三段式电流保护整定计算(答案)
三段式电流保护例题
试对保护Ⅰ进行三段式电流保护整定计算
解
1 电流Ⅰ段整定计算
⑴ IⅠ =1.8KA set.1= krel · Ik.B.max =1.25* 10.5/√3 0.2+10*0.4 ⑵ 动作时间 t1 =0(s)
Ⅰ
Ⅰ
2 电流Ⅱ段整定计算
⑴
Ⅰ Ⅰ I set.2=krel
10.5/√3 * 0.2+(10+15)*0.4
Ⅰ Iset.1 = KΦ
满足要求
√3
Zs.max+z1.Lmax
EΦ
(KΦ= 2 )
10.5/√3KV √3 1.8KA= 2 · 0.2+0.4*Lmax
Lmax =6.54KM
Lmax %=6.54/10 *100%=65.4%>15%
满足要求
10.5/√3 Ⅱ Ⅱ Ⅰ Iset.1=krel*Iset.2=1.1*1.25* 0.2+(10+15)*0.4 =0.8(KA) t1 = t2 +
Ⅱ
⑶ 灵敏系数 Ksen.1 =
3 电流Ⅲ段整定计算 · kss IL.A.max = 1.2*1.5 150 ⑴ Iset.1 = Krel Kre · 0.85 * 1000 =0.32(KA)
Ⅲ Ⅲ
t = t3.max+2
▽
⑵ 动作时间 t1=t2.max
▽+
▽
⑵ 动作时间
Ⅱ
Ⅰ
t =0.5(s)
= EΦ √3 2 Zs.max.1
Ⅱ
√3 10.5/√3 = 2 0.3+10*0.4
Iset.1
Ⅱ
=1.49>1.3 满足要求
2三段式电流保护的整定及计算
2三段式电流保护的整定及计算三段式电流保护是一种常见的电力系统故障保护装置。
它主要用于检测电流超过设定值时,快速切断电源,以避免设备过载、烧坏或人身安全事故发生。
下面将详细介绍三段式电流保护的整定及计算方法。
三段式电流保护通常包括低、中、高三个阈值,分别是过载电流保护、短路电流保护以及地故障电流保护。
1.过载电流保护:用于检测设备长时间运行时的过负荷状态。
其整定值是设备额定电流的一定倍数。
根据设备的额定电流和过载倍数来计算过载电流保护整定值,公式为:过载电流保护整定值=设备额定电流×过载倍数2.短路电流保护:用于检测电路短路状态,即电流突然增大至极高值的情况。
其整定值应根据电路短路电流计算得出。
计算短路电流保护整定值需要考虑电路特性,主要包括电压、阻抗等参数。
常用的计算方法有以下两种:a.阻抗差法:根据电路的阻抗及电源电压计算短路电流。
该方法适用于阻抗较大的电路。
计算公式为:短路电流保护整定值=电压/阻抗b.零序电流法:根据电路的零序电流及电源电压计算短路电流。
该方法适用于系统中存在地故障的情况,能够考虑地回路的耦合。
计算公式为:短路电流保护整定值=电压/零序电流3.地故障电流保护:用于检测系统中的接地故障,确保故障电流不致超过安全范围。
通常情况下,地故障电流保护整定值根据系统的雷电冲击电流及接地电阻计算得出。
计算公式为:地故障电流保护整定值=雷电冲击电流×接地电阻整定三段式电流保护的关键在于准确计算保护整定值。
通常需要详细了解电力系统的参数及各个设备的特性。
根据不同系统的具体情况,也可以采用其他方法进行计算,例如考虑设备的感应熔丝特性等。
值得注意的是,三段式电流保护的整定值并非固定不变,而是需要根据系统运行情况和设备参数做动态调整。
为确保系统的可靠性和安全性,应定期对保护装置进行检查和整定。
总之,三段式电流保护是电力系统中一项重要的保护措施。
通过合理的整定及计算,能够确保保护装置在电流异常情况下的正确动作,有效防止设备过载、烧坏以及人身安全事故的发生。
三段式电流保护整定计算实例
三段式电流保护整定计算实例假设有一台变压器,其额定容量为10MVA,额定电压为10kV/400V,接线形式为YNyn0,额定电流为1000A。
现在需要对该变压器进行三段式电流保护的整定计算。
第一步是计算额定电压下的一次电流。
根据变压器的额定容量和额定电压,可以得到一次电流的公式为:I1=S/(3×U1)其中,I1为一次电流,S为变压器的额定容量,U1为变压器的高压侧额定电压。
将数据代入计算,得到一次电流I1的数值:I1=10M/(3×10k)=333.33A第二步是计算三段式电流保护的整定值。
一般情况下,三段式电流保护根据阻抗保护和方向保护进行整定。
阻抗保护整定时,通常设置不同的电流整定值和时间延迟,将整定值和时间延迟作为参数进行计算。
