苯--甲苯板式精馏塔塔的设计

合集下载

苯—甲苯板式精馏塔的工艺设计方案

苯—甲苯板式精馏塔的工艺设计方案

化工原理课程设计说明书学院:化学化工学院专业:应用化学专业设计者:杨钱生班级:2007级07班学号:************2018年7月1日(一)设计题目设计一座苯-甲苯连续精馏塔,要求年产纯度为99.1%的甲苯1.9×104t,塔顶馏出液中含甲苯不得高于2%,原料液中含甲苯38%<以上均为质量分数)(二)操作条件1.塔顶压力4kPa<表压)。

2.进料热状态自选。

3.回流比自选。

4.塔底加热蒸汽压力0.5MPa<表压)。

5.单板压降≤0.7kPa。

(三)塔板类型筛板(四)工作日每年300天,每天24小时连续运行。

(五)厂址天津地区(六)设计类容1.精馏塔的物料衡算;2.塔板数的确定;3.精馏塔的工艺条件及有关物性数据的计算。

4.精馏塔的塔体工艺尺寸计算;5.塔板主要工艺尺寸的计算;6.塔板的流体力学验算;7.塔板负荷性能图;8.精馏塔接管尺寸计算;9.绘制生产工艺流程图;10.绘制精馏塔设计条件图;11.绘制塔板施工图<选作);12.对设计过程的评述和有关问题的讨论。

(七)设计基础数据表1-1 苯(A>-甲苯(B>饱和蒸气压<总压1.013×105Pa)温度/℃85 90 95 100 105p A*/105Pa 1.169 1.335 1.557 1.792 2.042P B*/105Pa 0.460 0.540 0.633 0.743 0.860苯-甲苯物系的气液平衡数据表1-2 x 0 0.058 0.155 0.256 0.376 0.508 0.659 0.830 1y 0 0.128 0.304 0.453 0.596 0.720 0.830 0.943 1表1-3 苯-甲苯部分温度下的密度温度/℃81.0 91.4815.9 803.5808.88 798.6设计计算设计方案的确定本设计任务为分离苯-甲苯混合物。

对于二元混合物的分离,应采用连续精馏流程。

苯_甲苯连续板式精馏塔的设计方案

苯_甲苯连续板式精馏塔的设计方案

苯-甲苯连续板式精馏塔的设计方案1.1精馏塔精馏塔是一圆形筒体,塔装有多层塔板或填料,塔中部适宜位置设有进料板。

两相在塔板上相互接触时,液相被加热,液相中易挥发组分向气相中转移;气相被部分冷凝,气相中难挥发组分向液相中转移,从而使混合物中的组分得到高程度的分离。

简单精馏中,只有一股进料,进料位置将塔分为精馏段和提馏段,而在塔顶和塔底分别引出一股产品。

精馏塔,气、液两相的温度和压力自上而下逐渐增加,塔顶最低,塔底最高本设计为筛板塔,筛板的突出优点是结构简单、造价低、塔板阻力小且效率高。

但易漏液,易堵塞。

然而经长期研究发现其尚能满足生产要求,目前应用较为广泛。

1.2再沸器作用:用以将塔底液体部分汽化后送回精馏塔,使塔气液两相间的接触传质得以进行。

本设计采用立式热虹吸式再沸器,它是一垂直放置的管壳式换热器。

液体在自下而上通过换热器管程时部分汽化,由在壳程的载热体供热。

立式热虹吸特点:▲循环推动力:釜液和换热器传热管气液混合物的密度差。

▲结构紧凑、占地面积小、传热系数高。

▲壳程不能机械清洗,不适宜高粘度、或脏的传热介质。

▲塔釜提供气液分离空间和缓冲区。

1.3冷凝器以将塔顶蒸气冷凝成液体,部分冷凝液作塔顶产品,其余作回流液返回塔顶,使塔气液两相间的接触传质得以进行,最常用的冷凝器是管壳式换热器。

1.4精馏设计方案的制定及说明1.5基础数据的搜集表1 苯和甲苯的物理性质L表8常压下苯——甲苯的气液平衡数据2.工艺计算2.1生产要求:原料液组成:苯34.5%(wt%)。

