成反应机理:中间体:碳负离子反应类型:炔烃的亲核加成6.亲核取代反应机理:S N1反应中间体:碳正离子,易发生重排。

(完整版)大学有机化学知识点总结

(完整版)大学有机化学知识点总结

有机化学复习总结一.有机化合物的命名1. 能够用系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。

2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。

立体结构的表示方法:1)伞形式:CCOOHOHH 3 2)锯架式:CH 3OH HHOH C 2H 53)纽曼投影式:H H 4)菲舍尔投影式:COOHCH 3OH H5)构象(conformation)(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。

(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。

(3) 环己烷构象:最稳定构象是椅式构象。

一取代环己烷最稳定构象是e 取代的椅 式构象。

多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。

立体结构的标记方法1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。

CH 3C H C 2H 5CH 3C CH 2H 5Cl(Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。

CH 3C CHCH 3HCH 3CCH HCH 3顺-2-丁烯反-2-丁烯333顺-1,4-二甲基环己烷反-1,4-二甲基环己烷3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。

有机化学知识点总结归纳(全)

有机化学知识点总结归纳(全)

有机化学知识点总结归纳(全)有机化学知识点归纳一、有机物的构造与性质1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。

原子:—X原子团〔基〕:—OH、—CHO 〔醛基〕、—COOH〔羧基〕、C6H5—等官能团化学键:C=C 、—C≡C—2、常见的各类有机物的官能团,构造特点及主要化学性质(1)烷烃A) 官能团:无;通式:C n H2n+2;代表物:CH4B) 构造特点:键角为109°28,′空间正四面体分子。

烷烃分子中的每个 C 原子的四个价键也都如此。

C) 物理性质: 1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。

一般地,C1~C4 气态,C5~C16 液态,C17 以上固态。

2.它们的熔沸点由低到高。

3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。

4.烷烃都不溶于水,易溶于有机溶剂D) 化学性质:①取代反响〔与卤素单质、在光照条件下〕光CH 4 + Cl 2 CH3Cl + HCl光,,⋯⋯。

CH3Cl + Cl 2 CH 2Cl2 + HCl②燃烧点燃CH4 + 2O2 CO2 + 2H 2O③热裂解高温CH4 C + 2H 2隔绝空气催化剂C16H34 C8H18 + C8H16加热、加压y 点燃y④烃类燃烧通式:H Ox tC H (x)O2 xCO2 24 2y z 点燃y⑤烃的含氧衍生物燃烧通式: H Ox y zC H O ( x )O2 xCO2 24 2 2CaOE) 实验室制法:甲烷:CH 3COONa NaOH CH 4 Na2CO3△注:1.醋酸钠:碱石灰=1:3 2.固固加热 3.无水〔不能用NaAc 晶体〕 4.CaO:吸水、稀释N aOH、不是催化剂(2)烯烃:C=CA) 官能团:;通式:C n H2n(n≥2);代表物:H2C=CH 2B) 构造特点:键角为120°。

双键碳原子与其所连接的四个原子共平面。

大学有机化学总结习题及答案解析_最全

大学有机化学总结习题及答案解析_最全

有机化学总结一.有机化合物的命名1. 能够用系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。

2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。

立体结构的表示方法:1)伞形式:CCOOHOH3 2)锯架式:CH 3OHHHOH C 2H 53)纽曼投影式:4)菲舍尔投影式:COOHCH 3OH H5)构象(conformation)(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。

(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。

(3) 环己烷构象:最稳定构象是椅式构象。

一取代环己烷最稳定构象是e 取代的椅 式构象。

多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。

立体结构的标记方法1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。

CH 3C HC 2H 5CH 3CC H2H 5Cl(Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。

CH 3C CHCH 3HCH 3CH HCH 3顺-2-丁烯反-2-丁烯333顺-1,4-二甲基环己烷反-1,4-二甲基环己烷3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。