根据实际情况,假设保护整定参数如下:-第一段电流整定值:300A,时间延迟:0.1s-第二段电流整定值:600A,时间延迟:0.2s-第三段电流整定值:900A,时间延迟:0.3s根据整定参数,将整定值乘以一次电流,即可得到实际整定值。
计算结果如下:-第一段整定值:0.1×333.33=33.33A-第二段整定值:0.2×333.33=66.67A-第三段整定值:0.3×333.33=100A第三步是计算方向保护的整定值。
方向保护用于判断故障方向,需要根据实际情况进行整定。
一般情况下,方向保护整定值设置为一次电流的一定百分比。
假设方向保护整定值为20%。
根据方向保护的整定值,将整定值乘以一次电流,即可得到实际整定值。
-方向保护整定值:0.2×333.33=66.67A综上所述,该变压器的三段式电流保护整定值为:-第一段整定值:33.33A,时间延迟:0.1s-第二段整定值:66.67A,时间延迟:0.2s-第三段整定值:100A,时间延迟:0.3s-方向保护整定值:66.67A需要注意的是,这只是一个示例,实际的整定计算可能涉及更多的参数和考虑因素。
三段式电流保护整定计算实例
三段式电流保护整定计算实例:如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。
已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。
试对AB 线路的保护进行整定计算并校验其灵敏度。
其中25.1=I relK ,15.1=II rel K ,15.1=III rel K ,85.0=re K整定计算:① 保护1的Ⅰ段定值计算)(1590)4.0*204.5(337)(31min .)3(max .A l X X E I s skB =+=+=)(1990159025.1)3(max ,1A I K I kB I rel I op =⨯==工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。
按躲过变压器低压侧母线短路电流整定:选上述计算较大值为动作电流计算值.最小保护范围的校验:=满足要求②保护1的Ⅱ段限时电流速断保护与相邻线路瞬时电流速断保护配合)(105084025.12A I I op =⨯==×=1210A选上述计算较大值为动作电流计算值,动作时间。
灵敏系数校验:可见,如与相邻线路配合,将不满足要求,改为与变压器配合。
③保护1的Ⅲ段定限时过电流保护按躲过AB 线路最大负荷电流整定:)(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel IIIop =⨯⨯⨯⨯⨯⨯== =动作时限按阶梯原则推。
此处假定BC 段保护最大时限为,T1上保护动作最大时限为,则该保护的动作时限为+=。
灵敏度校验:近后备时:B 母线最小短路电流:)(1160)4.0*209.7(237)(3231max .)2(min .A l X X E I s s kB =+⨯=+⨯= )5.1~3.1(78.36.30611601.)2(min ..>===III op B K sen I I K 远后备时:C 母线最小短路电流为:2.197.16.3066601.)2(min ..>===III op c k sen I I K。
三段式电流保护的整定及计算
三段式电流保护的整定及计算————————————————————————————————作者:————————————————————————————————日期:2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
三段式电流保护的整定及计算
三段式电流保护的整定及计算电流保护是电力系统中非常重要的一项保护措施,它能有效地保护电路设备免受过电流的损害。
其中,三段式电流保护是一种常用的保护方式,它利用三个不同的电流阈值来触发保护动作,以实现不同级别的保护。
本文将介绍三段式电流保护的整定方法及计算过程。
一、三段式电流保护的原理三段式电流保护是基于不同的电流阈值来触发不同的保护动作,以实现多级保护的目的。
一般来说,三段式电流保护包括低灵敏度段、中灵敏度段和高灵敏度段。
低灵敏度段主要用于对电流异常的早期预警,一般设置在额定电流的80%左右。
当电流超过该阈值时,保护装置会发出警告信号,以提醒操作人员注意。
中灵敏度段是三段式电流保护的核心,一般设置在额定电流的120%左右。
当电流超过该阈值时,保护装置会迅速切断电路,以避免设备过载或短路引起的损坏。
