实数教学设计4 北师大版〔优秀篇〕
实数全章教学设计北师大版
2.拓展建议:
(1)让学生阅读数学绘本,通过故事的形式了解实数的概念和应用,提高学生的学习兴趣。
(2)让学生阅读科普文章,了解实数在现实世界中的重要性,提高学生的数学应用意识。
(3)利用网络资源,让学生自主学习实数相关的知识,通过练习题进行巩固。
(5)教师可组织课后讨论或展示活动,让学生分享自己的拓展学习成果,促进学生之间的相互学习和交流。
(6)教师应鼓励学生积极参与拓展学习,培养学生的自主学习能力和批判性思维能力。
(7)教师应关注学生的学习态度和表现,及时调整拓展学习的内容和难度,以适应学生的个性化学习需求。
八、课堂小结,当堂检测
1. 课堂小结:
七、课后拓展
1.拓展内容:
(1)阅读材料:推荐学生阅读与实数相关的数学故事、科普文章、数学历史等,如《数学家的故事》、《数学与生活》等,增强学生对实数的理解和兴趣。
(2)视频资源:推荐学生观看与实数相关的数学教学视频、纪录片等,如《数学的力量》、《数学之美》等,帮助学生更直观地理解实数的概念和应用。
(3)在线学习平台:鼓励学生登录在线学习平台,如“中国大学MOOC”、“Coursera”等,选择实数相关的课程进行自主学习,提高学生的数学素养。
(4)数学竞赛与活动:鼓励学生参加数学竞赛、数学建模活动等,锻炼学生的数学思维和实际应用能力。
(5)实地考察与实验:组织学生进行实地考察或实验,如测量长度、计算面积等,让学生亲身体验实数的应用。
2.拓展要求:
(1)学生自主选择拓展内容,根据自己的兴趣和学习进度进行学习和探索。
(2)学生可以进行小组讨论或与他人交流,分享自己的学习心得和发现。
北师大版数学八年级上册2.6《实数》教案
三、教学难点与重点
1.教学重点
-实数的定义:理解实数的概念,掌握实数包括有理数和无理数。
-实数的性质:掌握实数的封闭性、有序性、完备性等核心性质。
-实数的运算:熟练掌握实数的四则运算,特别是乘方和开方的运算规则。
北师大版数学八年级上册2.6《实数》教案
一、教学内容
本节课选自北师大版数学八年级上册第二章第六节《实数》。教学内容主要包括以下几部分:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数等。
2.无理数的概念:介绍无理数的定义,如π、e等,以及无理数的性质和表示方法。
3.实数的性质:探讨实数的封闭性、有序性、完备性等特性。
-实数与数轴的关系:理解实数与数轴上点的对应关系,能够用数轴表示实数。
举例:重点讲解无理数的概念,如π和e,并强调它们是实数的一部分,通过具体的例子(如圆的周长与直径比是π)来加深学生对实数性质的理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-实数的运算:特别是无理数的运算,学生对运算规则和步骤不够熟悉。
3.重点难点解析:在讲授过程中,我会特别强调实数的定义和性质这两个重点。对于难点部分,如无理数的理解,我会通过举例(如π、√2等)和比较(无理数与有理数的区别)来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的估算、实数在数轴上的表示等。
-实数与数轴的联系:学生可能难以将实数的概念与数轴上的点联系起来,对数轴上的无理数位置把握不准确。
康县师院附中八年级数学上册 第二章 实数 4 估算教案 北师大版
4 估算1.能通过估算检验计算结果的合理性.2.能估计一个无理数的大致范围;通过估算比较两个数的大小.3.通过教学过程的参与,培养学生学习数学的主动性,发展学生数感.重点估计一个无理数的大致范围.难点通过估算比较两个数的大小.一、情境导入师:自从“第一次数学危机”,即古希腊人希伯索斯发现了无理数以来,人们对无理数的探究就从来没有停止过,而比较两个无理数的大小,对无理数的估算,则是其中重要内容之一.无理数是无限不循环小数,所以无法写出某个无理数,人们想到了用符号准确地表示一个无理数,如π等,但这给它们的大小比较和估算带来了一定的困难,那么如何通过估算来比较两个无理数的大小呢?这节课我们就来研究它们.(板书:估算.)二、探究新知1.估算的方法.课件出示题目:某地开辟了一块长方形的荒地,新建一个环保主题公园.已知这块荒地的长是宽的2倍,它的面积为400 000 m2.此公园的宽是多少?长是多少?解:设公园的宽为x m,则它的长为2x m,由题意得x·2x =400 000,2x2=400 000,x2=200 000.所以公园的宽x就是200 000的算术平方根.师:(1)如果要求结果精确到10 m,它的宽大约是多少?与同伴进行交流.(2)该公园中心有一个圆形花圃,它的面积是800 m2,如何估计它的半径?(结果精确到1 m)分析:(1)我们可以把这个长方形看成是由两个正方形拼接成的,那么,每个正方形的面积为200 000 m2,大家估计一下,哪个数的平方是200 000?100的平方为10 000,1 000的平方为1 000 000,所以公园的宽大约几百米,没有1 000 m宽,精确到10 m,我们可以计算一下450的平方.(2)圆形花圃的面积是800 m2,800除以3.14约等于255,大约为16的平方,所以圆形花圃的半径大约是16 m.2.比较大小.课件出示教材第33页“议一议”.学生分组讨论,教师深入到各组中指导学生讨论.三、举例分析1.课件出示教材第33页例题.分析:根据题意作示意图,数形结合,再利用勾股定理列方程求解.2.课件出示教材第34页“议一议”.学生分组讨论后回答.拓展:确定无理数近似值的方法(估算法).(1)当被开方数在1~1 000以内时,可利用乘方与开方为互逆运算来确定无理数的整数部分,然后根据所要求的精确度大小确定小数部分.(2)当被开方数是正的纯小数或比1 000大时,利用方根与被开方数的小数点之间的规律,移动小数点的位置,将其转化到被开方数在1~1 000以内进行估算,即平方根中的被开方数的小数点向左(或向右)每移动2n (n是正整数)位,其结果的小数点相应地向左(或向右)移动n位;立方根中的被开方数的小数点向左(或向右)每移动3n(n是正整数)位,其结果的小数点相应地向左(或向右)移动n位.四、练习巩固教材第34页“随堂练习”第1~2题.五、小结1.确定无理数近似值的方法——估算法.2.比较无理数大小的方法:(1)估算法;(2)作差法;(3)平方法;(4)移动因式法;(5)倒数法;(6)作商法.六、课外作业教材第34~35页习题2.6第1~6题.这节课的内容是让学生掌握估算的方法,训练他们的估算能力.由于学生在生活中接触用估算解决实际问题的情况比较少,所以比较陌生,学习起来难度就比较大,因此在教学中选取学生熟悉的问题,激发学生的学习兴趣.比如,本节课的教学中选取了“新建环保公园”的问题,与学生平时的生活密切联系,容易把学生的积极性调动起来.2 平行四边形的判定第1课时平行四边形的判定(1)【知识与技能】1.会证明平行四边形的2 种判定方法;2.理解平行四边形的这两种判定方法,并学会简单运用.【过程与方法】在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.【情感态度】通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.【教学重点】平行四边形判定方法的探究、运用.【教学难点】平行四边形判定方法的运用.一.情景导入,初步认知1.平行四边形的定义是什么?它有什么作用?2.平行四边形还有哪些性质?