大学有机化学总结

大学有机化学总结

大学有机化学总结有机化学复习总结一、试剂的分类与试剂的酸碱性1、自由(游离)基引发剂在自由基反应中能够产生自由基的试剂叫自由基引发剂(free radical initiator),产生自由基的过程叫链引发。

如: Cl2、Br2是自由基引发剂,此外,过氧化氢、过氧化苯甲酰、偶氮二异丁氰、过硫酸铵等也是常用的自由基引发剂。

少量的自由基引发剂就可引发反应,使反应进行下去。

2、亲电试剂简单地说,对电子具有亲合力的试剂就叫亲电试剂(electrophilic reagent)。

亲电试剂一般都是带正电荷的试剂或具有空的p轨道或d轨道,能够接受电子对的中性分子,如:H,、Cl,、Br,、RCH2,、CH3CO,、NO2,、,SO3H、SO3、BF3、AlCl3等,都是亲电试剂。

在反应过程中,能够接受电子对试剂,就是路易斯酸(Lewis acid),因此,路易斯酸就是亲电试剂或亲电试剂的催化剂。

3、亲核试剂对电子没有亲合力,但对带正电荷或部分正电荷的碳原子具有亲合力的试剂叫亲核试剂(nucleophilic reagent)。

亲核试剂一般是带负电荷的试剂或是带有未共用电子对的中性分子,如:OH,、HS,、CN,、NH2,、RCH2,、RO,、RS,、PhO,、RCOO,、X,、H2O、ROH、ROR、NH3、RNH2等,都是亲核试剂。

在反应过程中,能够给出电子对试剂,就是路易斯碱(Lewis base),因此,路易斯碱也是亲核试剂。

4、试剂的分类标准在离子型反应中,亲电试剂和亲核试剂是一对对立的矛盾。

如:CH3ONa +CH3Br?CH3OCH3 + NaBr的反应中,Na,和,CH3是亲电试剂,而CH3O,和Br,是亲核试剂。

这个反应究竟是亲反应还是亲核反应呢,一般规定,是以在反应是最先与碳原子形成共价键的试剂为判断标准。

在上述反应中,是CH3O,最先与碳原子形成共价键,CH3O,是亲核试剂,因此该反应属于亲核反应,更具体地说是亲核取代反应。

有机化学复习总结

有机化学复习总结

有机化学复习总结有机化学复习总结⼀、试剂的分类与试剂的酸碱性(free 在⾃由基反应中能够产⽣⾃由基的试剂叫⾃由基引发剂1、⾃由(游离)基引发剂,产⽣⾃由基的过程叫链引发。

如:radical initiator)或⾼温hv 或⾼温hv BrCl2Br2Cl22均裂均裂是⾃由基引发剂,此外,过氧化氢、过氧化苯甲酰、偶氮⼆异丁氰、过硫酸铵等也是BrCl、22常⽤的⾃由基引发剂。

少量的⾃由基引发剂就可引发反应,使反应进⾏下去。

简单地说,对电⼦具有亲合⼒的试剂就叫亲电试剂(electrophilic reagent)2、亲电试剂轨道或d轨道,能够接受电⼦对的中性分⼦,亲电试剂⼀般都是带正电荷的试剂或具有空的p+、BFAlCl等,都是亲电试剂。

、HCH、如:HCl、Br、RCH、CO、NO、SO、3323323,++++++SO因此,路易斯酸就是Lewis acid)在反应过程中,能够接受电⼦对试剂,就是路易斯酸(亲电试剂或亲电试剂的催化剂。

对电⼦没有亲合⼒,但对带正电荷或部分正电荷的碳原⼦具有亲合⼒的试剂叫3、亲核试剂。

亲核试剂⼀般是带负电荷的试剂或是带有未共⽤电⼦对的中nucleophilic reagent亲核试剂()----------、、、CN、NH、RCHRO、RS、PhO、H、ORCOO、XHS性分⼦,如:OH、222等,都是亲核试剂。