高灵敏度段是为了应对更严重的故障情况而设置的,一般设置在额定电流的150%左右。
当电流超过该阈值时,保护装置会立即切断电路,以确保系统的安全运行。
二、三段式电流保护的整定方法三段式电流保护的整定方法一般包括以下几个步骤:1. 确定低灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将低灵敏度段的整定值设置在额定电流的80%左右。
通过实际测量和分析,确定适合的整定值。
2. 确定中灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将中灵敏度段的整定值设置在额定电流的120%左右。
通过实际测量和分析,确定适合的整定值。
3. 确定高灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将高灵敏度段的整定值设置在额定电流的150%左右。
通过实际测量和分析,确定适合的整定值。
三、三段式电流保护的计算过程三段式电流保护的整定计算可以通过以下步骤进行:1. 确定低灵敏度段的整定值:根据设备的额定电流和保护的要求,将低灵敏度段的整定值设置为额定电流乘以0.8。
2. 确定中灵敏度段的整定值:根据设备的额定电流和保护的要求,将中灵敏度段的整定值设置为额定电流乘以1.2。
三段式电流保护的整定及计算
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。
三段式电流保护整定计算(答案)
4、下图所示网络,其中各条线路均装设三段式电流保护。
试整定线路AB 装设的三段式电流保护(计算三段式电流保护中各段动作电流、动作时限并校验灵敏性).sIIIs .s x min .s x已知:线路AB 正常运行时流过的最大负荷电流为230A; B 、C 、D 母线处发生短路故障时的最大及最小短路电流分别为A k 509.1)3(max .=KB I 、A k 250.1)2(min .=KB I ,A k 722.0)3(max .=KC I 、A k 612.0)2(min .=KC I ,A k 638.0)3(max .=KD I 、A k 542.0)2(min .=KD I ;整定计算使用的可靠系数:25.1=I rel K 、1.1=II rel K 、15.1=IIIrel K ;自启动系数:5.1A =st K ;返回系数85.0=re K ;时间级差s 5.0=∆t ;并且,电流II 段的灵敏度系数应大于1.2,电流III 段作为远后备及近后备时的灵敏度系数应分别大于1。
1、1.5。
解:对保护1的三段式电流保护进行整定计算。
(1)电流I 段(瞬时电流速断保护): 动作电流计算,kA 886.1509.125.1)3(max .1.=⨯==KB I rel I op I K I 动作时限计算,s 01=I t校验灵敏性,最小保护范围计算为:%5.51%100]14886.1231153[804.01%100]23[1(%)max .1.1min .=⨯-⨯⨯⨯⨯=⋅-=s I op AB p x I E l x l φ %20~15(%)min .>p l ,可见满足要求.(2)电流II 段(限时电流速断保护):动作电流计算,(1)与保护2的I 段配合时:kA 993.0)722.025.1(1.12.1.=⨯⨯==Iop II rel II op I K I (2)与保护3的I 段配合时:kA 877.0)638.025.1(1.13.1.=⨯⨯==I op II rel II op I K I 取大者,于是kA 993.01.=IIop I动作时限计算,s 5.05.0021=+=∆+=t t t III灵敏度系数计算,26.1993.0250.11.)2(min .===II op KB se I I k ,2.126.1>=se k ,可见灵敏性满足要求。
电力系统继电保护原理期末考试试题及详细答案
电力系统继电保护原理期末考试试题及详细答案1、电力系统发生故障时,继电保护装置应将部分线路切除,电力系统出现异常时,继电保护装置一般应采取保护措施。
2、继电保护的可靠性是指保护在应该动作时确实动作,不应该动作时确实不动作。
3、瞬时电流速断保护的动作电流按大于本线路末端的整定值来确定,其灵敏性通常用于表示。
4、距离保护是一种根据距离远近确定的保护,反应的是距离。
受过渡电阻的影响最大,受过渡电阻的影响最小。