【教学说明】教师提出问题,由学生独立思考,并回答定义正反两方面的作用,总结出平行四边形的其他几条性质.二.思考探究,获取新知探究1:平行四边形的判定定理1.用两对长度分别相等的笔,能否在平面内用这四根笔摆成一个平行四边形?你能说明你所摆出的四边形是平行四边形吗?【教学说明】通过学生的互相交流,口述其推理论证的过程.根据学生的认知水平,教师应估计到学生可能会在推理论证时遇到困难,所以应加以适当引导.【归纳结论】两组对边分别相等的四边形是平行四边形.探究2:平行四边形的判定定理2.请利用两根长度相等的笔能摆出以笔顶端为顶点的平行四边形.你能说明你所摆出的四边形是平行四边形吗?【归纳结论】一组对边平行且相等的四边形是平行四边形.三.运用新知,深化理解1. 如图,在平行四边形ABCD中,E.F分别是AD、BC的中点.求证:四边形BFDE是平行四边形.证明:∵四边形ABCD是平行四边形∴AD=CB,AD//BC.又∵E.F分别是AD、BC的中点,∴ED=12AD,BF=12BC.∴DE=BF.又∵ED∥BF,∴四边形BFDE是平行四边形.2.如图,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_____________________,理由分别是_________________________、___________________________.答案:四边形ABCD,四边形CDEF;一组对边平行且相等的四边形是平行四边形,两组对边分别相等的四边形是平行四边形.3.如图,E.F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:_______________,使四边形AECF是平行四边形.答案:BE=DF或∠BAE=∠DCF等任何一个均可.4.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:__________________.答案:①AD∥BC,②AB=CD,③∠A+∠B=180°,④∠C+∠D=180°等.5.如图,在□ABCD中,已知M和N分别是边AB.DC的中点,试说明四边形BMDN也是平行四边形.证明:∵□ABCD,∴AB CD.∵M.N是中点,∴BM=12AB,DN=12CD.∴BM DN.∴四边形BMDN也是平行四边形.【教学说明】学生在思考的过程中逐步熟悉平行四边形的定义,并知道举一反三,掌握证明平行四边形的方法.四.师生互动,课堂小结(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?(2)我们是通过什么方法得出平行四边形的这几种判定方法的?这样的探索过程对你有什么启发?(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.五.教学板书布置作业:教材“习题6.3”中第1、2、3题.本节课在引入的环节上,采用复习引入的方式.首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫.知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课判定方法的得出都非常重视知识的发生、形成过程,让学生亲历了类比、观察、实验、猜想、验证、推理的整个过程,培养学生的探究能力,发展学生的合情推理能力.学生把所学知识灵活地加以运用,有效地激发了学生的学习兴趣,提高了学习效率.数学的学习要重视学习方法的指导.本节课通过由浅入深的练习和灵活的变式,引导学生善于抓住图形的基本特征和题目的内在联系,达到触类旁通的效果.第十五章分式15.1 分式【知识与技能】理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.【过程与方法】在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.【情感态度】进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为 .思考2 式子S/a 、V/S 与10/7,200/33有什么区别?它们与100602020v v+-,有什么共同点?谈谈你的看法. 【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式. 问题2(1)使分式11x - 有意义,则x 的取值有什么要求? (2)使分式A/B 有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B 有意义时,必有B ≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式. 例2填空:(1)当x 时,分式23x有意义? (2)当b 时,分式153b -有意义? (3)当x ,y 满足关系 时,分式x y x y+-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b-有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y +-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n -+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.。
八年级数学上册实数教案北师大版
教案:八年级数学上册实数教案北师大版一、教学目标1. 知识与技能:(1)理解实数的定义及分类;(2)掌握实数的性质,如整数、分数、有理数和无理数之间的关系;(3)能够运用实数的性质进行简单的运算和问题解决。
2. 过程与方法:(1)通过实例和问题,引导学生认识实数并进行分类;(2)利用数轴和符号表示实数,帮助学生理解实数的概念和性质;(3)通过小组讨论和探究活动,培养学生的合作能力和问题解决能力。
3. 情感态度与价值观:(1)培养学生的数学思维和逻辑推理能力;(2)激发学生对数学的兴趣和好奇心;(3)培养学生勇于探索和坚持真理的精神。
二、教学重点与难点1. 教学重点:(1)实数的定义和分类;(2)实数的性质和运算;(3)实数在数轴上的表示方法。
2. 教学难点:(1)实数的无理数和无限不循环小数的概念;(2)实数的乘法和除法运算规则;(3)实数在实际问题中的应用。
三、教学准备1. 教师准备:(1)教材和相关参考资料;(2)多媒体教具和教学软件;(3)实数的相关例题和练习题。
2. 学生准备:(1)掌握前置知识,如分数、整数等;(2)准备笔记本和文具;(3)积极参与课堂讨论和实践活动。
四、教学过程1. 导入新课:(1)引导学生回顾前置知识,如分数、整数等;(2)提出问题,引发学生思考:是否存在一种数,它既不是整数也不是分数?(3)引入实数的概念,激发学生的好奇心。
2. 自主学习:(1)学生自主阅读教材,了解实数的定义和分类;(2)学生通过数轴和实例,理解实数的概念和性质;(3)学生完成相关的练习题,巩固所学知识。
3. 课堂讲解:(1)教师讲解实数的定义和分类,如整数、分数、有理数和无理数;(2)教师讲解实数的性质,如加法、减法、乘法和除法运算规则;(3)教师通过实例和问题,引导学生理解和运用实数的性质。
4. 课堂练习:(1)学生完成教材中的练习题,巩固所学知识;(2)学生进行小组讨论和探究活动,解决实际问题;(3)教师给予评价和指导,帮助学生提高解题能力。
北师大版八年级数学上册《实数》精品教案