产品中:苯含量98.5% 残夜中:苯含量1%2.2塔的物料衡算:料液及塔顶.塔底产品含苯摩尔分数:011.013.92/9911.111.781987.013.925.111.785.9811.785.98383.013.925.6511.785.3411.785.34=+==+==+=w D f x x x平均摩尔质量:Mf=0.383⨯78.11+(1-0.383)⨯92.13=86.767kg/mol Md=0.987⨯78.11+(1-0.987)⨯92.13=78.29kg/mol Mw=0.011⨯78.11+(1-0.011) ⨯92.13=91.98kg/mol 物料衡算:总物料衡算 : D+W=F易挥发组分物料衡算 : D ×Xd+W ×Xw=F ×XfF=33.3*1038.03386.767=kmol/h D=14.497kmol/h W=23.536kmol/h设计成泡点进料后: min 0.6080.9871.680.3830.608F D F F y x R x y --===-- (查得Xf=0.383时Yf=0.608)2.3理论板层数NT 的求取min R =1.68由逐板计算法借助EXCEL 算出各个回流比下理论塔板数:y=0.686x+0.310 1.5100.00561 y'=1.510x-0.00561 y=0.702x+0.294 1.484 0.00533 y'=1.484x-0.00533 y=0.716x+0.280 1.461 0.00507 y'=1.461x-0.00507 y=0.729x+0.267 1.440 0.00484 y'=1.440x-0.00484 y=0.759x+0.238 1.392 0.00431 y'=1.392x-0.00431 y=0.751x+0.245 1.403 0.00444 y'=1.403x-0.00444 y=0.761x+0.235 1.387 0.00426 y'=1.387x-0.00426 y=0.771x+0.2261.372 0.00410 y'=1.372x-0.00410相平衡方程为: 2.47 1.47nn ny x y =-R NTR NT*(R+1) 1.2Rmin 21 2.016 63.3360 1.3Rmin 21 2.184 66.8640 1.4Rmin 19 2.352 63.6880 1.5Rmin 18 2.520 63.3600 1.6Rmin 17 2.688 62.6960 1.7Rmin 16 3.142 66.2656 1.8Rmin 16 3.024 64.3840 1.9Rmin 16 3.192 67.0720 2.0Rmin 16 3.360 69.7600图1 最优回流比的选择由图可得最优回流比R=1.6Rmin=2.688 由图得NT =17(包括再沸器)。

苯―甲苯精馏分离板式塔设计

苯―甲苯精馏分离板式塔设计

板式精馏塔设计任务书设计者:班级学号:指导老师:日期:一、设计题目:苯―甲苯精馏分离板式塔设计设计一座苯―氯苯连续精馏塔,要求年产纯度为99.8%的氯苯28000吨,塔顶馏出液中含氯苯不高于2%,原料液中含氯苯30%(以上均为质量分数)二、设计任务及操作条件1、设计任务:生产能力(氯苯)20000吨/年塔顶馏出液含氯苯≤2%塔顶馏出液含苯%≥98塔底釜残液含氯苯%≥998.塔底釜残液含苯%≤2.0产品纯度99.8%操作周期7200小时/年进料组成50%塔效率60%2、操作条件操作压力常压(表压)进料热状态泡点进料回流比 2塔底加热蒸气压力0.5MP(表压)单板压降:≤0.7 kPa3、塔板类型筛板4、工作日每年300天每天24小时连续运行5、厂址三、设计内容:1、精馏塔的物料衡算;2、塔板数的确定;3、精馏塔的工艺条件及有关物性数据的计算;4、精馏塔的塔体工艺尺寸计算;5、塔板主要工艺尺寸的计算;6、塔板的流体力学验算;7、塔板负荷性能图;8、精馏塔接管尺寸计算;9、绘制生产工艺流程图;10、绘制精馏塔设计条件图;11、绘制塔板施工图(可根据实际情况选作);12、对设计过程的评述和有关问题的讨论。

四、设计基础数据其他物性数据可查相关手册目录1.精馏塔的概述 (4)1.1塔设备的类型 (4)1.2塔设备的性能指标 (4)1.3 板式塔与填料塔的比较 (5)1.4精馏原理 (5)2.设计标准 (6)3.设计方案的分析和拟订 (6)4.各部分结构尺寸的确定和设计计算 (6)4.1.设计方案的确定 (6)4.2.精馏塔的物料衡算 (8)4.2.1原料液及塔顶、塔底产品的摩尔分数 (9)4.2.2原料液及塔顶、塔底产品的平均摩尔质量 (9)4.2.3物料衡算 (9)4.3.塔板数的确定 (10)4.3.1理论板层数NT的求解 (10)4.3.2实际板层数的求取 (12)4.4.精馏段的工艺条件及有关物性数据的计算 (12)4.4.1 精馏段操作压力计算 (12)4.4.2提馏段操作压力的计算 (12)4.4.3操作温度计算 (13)4.4.4平均摩尔质量计算 (13)4.4.5平均密度的计算 (14)4.4.6液体平均表面张力计算 (15)4.4.7液体平均黏度的计算 (16)4.5.精馏塔的塔体工艺尺寸的计算 (16)4.5.1.塔径的计算 (16)4.5.2精馏塔有效高度的计算 (18)4.6.塔板主要工艺尺寸的计算 (18)4.6.1溢流装置计算 (18)4.6.2塔板布置 (19)4.7.筛板的流体力学验算 (21)4.7.1塔板压降 (21)4.7.2液面落差 (22)4.7.3液沫夹带 (22)4.7.4液漏 (22)4.7.5.液泛 (23)4.8.塔板负荷性能图 (23)4.8.1漏液线 (23)4.8.2液沫夹带线 (24)4.8.3液相负荷下限线 (25)4.8.4液相负荷上限线 (25)4.8.5液泛线 (25)五、设计小结 (28)六、参考资料 (29)设计说明书一、精馏塔的概述1.1塔设备的类型设备塔是化工、石油化工、生物化工、制药等生产过程中广泛采用的汽液传质设备。