6、线路纵差动保护是通过比较被保护线路首末端电流之和的原理实现的,因此它不反应故障位置。
7、在变压器的励磁涌流中,除了有大量的直流分量外,还有大量的交流分量,其中交流分量为主。
8、目前我国通常采用以下三种方法来防止励磁涌流引起纵差动保护的误动:采用纵联变压器、采用励磁变压器、采用励磁电抗器。
1、(C)三相短路。
2、要求(A)Ksen<1.3、为了(B)外部故障切除后保护可靠返回。
4、(C)定时限过电流保护。
5、(B)方向圆阻抗继电器。
6、处于(A)动作状态。
7、应该大于1,并取可能的最小值。
8、应采用(B)方向圆阻抗继电器。
9、可能误动。
10、保护1、2将拒动。
11、变压器的电流速断保护与过电流保护配合,以反应变压器绕组及变压器电源侧的引出线套管上的各种故障。
12、双绕组变压器纵差动保护两侧电流互感器的变比,应分别按两侧额定电流选择。
三、简答题(共32分)1、主保护是指在设备故障时最先动作的保护,后备保护是指在主保护失灵时起作用的保护。
近后备保护是指与主保护在同一设备上,远后备保护是指与主保护在不同设备上。
2、根据阻抗继电器的特性,其整定阻抗最大值为测量阻抗的2倍,即7Ω。
3、比率制动特性是指继电器动作值与电流比值成正比的特性。
最大制动比是指继电器动作值与最大故障电流比值的最大值,最小工作电流是指继电器能够正常工作的最小电流,拐点电流是指继电器动作值与电流比值曲线的拐点处的电流。
4、变压器纵差动保护中,不平衡电流产生的原因是变压器电压不平衡引起的。
三段式电流保护的整定及计算
三段式电流保护的整定及计算一、引言电流保护是电力系统中非常重要的一项保护措施,它能够有效地保护电力设备和电路免受过载和短路等故障的损害。
而三段式电流保护是一种常用的保护方式,通过设置三个不同的整定值,在不同故障情况下分别触发保护动作,提高了保护的精确性和可靠性。
本文将介绍三段式电流保护的整定及计算方法。
二、三段式电流保护的整定方法1. 第一段整定值的确定第一段整定值通常用于检测系统中的过载情况,其整定值应根据所保护设备的额定电流和短时过载能力来确定。
一般情况下,第一段整定值可取设备的额定电流的 1.2倍,以确保设备在短时间内的过载情况下能够正常运行。
2. 第二段整定值的确定第二段整定值主要用于检测系统中的短路故障,其整定值应根据所保护设备的额定电流和短路能力来确定。
一般情况下,第二段整定值可取设备的额定电流的2倍,以确保设备在短路故障发生时能够及时切断电路,保护设备的安全运行。
3. 第三段整定值的确定第三段整定值主要用于检测系统中的严重短路故障,其整定值应根据所保护设备的额定电流和系统的最大短路电流来确定。
一般情况下,第三段整定值可取系统最大短路电流的 1.5倍,以确保设备在严重短路故障发生时能够迅速切断电路,有效地保护电力系统的安全运行。
三、三段式电流保护的计算方法1. 第一段整定值的计算第一段整定值的计算可根据所保护设备的额定电流和短时过载能力来进行。
例如,某设备的额定电流为100A,短时过载能力为150A,那么第一段整定值可取100A×1.2=120A。
2. 第二段整定值的计算第二段整定值的计算可根据所保护设备的额定电流和短路能力来进行。
例如,某设备的额定电流为100A,短路能力为5000A,那么第二段整定值可取100A×2=200A。
3. 第三段整定值的计算第三段整定值的计算可根据所保护设备的额定电流和系统的最大短路电流来进行。
例如,某设备的额定电流为100A,系统的最大短路电流为10000A,那么第三段整定值可取10000A×1.5=15000A。
三段式电流保护整定的计算方法
三段式电流保护整定的计算方法什么是三段式电流保护?三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段),相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
三段式电流保护整定计算实例
三段式电流保护整定计算实例假设有一条长度为100公里的输电线路,额定电压为110千伏,额定电流为500安培。
我们需要对该线路进行三段式电流保护的整定计算,以便在出现过电流时及时切断故障电路。
首先,我们需要计算出三段式电流保护的三个整定值:最低电流保护的整定电流(I1)、中电流保护的整定电流(I2)和最高电流保护的整定电流(I3)。