《实数》精品教案●教学目标:知识与技能目标:1、了解实数的意义,能对实数按要求进行分类2、了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.3、了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.过程与方法目标:1、在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
2、能够逐步培养分析和归纳概括的能力,了解辩证统一的思想。
情感态度与价值观目标:1、在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
2、了解数系扩展对人类认识发展的必要性●重点:1、了解实数意义,能对实数进行分类;2、在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3、明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
●难点:利用数轴上的点表示无理数●教学流程:一、课前回顾1.有理数是如何分类的?分几种情况?(1)按定义可分为:正整数整数零负整数有理数正分数分数负分数(2)按数的性质可分为:正整数正有理数正分数有理数零负整数负有理数负分数任何有理数都可以化成有限小数和无限循环小数的形式2.什么是无理数?带根号的数都是无理数吗?无理数是无限不循环小数.带根号的数不一定是无理数.无理数一般有哪些形式?(1)开不尽方的数是无理数。
(2)π及含有π的数是无理数(3)有一定的规律,但不循环的无限小数是无理数。
练一练把下列各数分别填入相应的集合内:,14,π,﹣520, 0.3737737773……(相邻两个3之间的7的个数逐次加1)有理数集合无理数集合二、探究新知1、实数的定义有理数和无理数统称为实数 ,即实数可以分为有理数和无理数。
2、实数的分类(1)按定义可分为: 正有理数 有限小数和无限 有理数 零 循环小数负有理数 实数正无理数无理数 无限不循环小数 负无理数无理数和有理数一样,也有正负之分是__正__的,﹣π是__负__的 (2)按数的性质可分为: 正有理数 正实数正无理数 实数 零负有理数 负实数负无理数 三、例题解析例1、把下列各数填入相应的集合内:7.5 4 ,230.31 ,﹣π ,0.15(1)有理数集合:7.5 ,4 ,23,0.31 , 0.15(2,﹣π(3)正实数集合:7.5 4 ,23,0.31 , 0.15(4在实数范围内 ,相反数、倒数、绝对值的意义 ,和有理数范围内的相反数、倒数、绝对值的意义完全一样。
北师大版八年级数学上册第二章《实数》教案
八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。
2.无理数是_________的小数,如_________,_________,_________等都是无理数。
3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。
二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。
师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。
即有理数和无理数统称为实数。
生:也就是说实数可分为有理数和无理数。
师:对!你说的太对啦!实数从定义可分为有理数和无理数。
无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。
师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。
师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。
互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。
师:同学们回答的非常好,-2的倒数是什么?生:是-。
师:的倒数是什么?生:思考回答。
师:实数a的倒数是什么?生:是。
师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。
是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
北师大版实数教案(3篇)
第1篇教学目标1. 知识与技能目标:使学生理解实数的概念,掌握实数的分类,能够熟练进行实数的运算。
2. 过程与方法目标:通过小组合作、探究活动,培养学生的观察、分析、归纳能力,提高学生解决实际问题的能力。
3. 情感与价值观目标:让学生体会数学与生活的联系,激发学生学习数学的兴趣,培养严谨求实的科学态度。
教学重点1. 实数的概念及分类。
2. 实数的运算。
教学难点1. 实数的概念理解。
2. 实数运算的灵活运用。
教学准备1. 教材:北师大版八年级数学上册2. 课件、投影仪、电脑3. 实物教具:数轴、正方形纸片教学过程第一环节:复习导入(5分钟)1. 复习有理数的分类,引导学生回顾有理数和无理数的概念。
2. 提问:为什么需要引入实数?实数与数轴有什么关系?第二环节:新课讲授(20分钟)1. 实数的概念:- 通过数轴展示实数的概念,引导学生观察数轴上的点与实数之间的关系。
- 举例说明实数的分类:有理数、无理数。
- 讲解无理数的产生背景,如勾股定理、圆周率等。
2. 实数的运算:- 介绍实数的加、减、乘、除运算规则。
- 通过例题展示实数运算的步骤和方法。
- 强调运算过程中的符号运算和绝对值运算。
第三环节:小组合作探究(15分钟)1. 将学生分成小组,每组发放数轴、正方形纸片等教具。
2. 小组合作完成以下任务:- 利用数轴展示实数的分类。
- 通过拼图活动,探究无理数的性质。
- 比较有理数和无理数的运算特点。
第四环节:课堂小结(5分钟)1. 教师总结本节课的主要内容,强调实数的概念、分类和运算。
2. 学生回顾本节课所学知识,提出疑问。
第五环节:作业布置(5分钟)1. 完成课后练习题,巩固所学知识。
2. 搜集生活中与实数相关的实例,进行实际应用。
教学反思本节课通过引导学生观察、探究、合作,使学生理解实数的概念、分类和运算。
在教学过程中,注重培养学生的动手能力和合作意识,提高学生解决实际问题的能力。
在今后的教学中,应继续关注学生的个体差异,针对不同学生的学习需求,调整教学策略,提高教学质量。
北师大版八年级上册《实数》说课稿
北师大版八年级上册《实数》说课稿《北师大版八年级上册《实数》说课稿》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!实数(2)本节课我准备从以下几方面说起:教材分析、教法与学法、教学过程和评价与反思。
一、教材分析1、教材地位与作用本节课是北师大版初中数学八年级上册第二章第六节的内容,是初中数学的重要内容之一。
一方面,这是在学习了实数的概念和分类的基础上,对实数的进一步深入和拓展;另一方面,又为学习实数的化简奠定了基础,是进一步研究实数运算的重要性内容,因此本节课在教材中具有承上启下的作用。
通过本节课的学习让学生掌握初中阶段必备的基础知识和基本技能,培养学生动口、动手、动脑合作交流的能力,加强学生猜想、类比、归纳、转化等数学方法,培养学生探究能力和创新精神。
2、教学目标:知识目标:①了解有理数的运算法则在实数范围内仍然适用;②会用二次根式的乘除法法则进行有关实数的简单运算;能力目标:能结合具体的情景,发现并提出问题,逐步具有观察、猜想、推理的能力。