苯–甲苯精馏塔的工艺设计

苯–甲苯精馏塔的工艺设计

摘要目前用于气液分离的传质设备主要采用板式塔,对于二元混合物的分离,应采用连续精馏过程。

浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面都比较优越。

其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平进入塔板上液层进行两相接触,浮阀可根据气体流量的大小上下浮动,自行调节。

其中精馏塔的工艺设计计算包括塔高、塔径、塔板各部分尺寸的设计计算,塔板的布置,塔板流体力学性能的校核及绘出塔板的性能负荷图。

关键词:气液传质分离;精馏;浮阀塔IAbstractCurrently,the main transferring equipment that used for gas-liquid separation is tray column. For the separation of binary, we should use a continuous process.The advantages of the float value tower lie in the flexibility of operation, efficiency of the operation, pressure drop, producing capacity, and equipment costs. Its main feature is that there is a floating valve on the hole of the plate, then the air can come into the tray plate at a steady rate and make contract with the level of liquid, so that the flow valve can fluctuate and control itself according to the size of the air.The calculations of the distillation designing include the calculation of the tower height, the tower diameter, the size of various parts of the tray and the arrangement of the tray, and the check of the hydrodynamics performance of the tray.And then draw the dray load map.Key words:gas-liquid mass transfer;rectification;valve towerII目录摘要 (I)Abstract ......................................................................................................................... I I 第1章前言 .. (1)1.1苯、甲苯在工业中的用途. (1)1.2精馏原理及其在工业生产中的应用 (1)1.3精馏操作的特点及其对塔设备的要求 (3)1.4常用板式塔的类型及本设计的选型 (3)1.5本设计所选塔的特型 (3)第2章流程的确定和说明 (4)2.1设计思路 (4)2.2设计流程 (4)第3章精馏塔的工艺计算 (6)3.1物料衡算 (6)3.1.1原料液及塔顶,塔底产品的摩尔分率 (6)3.1.2 原料液和塔顶及塔底产品的平均摩尔质量 (6)3.1.3 物料衡算 (6)3.2塔板数的确定 (7)3.2.1理论塔板层数N T的求取 (7)3.2.2绘t-x-y图和x-y图 (7)3.2.3最小回流比及操作回流比的确定 (8)3.2.4精馏塔气、液相负荷的确定 (8)3.2.5求操作线方程 (8)3.2.6求理论板层数 (9)3.2.7实际塔板数的求取 (9)3.3精馏塔的工艺条件及有关物性的计算 (9)3.3.1操作压力计算 (9)3.3.2操作温度计算 (9)3.3.3平均摩尔质量计算 (10)3.4平均密度计算 (10)III3.4.1气相平均密度计算 (10)3.4.2液相平均密度计算 (10)3.5液体平均表面张力计算 (11)3.6液体平均黏度计算 (12)3.7全塔效率计算 (12)3.7.1全塔液相平均粘度计算 (12)3.7.2全塔平均相对挥发度计算 (13)3.7.3全塔效率的计算 (13)3.8精馏塔的塔体工艺尺寸计算 (14)3.8.1塔径的计算 (14)3.9精馏塔有效高度的计算 (15)3.10塔板主要工艺尺寸的计算 (16)3.10.1溢流装置计算 (16)3.10.2堰长l W (16)3.10.3溢流堰高度h W (16)3.10.4弓形降液管宽度W d和截面积A f (16)3.10.5降液管底隙高度h0 (17)3.11塔板布置 (17)3.11.1塔板分布 (17)3.11.2边缘区宽度确定 (17)3.11.3开孔区面积计算 (17)3.11.4筛孔计算及其排列 (18)3.12筛板的流体力学验算 (18)3.12.1干板压降hd计算 (18)3.12.2气体通过液层的阻力h L计算 (19)3.12.3液体表面张力的阻力hσ计算 (19)3.12.4液面落差 (19)3.13液沫夹带 (20)3.14漏液 (21)3.15液泛 (21)3.16塔板负荷性能图 (22)3.16.1漏液线 (22)IV3.16.2液沫夹带线 (23)3.16.3液相负荷下限线 (23)3.16.4液相负荷上限线 (24)3.16.5液泛线 (24)3.17塔板主要结构参数表 (26)第4章结论 (28)主要符号说明 (29)参考文献 (32)致谢 (33)V第1章前言1.1苯、甲苯在工业中的用途.我国纯苯消费结构如下:2 7.2 5%用于合成苯乙烯,聚酰胺树脂(环己烷) 约占12.6 5%,苯酚约占11.3 7%,氯化苯约占l0.98%,硝基苯约占9.8%,烷基苯约占7.8 4%,农用化学品约占5.56%,顺酐约占4.7l%,其它医药、轻工及橡胶制品业等约占9.84%。