1.最低电流保护(I1)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I1:I1=0.25*Ie*(1+K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.22.中电流保护(I2)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I2:I2=I1+(Ie-I1)*(1+K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.23.最高电流保护(I3)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I3:I3=I1+(Ie-I1)*(1+2*K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.2根据上述计算公式,我们可以进行具体的计算:1.计算最低电流保护的整定电流(I1):I1=0.25*500*(1+0.2)=125安培2.计算中电流保护的整定电流(I2):I2=125+(500-125)*(1+0.2)=325安培3.计算最高电流保护的整定电流(I3):I3=125+(500-125)*(1+2*0.2)=525安培根据上述计算结果,我们可以将最低电流保护的整定电流(I1)设置为125安培,中电流保护的整定电流(I2)设置为325安培,最高电流保护的整定电流(I3)设置为525安培。
这样,在发生过电流故障时,三段式电流保护装置将根据整定电流来判断故障是否超过阈值,并做出相应的切除动作。
总结起来,三段式电流保护的整定计算包括计算最低电流保护的整定电流(I1)、中电流保护的整定电流(I2)和最高电流保护的整定电流(I3)。
35kv三段式电流保护整定计算举例
如图所示,线路L1、L2上均配置有三段式电流保护。
已知:系统在最大、最小运行方式下的系统电抗分别为X s.max 6.3 , X s.min 9.4;线路L1、L2的长度分别为L1=25KM , L2=62KM ; 线路每公里正序电抗为X1=0.4Ω;
保护2中定时限过电流保护的动作时限为toIIpI.2=2.5s;线路L-1的最
最小运行方式下:
Ik31
37000
9.4 0.4 25
1100 A 3
解:(1) 选择短路点并计算最大、最小短路电流
K2点短路时的三相短路电流:
最大运行方式下:
I
3
k2
6.3
37000
0.425
62
520A 3
最小运行方式下:
I
3
k2
9.4
灵敏度 满足要求。
(3)对电流保护II段,即限时电流速断保护进行整定计算 1)动作电流
II op.2
K I I rel k 2.max
1.2 520 624 A
I II op.1
K I II I rel op.2
1.1 624
686.4 A
I II opr .1
Kcon
I II op.1
2)计算保护范围、校验灵敏度
I oIp
X s.max
E X1Lmax
,
Lmax
1 X1
E I oIp
X s.max
1 37 103 0.4 1572
3
6.3
三段式电流保护的整定及计算
三段式电流保护的整定及计算三段式电流保护是一种常用的电流保护方式,它将电流保护分为三个不同的动作段,以便实现对不同故障类型的可靠保护。
三段式电流保护一般有低速段、中速段和高速段,各段的动作时间及电流整定值不同,下面将详细介绍三段式电流保护的整定及计算方法。
首先是低速段的整定及计算。
低速段主要用于保护无故障绕组和过载,通过设置较长的动作时间可以防止虚警。
低速段的整定主要依据设备的额定电流来确定,一般为额定电流的1.5倍。
动作时间的选择可以根据设备的特性和实际需求进行调整,一般为3-10s。
在计算低速段的电流保护值时,需确定设备的额定电流和对应的系数,然后将系数乘以额定电流即可得到低速段的电流保护值。
接下来是中速段的整定及计算。
中速段主要用于保护设备的短路故障,通过较短的动作时间可以快速切断故障电流,减少故障损失。
中速段的整定一般为设备的额定电流的3倍。
动作时间的选择一般为0.1-1s,根据实际情况进行调整。
在计算中速段的电流保护值时,可根据设备的额定电流乘以相应的系数即可得到中速段的电流保护值。
最后是高速段的整定及计算。
高速段主要用于保护设备的外部故障,例如地故障。
高速段的整定一般为设备的额定电流的10倍。
动作时间的选择一般为0.01-0.1s,根据实际情况进行调整。
在计算高速段的电流保护值时,可根据设备的额定电流乘以相应的系数即可得到高速段的电流保护值。