情感态度与价值观:通过创设问题情景,激发学生自主探究和积极参与意识,通过合作交流,培养学生团结协作和乐于助人的品质。
3、重点和难点:①探索二次根式乘除法法则并会应用;②熟练应用法则进行有关实数的简单运算;突破重难点的方法:通过创设具有启发性的,学生感兴趣的,有助于自主探究和合作交流的情景,并在合作过程中加以引导,使学生朝着有利于知识建构的方向发展。
二、教法与学法分析1、学情分析:对初中学生来说,他们的抽象思维和归纳能力已初步形成,希望老师创设他们自主学习的环境,给他们发表自己见解和表现自己才华的机会。
本节课我设置了很多活动,如:我会填,我会学,想一想,议一议,互相讨论和交流,你能行等。
2、教法:新课标要求教师应激发学生的积极性,向学生提供充分从事教学活动的机会,帮助他们自主探究和合作交流,为达到这一目标,结合教材和学生实际采用观察法与发现法,引导法,启发法,反馈练习等方法教学。
实数的教学设计(精编7篇)
实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。
最新北师大版八年级数学上册《实数》教学设计(精品教案)
第二章实数6.实数教学目标:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
教学难点利用数轴上的点表示无理数三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗? 意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)有理数集合无理数集合知识整理:有理数和无理数统称为实数。
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。
2022年北师大版八年级上册《实数》精品教案
6 实数【知识与技能】1.了解实数的意义,在实数范围内,相反数、倒数、绝对值的意义,能对实数按要求分类.2.了解有理数的运算法那么在实数范围内仍然适用.3.了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数.【过程与方法】在学习有理数的根底上用类比的方法去解决问题,找规律,用旧知识去探索新知识.【情感态度】通过复习旧知识探索新知识,培养学生学习的生动性,敢于大胆猜测,和同学能积极交流的合作意识.【教学重点】了解实数的意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.【教学难点】用数轴上的点来表示无理数.一、创设情境,导入新课我们以前学过有理数和无理数,那什么叫有理数?什么叫无理数?请举例说明.把以下各数分别填入相应的集合内:【教学说明】在已学的有理数和无理数的根底上,顺其自然地得出实数的概念.学生很容易接受.【归纳结论】有理数和无理数统称实数,即实数可分为有理数和无理数.二、思考探究,获取新知1.在实数概念根底上对实数进行不同分类.无理数与有理数一样,也有正负之分,如3是正的,-π是负的.思考:正有理数:负有理数:有理数:无理数:〔2〕0属于正数吗?0属于负数吗?〔3〕实数除了可以分为有理数与无理数外,实数还可怎样分?【教学说明】“思考〞是使学生明确实数有两种不同的分法,加深了对概念的理解.【归纳结论】实数还可以分为正实数、0、负实数.2.了解实数范围内相反数、倒数、绝对值的意义.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样吗?【教学说明】在有理数的相反数、倒数、绝对值意义的根底上学习实数范围内相反数、倒数、绝对值的意义,毫无疑问地给了学生一把拐杖,为后面的学习起了导航作用.3.有理数的运算法那么和运算律在实数范围内仍然适用.我们在有理数范围内学过运算法那么和运算律是否在实数范围内这些运算法那么和运算律还能继续用呢?【教学说明】使学生明白实数范围内的运算法那么和运算律可以在有理数的根底上直接套用,给他们的学习减轻了不少的麻烦.4.用数轴上的点来表示无理数.〔1〕如图,OA=OB,数轴上点A对应的数是什么?它介于哪两个整数之间?〔2〕你能在坐标轴上找到5对应的点吗?如果将所有的有理数都标到数轴上,那么数轴上被填满了吗?【教学说明】利用数形结合的思想让学生进一步认识了实数的分类.【归纳结论】A2,它介于1与2之间.如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数.每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.一样地,在数轴上,右边的点比左边的点表示的数大.三、运用新知,深化理解1.判断以下说法是否正确:〔1〕无限小数都是无理数;〔2〕无理数都是无限小数;〔3〕带根号的数都是无理数.2.求以下各数的相反数、倒数和绝对值.3.在数轴上作出5对应的点.【教学说明】学生独立完成加深对所学知识的理解和检测对实数分类和有关概念的掌握情况,对学生存的问题及时指导,并进行强化.四、师生互动,课堂小结1.师生共同回忆实数的两种分类,相反数、倒数、绝对值的意义等知识点.2.通过这节课的学习,你掌握了哪些知识?还存在哪些缺乏?【教学说明】引导学生回忆所学知识,进行知识提炼和系统归纳整理,有助于学生加深印象,便于理解.1.习题2.8第1、2、3题.2.完成练习册中本课时相应练习.本节内容并不复杂,很大局部是借助旧知识学习新知识,绝大局部同学掌握得很好.但在个别问题上,如-π属于负无理数,不属于小数或分数的范围,在今后的学习中需不断完善.6.3 从统计图分析数据的集中趋势一、学生知识状况分析学生的知识技能根底:学生在前面的数学学习中,已掌握了条形统计图、扇形统计图等统计图的画法,并能从条形统计图、扇形统计图等统计图表中获取信息,解决一些相关问题。
《实数》word教案 (公开课)2022年北师大版 (4)
2.5.2 实数〔二〕教学设计一、教材分析实数〔第2课时〕是义务教育课程标准北师大版实验教科书八年级上册第二章?实数?第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法那么,运算律等,并利用这些运算法那么、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法那么、运算率提供了知识根底。
当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的根底情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标〔1〕了解有理数的运算法那么在实数范围内仍然适用.〔2〕用类比的方法,引入实数的运算法那么、运算律,并能用这些法那么、运算律在实数范围进行正确计算.〔3〕正确运用公式: b a b a ⋅=⋅〔a ≥0,b ≥0〕 ba b a=〔a ≥0, b >0〕 这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标〔1〕通过具体数值的运算,发现规律,归纳总结出规律.〔2〕能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法那么,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点〔1〕用类比的方法,引入实数的运算法那么、运算律,能在实数范围内正确运算. 〔2〕发现规律:b a b a ⋅=⋅〔a ≥0,b ≥0〕 ba b a=〔a ≥0, b >0〕 3.教学难点〔1〕类比的学习方法.〔2〕发现规律的过程.4.教学方法〔1〕探索——交流法.〔2〕课前准备:教材、课件、电脑.电脑软件:Word ,Powerpoint .四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识稳固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法〔乘法〕交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法那么、运算律等在实数范围内能继续使用? 答:这是我们本节课要解决的新问题.意图:通过问题,回忆旧知,为导出新知打好根底。