、NH、RNHROH、ROR23,因此,路易斯碱也是在反应过程中,能够给出电⼦对试剂,就是路易斯碱(Lewis base)亲核试剂。

4、试剂的分类标准Br→CH OCH 在离⼦型反应中,亲电试剂和亲核试剂是⼀对对⽴的⽭盾。

如:CHONa + CH3333-++-是亲核试剂。

这个反应究竟是亲和BrO是亲电试剂,⽽的反应中,+ NaBrNa和CHCH33反应还是亲核反应呢?⼀般规定,是以在反应是最先与碳原⼦形成共价键的试剂为判断标准。

--是亲核试剂,因此该反应属于亲CH在上述反应中,是O最先与碳原⼦形成共价键,OCH33核反应,更具体地说是亲核取代反应。

有机化学期末考试总结

有机化学期末考试总结

有机化学期末考试总结烃及烃的衍生物的命名烃及烃的衍生物的系统命名(即IUPAC法)总原则:最长碳链,最小编号,先简后繁,相同合并。

名称一般由4部分组成:构型+取代基的位置和名称十母体名称+主要官能团的位置和名称。

1.主链选择:选择含“母体”官能团的最长碳链为主链(烷烃则以取代基最多的最长碳链为主链),称某烷、烯、醇、酮、醛、羧酸等。

2.碳链编号:从靠近“母体”官能团最近的一端开始编号(烷烃则以离取代基最近端开始编号);若分子中仅含有双键和三键时,应以官能团的位次和最小为原则编号。

双键和三键位于相同位次时,宜给双键最小的编号,繁杂的取代基可另行编号。

书写:先简后繁,相同的取代基合并,取代基含官能团时,书写次序一般按以下“母体选择次序”书写。

在多官能团化合物名称中应按“母体”选择次序,在前的先写,并注明位次(同时应注意短横、逗号的使用)。

若词尾仅为“几烯几炔”时.不管炔键在主链的位置如何,炔总是放在名称最后。

4.脂环化合物主链选择及编号:环烷编号从最简单的取代基开始,当环上含有其他官能团时,则以“母体”选择次序为原则,编号从与“母体”官能团相连的碳开始。

5.芳环化合物的命名:环上有多种取代基时,按母体选择次序,排在前面的为母体,并依次编号,取代基位次和应最小。

稠环芳烃、萘、蒽、菲从a碳开始编号。

杂环芳烃一般从原子序数较大的杂原子开始编号。

母体选择次序:季胺碱(盐)或正离子>羧酸>磺酸>酯>酰卤>酰胺>脒>腈>醛、酮>醇>酚>硫醇>胺>亚胺>醚>硫醚>卤素>硝基)>烯、炔>烷>芳烃在多官能团化合物的命名中,按上述母体选择次序,排在前面的为母体,后面的为取代基。

烷基大小次序按原子序数大小逐个依次比较:异丙基>异丁基>异戊基>己基>戊基>丁基>丙基>乙基>甲基立体异构体的命名1.烯烃:与双键直接相连的原子或基团,按其原子序数大小比较(若第一个原子相同时可逐个依次比较),较大的原子或基团位于同侧的为Z构型,位于反侧的为E构型。