需要特别注意的是,以上整定和计算方法是根据一般情况进行的推荐,具体的整定值和动作时间还需根据实际设备情况和要求进行调整。
在实际应用中,还需考虑电力系统的可靠性和经济性,合理确定三段式电流保护的整定参数。
总结起来,三段式电流保护的整定及计算方法是根据设备的额定电流和不同段的系数来确定各段的电流保护值,同时根据设备特性和实际需求来选择动作时间。
在实际应用中还需结合电力系统的可靠性和经济性进行综合考虑,合理确定三段式电流保护的整定参数。
继电保护教学 三段式电流保护整定计算
继电保护教学三段式电流保护整定计算在电力系统的运行中,继电保护装置起着至关重要的作用,它能够迅速、准确地检测并切除故障,保障电力系统的安全稳定运行。
三段式电流保护作为一种常见的继电保护方式,其整定计算是继电保护教学中的一个重要环节。
一、三段式电流保护的基本原理三段式电流保护通常包括无时限电流速断保护(Ⅰ段)、限时电流速断保护(Ⅱ段)和定时限过电流保护(Ⅲ段)。
无时限电流速断保护的动作电流是按照躲开本线路末端的最大短路电流来整定的。
其优点是动作迅速,能够在最短的时间内切除故障,但它不能保护线路的全长。
限时电流速断保护则是为了弥补无时限电流速断保护不能保护线路全长的不足而设置的。
它的动作电流是按照躲开相邻线路无时限电流速断保护的动作电流来整定的,动作时限比相邻线路的无时限电流速断保护大一个时限级差。
定时限过电流保护的动作电流是按照躲开本线路的最大负荷电流来整定的,其动作时限按照阶梯原则整定,即从电网终端向电源侧逐级增大。
它不仅能够保护本线路的全长,还能够作为相邻线路的后备保护。
二、三段式电流保护的整定计算原则(一)无时限电流速断保护(Ⅰ段)1、动作电流的整定动作电流应躲过被保护线路末端可能出现的最大短路电流,即:\I_{op1} = K_{rel}I_{kmax}\其中,\(I_{op1}\)为无时限电流速断保护的动作电流;\(K_{rel}\)为可靠系数,一般取 12 13;\(I_{kmax}\)为被保护线路末端可能出现的最大短路电流。
2、动作时限无时限电流速断保护的动作时限为 0 秒,即瞬时动作。
(二)限时电流速断保护(Ⅱ段)1、动作电流的整定动作电流应躲过相邻线路无时限电流速断保护的动作电流,即:\I_{op2} = K_{rel}I_{op1}'\其中,\(I_{op2}\)为限时电流速断保护的动作电流;\(K_{rel}\)为可靠系数,一般取 11 12;\(I_{op1}'\)为相邻线路无时限电流速断保护的动作电流。
2三段式电流保护的整定及计算
2三段式电流保护的整定及计算三段式电流保护是用于电力系统中对过电流进行保护的一种方式。
它主要包括低电流保护、中电流保护和高电流保护三个阶段。
三段式电流保护的整定及计算是非常重要的,下面将详细介绍三段式电流保护的整定及计算过程。
整定三段式电流保护的整定包括三个方面:电流整定、时间整定和信号整定。
1.电流整定:电流整定是根据电路的额定电流以及电流变化的特点来确定保护整定值的过程。
在给定的时间范围内,对于不同电流等级的设备,设定不同的整定值。
2.时间整定:时间整定是确定过流保护在不同故障情况下的触发时间的过程。
根据故障发生的位置和电路的可靠性要求,设定不同的时间值。
一般情况下,短路故障需要立即跳闸,而过载故障可以延迟一段时间后再跳闸。
3.信号整定:信号整定是对过电流保护的判据进行整定的过程。
根据电流的大小和变化趋势来设定不同的判据。
一般情况下,电流超过设定值就会触发保护装置,但如果电流短时间内迅速增加,则需要设定更低的判据。
计算三段式电流保护的计算主要包括电流计算、时间计算和信号计算。
1.电流计算:电流计算是根据电流的大小和变化规律来确定整定值的过程。
根据电路的特点和运行要求,计算出保护装置的整定值。
一般情况下,电流计算可以通过测量设备的额定电流以及电流变换器的变比来进行。
2.时间计算:时间计算是确定过流保护装置的动作时间的过程。
根据故障的类型和电路的可靠性要求,计算出保护装置的动作时间。
一般情况下,时间计算可以通过测量设备的额定时间和电路的可靠性要求来进行。
3.信号计算:信号计算是根据电流的变化趋势来确定保护装置的判据的过程。
根据电流的大小和变化速度来计算出判据的设定值。
一般情况下,信号计算可以通过测量设备的额定电流和电流变化率来进行。
综上所述,三段式电流保护的整定及计算是根据电路的特点和运行要求,通过电流计算、时间计算和信号计算等步骤来确定保护装置的整定值、动作时间和判据设定值的过程。