北师大版实数教案
北师大版实数教案教案标题:引入实数概念与实数性质教学目标:1. 了解实数的概念,并能够将实数与自然数、整数、有理数进行比较。
2. 掌握实数的性质,包括实数的有序性、稠密性以及无理数的存在性。
3. 能够应用实数的性质解决实际问题。
教学内容:1. 实数的概念:引导学生了解实数的定义,将实数与其他数集进行比较,并通过实际例子说明实数的应用场景。
2. 实数的有序性:通过数轴的引入,帮助学生理解实数的大小关系,并能够根据数轴上的点表示实数。
3. 实数的稠密性:通过实际例子呈现实数的稠密特性,如介于两个实数之间总存在其他实数等。
4. 无理数的存在性:介绍无理数的概念,并通过开方运算展示无理数的存在。
教学步骤:引入部分:1. 引入实数的概念,简要解释实数与其他数集的关系和区别。
2. 展示实数的应用场景,如温度、时间、长度等,以提高学生对实数的兴趣和认知。
核心教学部分:3. 介绍数轴的概念和使用方法,帮助学生理解实数的有序性。
4. 引导学生根据数轴上的点表示实数,并进行实数的大小比较练习。
5. 通过实际问题,如简单的消费计算等,让学生应用实数的有序性解决问题。
巩固拓展部分:6. 介绍实数的稠密性,通过例题和练习加深学生对实数稠密特性的理解。
7. 引入无理数的概念,使用开方运算展示无理数的存在,并和有理数的关系进行对比。
课堂练习:1. 学生完成数轴上实数大小比较的练习题。
2. 学生解决应用实数的有序性解决实际问题的练习题。
3. 学生完成关于实数稠密性和无理数的练习题,巩固对概念和性质的理解。
教学反思:1. 通过练习题,及时发现学生的问题和困惑,并及时给予指导和解答。
2. 鼓励学生积极思考,提高对实数概念和性质的理解和应用能力。
3. 课后进行总结和复习,巩固学生对实数的理解,同时为下节课的教学做好铺垫。
北师大版八年级数学上册《实数》示范课教学设计
第二章实数2.6 实数一、教学目标1.了解实数的概念和意义,能按要求对实数进行分类.2.了解有理数的运算规律在实数范围内仍然适用.3.了解实数和数轴上的点一一对应,能找出实数在数轴上的对应位置.4.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想.二、教学重难点重点:能按要求对实数进行分类,掌握实数的运算规律.难点:利用数轴上的点来表示实数,找出实数在数轴上的对应位置.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计环节二探究新知【合作探究】教师活动:首先设计一个数集分类的活动,让学生对数集进行归类,再让学生尝试自主地进行实数的分类后进行交流.之后引导学生研究实数的其他相关概念和运算.最后设计问题,引导学生探索实数和数轴上的点的对应关系.问题:把下列各数分别填入相应的集合内.分析:(1) 32,7,2,203,5-为开方开不尽的数,所以这五个数是无理数.(2) π,0.3737737773⋅⋅⋅是无限不循环小数,所以这两个数也是无理数.(3)14,52-为分数,所以14,52-是有理数.(4)382-=-为负整数;4293=为分数.所以38-,49是有理数.预设答案:【归纳】实数的定义:有理数和无理数统称为实数,分组操作,探索实数的定义.通过数集分类活动,让学生对不同性质的数进行归类,进一步熟悉有理数和无理数的概念.即实数可以分为有理数和无理数.按定义可以将实数分为:【议一议】提问:下面集合内的数还可以怎样分?教师提示:实数的分类与有理数的分类一样,有两种不同的标准:按定义分类和按符号分类,因此,类比有理数,实数也有正负之分.教师活动:教师先展示课件内容,再让学生将上面的数分成正数集合和负数集合.预设答案:【归纳】结论:实数又可以分为正实数、0和负实数.即按正负分实数可以分为:问题:有理数范围内的一些概念是否适用于实数?预设答案:适用.结论:在实数范围内,相反数、倒数、绝对值的意义,和有理数范围内的相反数、倒数、绝对值的意义完全一样.【想一想】与________互为相反数, a 是一个实数,它的相反数为______;与________互为倒数, 当a ≠0时,那么它的倒数为 _______; |3|=|0|= |π|-=a 是一个实数,它的绝对值为:______. 预设答案: 2 ,-a ;315,1a ; 30,,π.()()()⎪⎩⎪⎨⎧-=>=0000<a a a a a a【做一做】(1)分别写出6π 3.14--,的相反数; (2)求3513--,的倒数; (3)求364-的绝对值. 预设答案:(1)若a 是一个实数,它的相反数为-a ;思考有理数范围内的相关概念在实数范围内的意义.学生思考,解答.研究实数的相反数、绝对值的相关概念和有理数相关概念的联系并得出结论.趁热打铁,进一步熟悉实数范围内相反数、倒数、绝对值的意义.∴ 6-的相反数是6;π-3.14的相反数是3.14-π.(2)当a ≠0时,它的倒数为 ; ∴5-的倒数是15- ; 313-的倒数是3113-.(3)若a 是一个小于0的实数,则其绝对值为: -a . ∴364-的绝对值是4.【观察】观察下列式子,你发现了什么? 2552⋅=⋅113535355⎛⎫⋅⋅=⋅⋅= ⎪⎝⎭()33334272472112+=+=分析:分别用到了有理数运算中的乘法交换律、 乘法结合律、分配律.结论:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.【议一议】(1)如下图,OA=OB ,数轴上点A 对应的数是什么?它介于哪两个整数之间?预设答案:解:(1)根据勾股定理,可得OB 2=12+12=2, ∴OB =2,OA =OB , OA =2.分小组进行探讨实数运算规律与有理数运算规律的联系.通过类比有理数的运算律,探讨实数的运算律、运算法则,明确实数和有理数一样,有完全一样的运算法则和运算律.引导学生探讨实数和数轴上的点的对应关系.实现数与形的结合,为后续的学习打基础.∴数轴上点A对应的数是2.∵2≈1.414,∴点A介于整数1和2之间.(2)你能在数轴上找到5对应的点吗?与同伴进行交流.预设答案:在数轴上数2的对应点处作长度为1的垂线段AB,连接原点O与点B,以原点O为圆心,OB 长为半径画弧交数轴与点2右侧一点C,则点C 即为5的对应点.【归纳】实数与数轴上的点的关系:每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.在数轴上,右边的点表示的数比左边的点表示的数大.【典型例题】1.错,对,错;解析:(1)带根号的数有可能是能开方开得尽的数,所以这句话错误.(2)所有实数的绝对值都是正数或0,而所有的正数都比0大,所以这句话正确.(3)数轴上的每一个点都表示一个实数,实数还包括无理数,所以这句话错误.2.解:在数轴上数3的对应点处作长度为1的垂线段AB,连接原点O与点B,以原点O为圆心,OB长为半径画弧交数轴与点3右侧一点C,则点C即为10的对应点.3.(1) π2,2π-,π2;(2)315-,3115,315.思维导图的形式呈现本节课的主要内容:。