有机化学复习总结

有机化学复习总结

2、α—氢反应
1)羟醛缩合(具有α—氢的醛,稀碱催化, 生成β-羟基醛或α,β-不饱和醛) 注意:碳链的连接方式:α—C与羰基碳
交叉羟醛缩合 :
一种具有α—氢的醛而另一种 没有α—氢的醛之间可以进行羟醛缩合
2)α—氢卤代
生成卤代醛酮 ,如丙酮+Cl2/CH3COOH
甲基醛酮(CH3CO—R)与I2-NaOH溶液反应生成 黄色沉淀,用于鉴别;特别注意部分醇也可以反应)
2、生成羧酸衍生物:4类羧酸衍生物的制备
3、α—氢卤代:Cl2 / P 4、脱羧反应:
NaOH-CaO条件下脱羧 β-二羧酸的脱羧反应 (包括β-羰基羧酸的脱羧反应)
5、甲酸:银镜反应; 草酸:被KMnO4氧化(KMnO4退色)
四、制备:
1、醇氧化;
2、卤代烃与氰化钠作用后的产物水解 3、Grignard试剂与CO2作用
3、α —氢反应: 卤代(500℃) :制备卤代烃
二、烯烃的来源与制备 1、石油裂化气 2、卤代烃脱卤化氢 (NaOH—醇,加热: 查衣采夫规则) 3、醇脱水(酸催化:查衣采夫规则) 二烯烃和炔烃 一、二烯的化学性质
1、1,4-加成和1,2-加成(两种产物); 制备卤代烃
2、双烯合成( 共轭二烯与顺酐反应,生成沉淀: 鉴别双烯 二、炔烃的化学性质 1、加成反应:
3、与金属镁反应(Grignard试剂生成)
Grignard试剂的应用:重要
乙烯型卤代烃(特别不活泼, 不容易发生取代反应)
第九章:醇、酚 醇 一、命名 二、物理性质:分子间氢键,沸点较高
三、化学性质:
1、酸碱性(Na反应,放出气体; 与浓硫酸反应:可用于鉴别) 2、与HX反应生成卤代烃(HCl-ZnCl2;HBrH2SO4;HI;PCl3;PCl5。用HCl-ZnCl2鉴别伯、 仲、叔醇)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机化学期末考试总

有机化学期末考试总结
烃及烃的衍生物的命名
烃及烃的衍生物的系统命名(即IUPAC法)
总原则:最长碳链,最小编号,先简后繁,相同合并。

名称一般由4部分组成:构型+取代基的位置和名称十母体名称+主要官能团的位置和名称。

1.主链选择:选择含“母体”官能团的最长碳链为主链(烷烃则以取代基最多的最长碳链为主链),称某烷、烯、醇、酮、醛、羧酸等。

2.碳链编号:从靠近“母体”官能团最近的一端开始编号(烷烃则以离取代基最近端开始编号);若分子中仅含有双键和三键时,应以官能团的位次和最小为原则编号。

双键和三键位于相同位次时,宜给双键最小的编号,繁杂的取代基可另行编号。

书写:先简后繁,相同的取代基合并,取代基含官能团时,书写次序一般按以下“母体选择次序”书写。

在多官能团化合物名称中应按“母体”选择次序,在前的先写,并注明位次(同时应注意短横、逗号的使用)。

若词尾仅为“几烯几炔”时.不管炔键在主链的位置如何,炔总是放在名称最后。

4.脂环化合物主链选择及编号:环烷编号从最简单的取代基开始,当环上含有其他官能团时,则以“母体”选择次序为原则,编号从与“母体”官能团相连的碳开始。

5.芳环化合物的命名:环上有多种取代基时,按母体选择次序,排在前面的为母体,并依次编号,取代基位次和应最小。

稠环芳烃、萘、蒽、菲从a碳开始编号。

杂环芳烃一般从原子序数较大的杂原子开始编号。

母体选择次序:
季胺碱(盐)或正离子>羧酸>磺酸>酯>酰卤>酰胺>脒>腈>醛、酮>醇>酚>硫醇>胺>亚胺>醚>硫醚>卤素>硝基)>烯、炔>烷>芳烃
在多官能团化合物的命名中,按上述母体选择次序,排在前面的为母体,后面的为取代基。

烷基大小次序按原子序数大小逐个依次比较:
异丙基>异丁基>异戊基>己基>戊基>丁基>丙基>乙基>甲基
立体异构体的命名
1.烯烃:与双键直接相连的原子或基团,按其原子序数大小比较(若第一个原子相同时可逐个依次比较),较大的原子或基团位于同侧的为Z构型,位于反侧的为E构型。