只有经过合理的整定和计算,才能保证三段式电流保护的可靠性和精确性,提高电力系统的安全运行水平。
三段式电流保护计算例题
l 求:L1三段式电流保护的动作 电流、动作时限、校验 灵敏度
解:1.短路电流计算
K1点短路:
( 3) ( 1 )最大运行方式: IK 1 . max
Es 115/ 3 0.707KA X s. min X 1 LAB 62 0.4 80 Es 3 3 115/ 3 0.504KA 2 X s.max X 1 LAB 2 82 0.4 80
保护的动作时间整定:
瞬时保护动作时间: t 0
限时速段保护的动作时 间:
tA tB t tB tC t 0 0.5 0.5s
A
t 0.5 0.5 1s
定时限速段保护的动作 时间:
tA tB t 1.5 0.5 2 s
( 2) (2)最小运行方式: IK 1 . min
K 2点短路:
( 3) ( 1 )最大运行方式: IK 2 . max
Es 115/ 3 0.562KA X s. min X 1 LAC 62 0.4 140 Es 3 3 115/ 3 0.319KA 2 X s.max X 1 LAC 2 82 0.4 140
L1的第I段保护灵敏性: K sen I K 1. min 0.504 1.3(灵敏性不满足要求) I act.A 0.803
措施:改变配合(让L1的II段保护与L2的II段保护配合)
L2的第I段保护:
I act K I KA .B re1 act .C 1.1 0.226 0.248
A
( 2) (2)最小运行方式: IK 2 . min
35kV线路三段式电流保护整定计算
35kV 高压进线线三段式电流保护和整定计算对 35~63kV 线路,可按下列要求装设相间短路保护装置:1) 对单侧电源线路可采用一段或两段电流速断或电流闭锁电压速断作主保护,并应以带时限过电流保护作后备保护。
当线路发生短路,使发电厂厂用母线电压或重要用户母线电压 低于额定电压的 60%时,应能快速切除故障。
2)35kV 线路相间短路的电流保护35kV 线路继电保护的主体。
电流保护多采用三段式,即由电流速断保护、限时电流速断保护和过电流保护组成。
电流速断保护(也称为Ⅰ段)动作时间短,速动性好,但其动作电流较大,某些情况下不能保护线路全长;限时电流速断保护(也称为Ⅱ段)有较短的动作时限,而且能保护线路全长,却不能作为相邻线路的后备保护;定时限过电流保护(也称为Ⅲ段)的动作电流较前两段小,保护范围大,既能保护本线路全长又能作为相邻线路的后备保护。
7.3.1 第一段 无时限电流速断保护1) 'act.1I 应躲过进线末端K2点的最大三相短路电流整定。
'(3)1 2.max 1.2536594574 set rel k I K I A =⨯=⨯=其中: I act 保护装置的动作电流,又叫做一次动作电流(3)2,max k I ——K2点的最大三相短路电流K rel ——可靠系数,一般取1.25~1. 52) 继电器的动作电流为:``.1 LH 14574 38.12 6005CO set set K I I A K ⨯⨯=== (7.2) 其中:K co ——接线系数,本设计中取1K LH ——电流互感器TA 的变流比考虑到系统发展时仍能适应,选用DL-11/50型电流继电器,其动作电流的整定范围为12.5~50A ,故动作电流整定值为40A 。
3) 第一段的灵敏性通常用保护范围的大小来衡量,根据本设计的数据,按线路首端(d1点)短路时的最小短路电流校验灵敏系数。
.1min '.1 5196 2 0.98 1.5 4574sc d sen act I K I ===<(7.3) 其中:K sen ——灵敏系数不满足要求,因此必须进一步延伸电流速短的保护范围,使之与下一条线路的限时电流速断相配合,这样其动作时限就应该选择得比下一条线路限时速断的时限再高一个t ∆所以动作时限整定为:2t =1t +2t ∆=1.0 s (7.4)故应装设带时限电流速断保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、下图所示网络,其中各条线路均装设三段式电流保护。
试整定线路AB装设的三段式电流保护(计算三段式电流保护中各段动作电流、动作时限并校验灵敏性)。
s
III
s .s
x
min
.s
x
已知:线路AB正常运行时流过的最大负荷电流为230A;B、C、D母线处发生短路故障时的最大及最小短路电流分别为A
k
509
.1
)3(
max
.