北师大版《实数》教学设计
北师大版《实数》教学设计实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。
有理数可以分成整数和分数,而整数可以分为正整数、零和负整数。
下面是我为大家整理的北师大版《实数》教学设计5篇,希望大家能有所收获。
北师大版《实数》教学设计1教学目标:知识与能力1、了解无理数和实数的意义,能对实数按要求进行分类。
2、了解实数和数轴上的点一一对应,会用数轴上的点表示实数。
3、了解有理数范围内的运算法则、运算律、运算公式和运算顺序在实数范围内同样适用。
4、会进行实数的大小比较,会进行实数的简单运算。
过程与方法1、通过计算器与计算机的应用,形成自觉应用的意识,从而能应用与实数有关的运算。
2、经历作图和观察的过程,掌握实数与数轴一一对应的关系。
情感与态度1、感受数系的扩充,通过自主探究,感受实数与数轴上点的一一对应的关系,体验数形结合的优越性,发展学生的类比与归纳能力。
2、学生经历数系扩展的过程,体会到数系的扩展源于社会实际,又为社会实际服务的辩证关系。
教学重难点及突破重点1、了解实数的意义,能对实数进行分类;2、了解数轴上的点与实数一一对应,并能用数轴上的点来表示无理数。
难点1、用数轴上的点来表示无理数;2、能准确无误地进行实数运算。
教学突破通过让学生对比有理数和无理数的特点,总结无理数的概念,以加深对无理数的概念的记忆。
同时,让学生动手作图,直观展现实数和数轴的一一对应关系。
教学中通过回忆有理数的运算规则过渡到实数的运算,学生容易接受和掌握。
教学准备:直尺,圆规。
教学过程一、创设情境,导入新课1、小学学习阶段,我们学习了整数、分数和小数,均为整数,进入初一阶段,引入负数,从而把数的范围扩充到了有理数。
下面使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3、1/4 2/5 1/3 学生计算后举手回答,教师将答案书写出来。
3=3.0 0.25 0.42、问题:你发现了什么?学生回答:有理数都可以写成有限小数或者无限循环小数的形式(或任何有限小数或无限循环小数也都是无理数)。
八年级数学上册实数教案北师大版
八年级数学上册实数教案北师大版一、教学目标:1. 让学生理解实数的概念,掌握实数的分类及特点。
2. 能够正确运用实数进行运算,解决实际问题。
3. 培养学生逻辑思维能力,提高学生解决数学问题的能力。
二、教学内容:1. 实数的概念及分类:有理数、无理数、实数。
2. 实数的运算:加法、减法、乘法、除法。
3. 实数在实际问题中的应用。
三、教学重点与难点:1. 实数的分类及特点。
2. 实数的运算规律。
3. 实数在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解实数的概念、分类及运算规律。
2. 利用案例分析法,分析实数在实际问题中的应用。
3. 运用讨论法,引导学生探讨实数问题,培养学生的逻辑思维能力。
五、教学过程:1. 导入:回顾七年级学习的有理数知识,引导学生过渡到实数的学习。
2. 讲解实数的概念,阐述实数的分类及特点。
3. 讲解实数的运算规律,示范运算方法。
4. 运用案例分析,让学生理解实数在实际问题中的应用。
5. 布置作业,巩固所学知识。
7. 课后反思,针对学生的学习情况,调整教学策略。
六、教学评价:1. 课后作业:布置有关实数的运算题目,检验学生对实数运算规律的掌握程度。
2. 课堂练习:设计一些实际问题,让学生运用实数进行解答,评估学生运用实数解决问题的能力。
3. 单元测试:进行一次实数知识点的测试,了解学生对实数概念、分类和运算的掌握情况。
七、教学策略:1. 采用循序渐进的教学方法,由浅入深地引导学生学习实数知识。
2. 利用多媒体教学手段,如图片、视频等,增强课堂趣味性,提高学生的学习兴趣。
3. 创设生活情境,让学生感受到实数在现实生活中的应用,提高学生的学习积极性。
八、教学资源:1. 教材:北师大版八年级数学上册。
2. 教辅资料:实数相关习题集、案例分析资料。
3. 教学工具:黑板、粉笔、多媒体设备等。
九、教学进度安排:1. 第一课时:讲解实数的概念及分类。
2. 第二课时:讲解实数的运算规律。
北师大实数市公开课获奖教案省名师优质课赛课一等奖教案
北师大实数教案引言:实数是数学中的一个重要概念,在数学的各个领域都有广泛的应用。
实数教案是指以实数概念为基础,结合实际生活中的问题,通过教学活动来帮助学生掌握实数的性质和运算规则,以及实数在数学问题中的应用。
本教案将介绍北师大实数教案的设计与实施。
一、教学目标:1. 掌握实数的基本概念和性质;2. 理解实数的运算规则;3. 能够在实际问题中运用实数解决数学问题;4. 培养学生的逻辑思维和解决问题的能力。
二、教学内容:1. 实数的定义和表示方法;2. 实数的性质:有序性、稠密性、无理数的存在性等;3. 实数的四则运算;4. 实数的应用:线段的长度、根号2的存在性等。
三、教学过程:1. 导入:教师通过提问和实例引入实数的概念,让学生感受到实数的重要性和实际应用的意义。
2. 学习实数的定义和表示方法:a. 讲解实数的定义和符号表示法;b. 分类讲解实数的种类:有理数和无理数;c. 示范给出一些实数的例子,并让学生找出其中的有理数和无理数。
3. 学习实数的性质:a. 实数的有序性:讲解实数的大小比较和数轴表示法;b. 实数的稠密性:讲解实数的密度,即对于任意两个不相等的实数,总能找到一个实数位于它们之间;c. 实数的无理数存在性:介绍无理数的定义和无理数的存在性证明。
4. 学习实数的四则运算:a. 实数的加法与减法:讲解实数加减法的基本规则和步骤;b. 实数的乘法与除法:讲解实数乘除法的基本规则和注意事项。
5. 实数的应用:a. 用实数解决线段长度问题:教师出示一些线段长度的实际问题,让学生运用实数解决;b. 用实数证明根号2的无理性:介绍根号2的概念和无理性的证明,引导学生进行思考和讨论。
6. 总结与拓展:教师对本节课所学内容进行总结,并给出一些实数相关的拓展问题,鼓励学生自主思考和探索。
四、教学评价:1. 口头回答:教师提问学生回答一些与实数相关的问题;2. 写作练习:布置一些书面作业,让学生运用所学的实数知识进行解答;3. 实际问题解决:让学生运用实数解决生活中的实际问题,如购物、金融等方面的计算。
(北师大版)初中数学《实数》教学设计
第二章实数6.实数一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节。
本节内容主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
本节课的教学目标是:1.了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样;3.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想;4.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法;5.了解数系扩展对人类认识发展的必要性。