2.环状化合物:以“较优”基团作为参照标准,“参照基团”以r表示,环上的取代基和较优基团位于同侧的构型为“顺式”.位于反侧的构型为“反式”。

化合物名称词尾有取代基时,则以此为对照基。

3.手性碳的构型标记:按次序规则,将手性碳相连的四个基团按先后次序排列(最小基团或原子放在离视线最远处,其他的三个基团对着自己),其中三个基团或原子递减排列次序顺时针的为R构型,反
时针的为S构型(环状化合物可采取费歇尔投影式,对着三个较大基团投影成R3R2
1,然后照上述规则定
其构型。

4.基团的优先顺序规则:
(1)双键碳(氮)或手性碳所连的原子或基团,原子序数大的优先;同位素以质量数大的优先,孤对电子为最小基团;若第一个原子相同时,可逐个依次比较。

(2)双键、三键可当作连有二、三个相同的单键原子看待。

(3)手性碳化合物当分子碳链两端编号相同时,R构型优先于S构型(如;RR或SS优先于RS或SR)。

环状化合物以顺式构型优先于反式构型,烯则以Z构型优先于E构型的原则对碳链进行编号。

(4)分子中立体异构和旋光异构同时存在时,应同时标出,写在全名称最前面,并加以标号。

烯烃小结
(2)氧化反应
炔烃小结
(2)1,2加成与1,4加成
3. 1、2加成与1、4加成的比例,决定于反应条件:
①温度:低温时,1、2加成产物多。

高温时,1、4加成产物多②溶剂极性:丁二烯 + Br2 [极性溶剂(冰乙酸),1、4加成70%(4℃)[非极性溶剂(正己烷),1、4加成46%(-15℃)
③反应时间:时间长,1、4加成产物比例大,产物稳定。

芳烃的化学性质小结
(以苯为例)
萘化学性质小结
化学性质小结
脂环烃化学性质小结
脂环烃的化学性质可简单地概括为:小环似烯,大环似烷。

三、四元环化合物不稳定,尤其是三元环特别容易开环,起加成反应,五、六元环最稳定。

(3)氧化反应
常温下,环烷烃不被氧化,在加热、催化剂或强氧化剂的作用下可氧化成二元酸:
卤代烃化学性质小结
(1)卤代烷性质
开环反取代反
(2)格氏试剂合成法
醇、酚的化学性质小结
(1)醇的性质
(2)酚的性质
醛酮醌小结(1)醛酮的制备
(2)醛酮的化学性质
3)α,β-不饱和醛酮反应中的1,2-加成与1,4-加成
(4)重要人名反应和试剂
1.Sarrett试剂
2.费兹纳(Pfitzner)莫发特(Moffatt)试剂-二环已基碳二亚胺
3.Tollens reagent 4.Fehlings solution 5.Michael反应6.Gattermann-Kock反应7.Rosenmund还原
8.Wollf-Kishner-黄鸣龙还原9.Clemmensen还原
10. Cannizzaro反应
11. Wittig反应
羧酸及其衍生物化学性质小结
(1)羧酸的性质
(2)α、β不饱和酸
(3)二元羧酸脱羧反应
含氮化合物化学性质小结
碳水化合物小结
有机合成题的解题思路
解答有机合成题目的关键在于:
1.选择合理简单的合成路线
2.熟练掌握各类有机物的组成、结构、性质、相互衍生关系以及重要官能团的引进和消去等基础知识。

有机合成路线的推导,一般有两种方法;一是“直导法”;二是“反推法”。

比较常用的是“反推法”,该方法的思维途径是:
(1)首先确定所要合成的有机产物属何类别,以及题中所给定的条件与所要合成的有机物之间的关系;
(2)以题中要求最终产物为起点,考虑这一有机物如何从另一有机物甲经过一步反应而制得。

如果甲不是所给的已知原料,再进一步考虑甲又是如何从另一有机物乙经一步反应而制得,一直推导到题目中给定的原料为终点;
(3)在合成某一种产物时,可能会产生多种不同的方法和途径,应当在兼顾原料省、产率高的前提下选择最合理、最简单的方法途径。