=
KB
I、A
k
250
.1
)2(
min
.
=
KB
I,A
k
722
.0
)3(
max
.
=
KC
I、A
k
612
.0
)2(
min
.
=
KC
I,A
k
638
.0
)3(
max
.
=
KD
I、A
k
542
.0
)2(
min
.
=
KD
I;整定计算使用的可靠系数:25
.1
=
I
rel
K、1.1
=
II
rel
K、15
.1
=
III
rel
K;
自启动系数:5.1
A
=
st
K;返回系数85
.0
=
re
K;时间级差s5.0
=
∆t;并且,电流II段的灵敏度系数应大于1.2,电流III段作为远后备及近后备时的灵敏度系数应分别大于1.1、1.5。
解:对保护1的三段式电流保护进行整定计算。
(1)电流I段(瞬时电流速断保护):
动作电流计算,kA
886
.1
509
.1
25
.1
)3(
max
.
1.
=
⨯
=
=
KB
I
rel
I
op
I
K
I
动作时限计算,s0
1
=
I t
校验灵敏性,
最小保护范围计算为:
%
5.
51
%
100
]
14
886
.1
2
3
115
3
[
80
4.0
1
%
100
]
2
3
[
1
(%)
max
.
1.
1
min
.
=
⨯
-
⨯
⨯
⨯
⨯
=
⋅
-
=
s
I
op
AB
p
x
I
E
l x
lφ
%
20
~
15
(%)
min
.
>
p
l,可见满足要求。
(2)电流II段(限时电流速断保护):
动作电流计算,
(1)与保护2的I段配合时:kA
993
.0
)
722
.0
25
.1(
1.1
2.
1.
=
⨯
⨯
=
=I
op
II
rel
II
op
I
K
I
(2)与保护3的I段配合时:kA
877
.0
)
638
.0
25
.1(
1.1
3.
1.
=
⨯
⨯
=
=I
op
II
rel
II
op
I
K
I
取大者,于是kA 993.01.=II op I
动作时限计算,s 5.05.0021=+=∆+=t t t I II 灵敏度系数计算,26.1993
.0250.11.)2(min .===II op KB se I I k ,2.126.1>=se k ,可见灵敏性满足要求。
(3)电流III 段(定时限过电流保护):
动作电流计算, A 8.46623085.05.115.1max .1.=⨯⨯==L re st III rel III op I K K K I
动作时限计算,s 0.3}0.3;5.2max {};max {541==∆+∆+∆+∆+=t t t t t t t III III Ⅲ 灵敏度系数计算, 作为本线路的近后备时:7.24668
.0250.11.)2(min .===III op KB se I I k ,5.17.2>=se k ,可见灵敏性满足要求。
作为BC 线路远后备时:3.14668
.0612.01.)2(min .===III op KC se I I k ,1.13.1>=se k ,可见灵敏性满足要求。
作为BD 线路远后备时:2.14668
.0542.01.)2(min .===III op KD se I I k ,1.12.1>=se k ,可见灵敏性满足要求。