教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值,明确实数的运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
教学难点利用数轴上的点表示无理数三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结。
2022年北师版数学《实数》精品教案
2.6实数1.了解实数的概念,能按要求进行分类;(重点)2.能利用化简对实数进行简单的四则运算.(难点)一、情境导入毕达哥拉斯学派认为宇宙间的一切现象都能归结为整数或整数之比,即都可用有理数来描述,但后来这个学派的一位年轻成员希伯索斯(Hippasus)发现边长为1的正方形的对角线的长度不能用整数或整数的比来表示,这就引起了毕达哥拉斯学派信徒们的恐慌,为此希伯索斯招来了杀身之祸,后来被投入大海.他这一死,使得这一伟大发现的发展推迟了500多年,给数学的发展造成了不可弥补的损失.这是怎样的一个发现呢?学习了本节知识之后,你就会知道了.二、合作探究探究点一:实数的相关概念及分类把下列各数填入相应的集合内:-12,-3,23,92,-3-8,0,-π,-1173,-4.2·01·…(相邻两个1之间0的个数逐次加1).有理数集合:{ …};无理数集合:{ …};整数集合:{ …};分数集合:{ …};正实数集合:{ …};负实数集合:{ …};解析:根据有理数、无理数等的概念进行分类,应注意先把一些数化简再进行判断,如-3-8=2.解:有理数集合:{-12,92,-3-8,0,-1173,-4.2·01·,…};无理数集合:{-3,23,-π…(相邻两个1之间0的个数逐次加1),…};整数集合:{-3-8,0,…};分数集合:{-12,92,-1173,-4.2·01·,…};正实数集合:{23,92,-3-80001…(相邻两个1之间0的个数逐次加1),…}; 负实数集合:{-12,-3,-π,-1173,-4.2·01·,…}.方法总结:至今我们所学的数不是有理数就是无理数,因此可先把题目中所列各数分成这两类,再从有理数中找整数及分数,这样可分散难点,逐个突破,同时可避免重复或遗漏.探究点二:实数的性质分别求下列各数的相反数、倒数和绝对值.(1)3-64;(2)225;(3)11.解析:根据实数的相反数、倒数和绝对值的定义写出相应结果.注意(1)(2)中的两个数要先化简为整数.解:(1)∵3-64=-4,∴3-64的相反数是4,倒数是-14,绝对值是4.(2)∵225=15,∴225的相反数是-15,倒数是115,绝对值是15.(3)11的相反数是-11,倒数是111,绝对值是11. 方法总结:在实数范围内,相反数、倒数和绝对值等的意义和在有理数范围内的完全相同.探究点三:实数与数轴上点的关系 【类型一】 求数轴上的点对应的实数 如图所示,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,求点C 所表示的实数.解析:首先结合数轴和利用已知条件可以求出线段AB 的长度,然后利用对称轴的性质即可求出点C 所表示的实数.解:∵数轴上A ,B 两点表示的数分别为-1和3,∴点B 到点A 的距离为1+3,则点C 到点A 的距离为1+3,设点C 表示的实数为x ,则点A 到点C 的距离为-1-x ,∴-1-x =1+3,∴x =-2- 3.方法总结:本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C 为点B 关于点A 的对称点时,点C 到点A 的距离等于点B 到点A 的距离;两点之间的距离为两数差的绝对值.【类型二】 利用数轴进行估算如图所示,数轴上A ,B 两点表示的数分别为2,则A ,B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个解析:∵2≈,∴2,3,4,5,∴A ,B 两点之间表示整数的点共有4个.故选C. 方法总结:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.探究点四:实数的大小比较已知0<x<1,则x ,1x ,x 2,x 的大小关系为( )A .x<1x <x 2<xB .x<x 2<x<1xC .x 2<x<x<1x D.x<x 2<x<1x解析:本题可以用特殊值法求解.例如取x =14,则1x =4,x 2=116,x =12,从而可以比较其大小,116<14<12<4,即x 2<x<x<1x.故选C 项.方法总结:当直接比较大小较困难时,我们可以采用特殊值法,所取特殊值必须符合两个条件:(1)在字母取值范围内;(2)求值计算简单.而求实数的相反数、倒数、绝对值的方法与求有理数的相反数、倒数、绝对值的方法是一样的.探究点五:实数的运算计算:(1)52-π(精确到0.1); (2)(3+5)(2-1)(精确到0.01); (3)(3-216+214+364)×1(-0.1)2.解析:在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 解:(1)52+2.34-π≈12×2.24+2.34-3.14≈0.3. (2)(3+5)(2-1)≈(1.732+2.236)×(1.414-1)=3.968×0.414≈1.64. (3)(3-216+214+364)×1(-0.1)2=(-6+32+4)×10=-0.5×10=-5.方法总结:实数的运算同有理数的运算法则一样.实数运算中,无理数可选取近似值转化为有理数计算,中间结果所取的近似值要比最终结果要求的多一位小数.三、板书设计实数⎩⎪⎨⎪⎧概念及分类实数的性质实数与数轴上点的关系实数大小的比较与运算前面已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数的认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础.第1课时 定义与命题【知识与技能】 1.了解定义、命题的概念.2.能分清命题的组成,会判断一个命题的真假,学会用反例说明一个命题是假命题.【过程与方法】通过讨论、探究、交流等形式,使学生在辩论中获得知识体验. 【情感态度】在学习过程中培养学生敢于怀疑、大胆探究的品质. 【教学重点】命题的概念及真假的判断. 【教学难点】对于命题的条件和结论不十分明显,改写成“如果……那么……”形式.一、创设情境,导入新课(1)阅读新华社酒泉2013年6月11日这篇报导:神舟十号载人飞船于6月11日上午发射,……°,近地点高度为200千米,远地点高度为347千米的椭圆轨道上,实施变轨后,进入343千米的圆轨道.要读懂这段报道,你认为要知道哪些名称和术语的含义?(2)什么叫做平行线?(在同一平面内永不相交的两条直线叫做平行线).什么叫做物质的密度?(单位体积内所含某一物质的质量叫做密度).【教学说明】用熟悉的背景和提出的两个问题引入,为下面给出定义的概念得以顺理成章.二、思考探究,获取新知问题1:从以上两个问题中,你能得出什么是定义吗?并举例说明.【教学说明】通过思考、归纳得出定义的概念,并利用学生举例的形成加深对概念的理解与掌握.【归纳结论】证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.问题2:下面的语句中,哪些语句对事情做了判断?哪些没有?与同学们交流.(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.