有机化合物的转化及合成方法
有机化合物的转化及合成,一般是以简单化合物为原料制备结构比较复杂的化合物,有时候是由大分子化合物断链变为小分子化合物。

这一类问题涉及的知识面较广,熟练掌握有机化合物各类官能团之间的转化关系、增长和缩短碳的方法,是设计和选择合成或转化路线的基础。

设计合成路线,一般是从分析被合成物的结构开始,可以采用“倒推法”,从产物倒推到原料,从而得到所需化合物的方法。

若被合成物结构比较复杂,可用“切断法”把它分成几部分,然后再用倒推得方法从产物推到原料,用适当方法得到所需得碳骨架,再形成碳骨架得过程中,有可能同时得到所需得官能团,若不能一举两得,再设法引入官能团。

要熟练掌
握增长和缩短碳链的方法以及在合成中常用的方法及化合物,如炔烃的烷基化反应、格氏试剂、芳香重氮盐等在有机合成中的应用。

1.炔烃的烷基化具有炔氢的炔烃可与氨基钠反应生成相应的炔钠,炔钠与卤代烷反应得到烷基取代的炔烃,可增长碳链,制备一系列高级炔烃。

2.格氏试剂法格氏试剂在有机合成中应用极为广泛,它与环氧乙烷、醛、酮、酯反应可用来制备不同结构的醇等。

这些反应既可增长碳链,又可形成所需的官能团。

3.重氮盐取代法芳香重氮盐的重氮基可被氢原子、卤素、羟基、氰基取代,由于苯环上原有取代基定位效应的影响而使某些基团不能直接引入苯环时,可采用重氮盐取代的方法。

要注意被不同基团取代时的反应条件。

有指定原料推测化合物例题
由指定的原料合成有机化合物
分析:对于由指定的有机物来合成化合物这样的试题,无机试剂可任选。

我们来分析目标物--间苯二甲酸,间苯二甲酸分子中,苯环上有二个羧基(-COOH),而羧基是一个间位定位基,并且羧基不能直接导入苯环,须采取其它方法,例如先导入烷基(甲基或乙基),然后氧化成羧基。

因此,这个合成,须先导入一个烷基生成烷基苯,而烷基是一个邻对位定位基,必须把它转化成间位定位基后(氧化成羧基),再发生下一步反应(再导入一个烷基),最后再氧化得到需要的目标分子:
如果由苯为起始原料合成对苯二甲酸,则根据定位规律,应先烷基化,最后再氧化,其反应过程如下:
推测结构例题
一芳香化合物A的分子式为C7H8O,A与钠不发生反应,但可与浓碘酸反应得到B和C。

B能溶于氢氧化钠溶液,并能与三氯化铁溶液作用显紫色;C可与硝酸银的醇溶液作用得到碘化银沉淀。

推测A、B、C的结构式,并写出有关反应方程式。

分析:该化合物为芳香烃和衍生物,而其分子中只含有7个碳原子(从其分子式可看出),因此,它可能含有一个苯环而不可能含有萘环。

而一个苯环占用6个碳原子,剩下只的一个碳原子(另外还有一个氧原子),这一个碳原子可以以-CH3、-OCH3等方式与苯环相连,根据其分子式可知,该化合物的结构式只可能为下面几种中的一种:
A不与钠发生反应,说明A不是酚,即不能为(Ⅰ),因为酚可以和钠作用生成酚钠,A可以与浓碘酸作用生成的产物B能溶于氢氧化钠溶液,说明B具有酸性,说明B可能
为酚或羧酸,又因为B与三氯化铁作用显紫色,进一步说明B为苯酚(只可能是苯酚,因A 只有7个碳原子,生成碘代烷中至少应的一个碳原子),而C能与硝酸银的醇溶液作用,说明C为碘甲烷(因苯环占用6个碳原子,分子中只有7个碳原子),由B、C的结构可以推测A为苯甲醚,A、B、C的结构分别为:
有关反应式如下:。

相关文档
最新文档