【教学说明】通过讨论、交流让学生对命题形成初步认识,安排了不是命题的问题参入,让学生逐步体会一个句子是不是命题的关键是对一件事情是否作出判断.【归纳结论】判断一件事情的句子叫做命题.如果一个句子没有对某件事情作出任何判断,那么它就不是命题.问题3:观察下列命题,你能发现这些命题有什么共同的特征?与同学们交流.(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.【教学说明】学生通过观察、思考得出命题是由两部分组成的,并掌握它们各自的概念,进一步加深了命题的理解.“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.问题4:指出下列各命题的条件和结论,其中哪些命题是错误的?你是如何判断的?与同学们交流.(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.【教学说明】进一步加深对命题组成的理解,同时学会利用自己学的知识对命题做出正确的判断.【归纳结论】正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.三、运用新知,深化理解1.命题:“垂直于同一条直线的两条直线平行”的条件是,结论是.2=b2命题(填“真”或“假”).3.下列语句不是命题的有()个①相等的角是直角;②两点之间线段最短;③煤球是白色的;④连线A、B 两点.4.下列句子哪些是命题?是命题的判断真假.①对顶角相等;②画一个角等于已知角;③两直线平行,同位角相等;④a,b两直线平行吗?⑤鸟是动物;⑥若a2=4,求a的值;⑦若|a|=|b|,则a=b.【教学说明】由学生自主完成,通过练习,使学生对知识的理解由浅入深,从感性上升到理性,及时反馈,便于发现问题、解决问题、提高课堂效率.提高45分钟的质量.【答案】1.两条直线垂直于同一条直线,这两条直线平行;2.假;3.B;4.命题有:①③⑤⑦;真命题有:①③⑤;假命题有:⑦.四、师生互动,课堂小结1.师生共同回顾定义、命题、条件、结论、真命题、假命题和反例的概念等知识点.2.谈谈你对本节课的收获.【教学说明】使学生对本节课的知识有一个完整的认识,进一步形成知识网络.不断对知识进行提炼和归纳,有助于概念的理解.1.布置作业:习题7.2中的第1、2、3题.2.完成练习册中本课时相应练习.“如果……那么……”的形式有些困难,这方面有待今后不断强化提升.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》教案
教学目标:
(一)教学知识点
1.式子b a b a ⋅=⋅ (a ≥0,b ≥0); b a b
a = (a ≥0,
b >0)的运用. 2.能利用化简对实数进行简单的四则运算.
(二)能力训练要求
1.让学生能根据实际情况灵活地运用两个法则进行有关实数的四则运算.
2.让学生能根据实例进行探索,同学们互相交流合作,培养他们的合作精神和探索能力.
(三)情感与价值观要求 1.通过对法则的逆运用,让学生体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确
定性.
2.能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会
数学的使用价值.
教学重点:
1.两个法则的逆运用.
2.能运用实数的运算解决简单的实际问题.
教学难点:
灵活地运用法则和逆用法则进行实数的运算.
教学方法:
指导探索法.
教学过程:
Ⅰ.导入新课
请大家先回忆一下算术平方根的定义.
下面我们用算术平方根的定义来求下列两个正方形的边长,以及边长之间的关系.
设大正方形的边长为a ,小正方形的边长为b .请同学们互相讨论后得出结果.
[生]由正方形面积公式得a 2=8,b 2=2.所以大正方形边长a =8,小正方形边长b =2.
[师]那么a 与b 之间有怎样的倍分关系呢?请观察图中的虚线.
[生]大正方形的面积为小正方形面积的4倍,大正方形的边长是小正方形边长的2倍.所以
8=22. [师]非常棒,那么
8根据什么法则就能化成22呢?这就是本节课的任务.
Ⅱ.新课讲解
[师]请大家回忆一下上节课学的两个法则是什么? [生]b a b a ⋅=⋅ (a ≥0,b ≥0);b a b a = (a ≥0,b >0)
[师]请大家根据上面法则化简下列式子. (1)33⨯; (2)42⨯; (3)273
;(4)1225
3⨯.
[师]请大家思考一下,刚才这位同学的步骤反过来推是否成立?即从右往左推.如 (1)3=333332⨯=⨯=能否成立?
[师].下面再分析这些式子:
.1225312253)4(;27
3273)3(;
224242)2(;
3333)1(⨯=⨯
==⨯=⨯⨯=⨯ 并和上节课的两个法则相比较,有什么不同吗?请大家交流后回答.
[生]正好和上节课的法则相反.
[师]大家能否用式子表示出来?
[生]能. b a b a ⋅=⋅b a b a =
[师]没有条件限制吗?
[生]有.第一个式子加条件a ≥0,b ≥0.第二个式子加条件a ≥0,b >0. [师]那现在能否把
8化成22呢? [生]行.222242428=⨯=⨯=⨯=.
[师]下面我们进行简单的练习. 化简: (1)27; (2)45;(3)128;(4)54;(5)932;(6)16125.
[师]被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简.那么像下面的式子
224
24221===叫不叫化简呢?
[生]叫化简. [师]能否说一下它的特征呢?
[生]原来被开方数中含有分母,化简后被开方数中没有了分母.
[师]如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,
然后把分母开出来,使被开方数中没有了分母.这也叫化简.根据刚才我们的讨论,对于两种情形可通过法则的
逆运算进行化简,那么究竟是哪两种情形呢?其实在刚才的分析中我已作过介绍,大家可否记得?
[生]记得.如果被开方数中含有分母,或者含有开得尽的因数,则可通过逆运算进行化简.
如:;339
393333131===⨯⨯= .319118218
2;214112131213;
66666621622=====⨯=⨯=⨯=⨯=
但是这也不是绝对的,有时法则的运用和法则的逆运算要相互结合才能达到化简的目的.如:
.22722492
24924910495104952=⨯=⨯==⨯=⨯ 例题讲解
[例1]化简: (1)50;(2)348-;(3)5
15-. [例2]化简:
(1)-230310⨯;(2)-ab a 101861⋅;(3)-y xy 1⋅ (4)161
5;
Ⅲ.课堂练习
化简:(1)18;(2)7533-;(3)72.
课堂测验1.化简: (1)81;(2)23;(3)2.1;(4)128;(5)9000;(6)169144121⨯.
2.化简: (1)188+;(2)24812+;(3)51
45203--; (4)325092-+;(5).3
2236--
Ⅳ.课时小结:1.若被开方数中含有分母或者含有能开得尽的因数的式子的化简.2.一般情况下应用法则
b a b a ⋅=⋅ (a ≥0,b ≥0);b a b a =(a ≥0,b >0)
或法则的逆运算的总结.3.能用上述式子正确地进行化简.
Ⅴ.课后作业
习题2.10
教学反思:实数运算的熟练并非一时就能熟练掌握的,有待另外花时间加大训练。