苯甲苯精馏分离板式塔设计

苯甲苯精馏分离板式塔设计

河西学院Hexi University化工原理课程设计题目: 苯-甲苯精馏分离板式塔设计学院: 化学化工学院专业: 化学工程与工艺学号: 2014210020姓名: 屈渊指导教师: 王海平2016年11月20日化工原理课程设计任务书一、设计题目苯-甲苯精馏分离板式塔设计二、设计任务与操作条件1.设计任务生产能力(进料量)85000 吨/年操作周期7920 小时/年进料组成46% (苯)(质量分率,下同)塔顶产品组成≥98% (苯)塔底产品组成≤1.0% (苯)回流比,自选单板压降≤700Pa2.操作条件操作压力塔顶为常压进料热状态进料温度20℃加热蒸汽0.25Mpa(表压)3.设备型式筛板塔4.厂址河北省三、设计内容1.设计方案的选择与流程说明2.塔的工艺计算3.主要设备工艺尺寸设计(1)塔径、塔高与塔板结构尺寸的确定(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高、总压降与接管尺寸的确定4.辅助设备选型与计算5.设计结果汇总6.工艺流程图与精馏工艺条件图7.设计评述目录1.设计方案的确定 (1)2. 精馏塔工艺的设计 (3)2.1产品浓度的计算 (3)2.1.1原料液与塔顶、塔底产品的摩尔分率 (3)2.1. 2原料液与塔顶、塔底产品的平均摩尔质量 (3)2.2物料衡算 (3)2.3最小回流比的确定 (4)2.4精馏段和提馏段操作线方程 (5)2.4.1求精馏塔的气液相负荷 (5)2.4.2求操作线方程 (5)2.5精馏塔理论塔板数与理论加料位置 (5)2.6实际板数的计算 (5)3. 精馏塔主要工艺尺寸的设计计算 (7)3.1物性数据计算 (7)3.1.1操作压力计算 (7)3.1.2操作温度 (8)3.1.3平均摩尔质量计算 (8)3.1.4平均密度计算 (9)3.1.5液体平均表面张力计算 (10)3.1.6液体平均黏度计算 (11)3.2精馏塔主要工艺尺寸的计算 (12)3.2.1精馏塔的塔体工艺尺寸计算 (12)3.2.2塔板主要工艺尺寸的计算 (14)3.3筛板流体力学验算 (16)3.3.1塔板压降 (16)3.3.2 液面落差 (18)3.3.3液沫夹带 (18)3.3.4漏液 (18)3.3.5液泛验算 (19)3.4塔板负荷性能图 (19)3.4.1漏液线 (19)3.4.2液沫夹带线 (20)3.4.3液相负荷下限线 (22)3.4.4液相负荷上限线 (22)3.4.5液泛线 (22)4.接管尺寸的确定 (25)5.板式塔的结构与附属设备 (26)筛板塔设计一览表 (28)参考文献 (30)主要符号说明 (31)致谢 (32)摘要:本设计采用筛板塔分离苯和甲苯,通过图解理论板法计算得出理论板数为21块,回流比为1.5,算出塔板效率0.54,实际板数为39块,进料位置为第18块,在筛板塔主要工艺尺寸的设计计算中得出塔径为1.4米,全塔高19.975米,每层筛孔数目为5739。

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

第一章绪论1.1精馏的特点与分类精馏是分离液体混合物的典型单元操作。

它是通过加热造成气液两相物系,利利用物系中各组分挥发度的不同的特性来实现分离的。

按精馏方式分为简单精馏、平衡精馏、精馏和特殊精馏。

1.1.1蒸馏分离具有以下特点(1)通过蒸馏分离,可以直接获得所需要的产品。

(2)适用范围广,可分离液态、气态或固态混合物。

(3)蒸馏过程适用于各种浓度混合物的分离。

(4)蒸馏操作耗能较大,节能是个值得重视的问题。

1.1.2平衡蒸馏将混合液在压力p1下加热,然后通过减压阀使压力降低至p2后进入分离器。

过热液体混合物在分离器中部分汽化,将平衡的气、液两相分别从分离器的顶部、底部引出,即实现了混合液的初步分离。

1.1.3简单蒸馏原料液在蒸馏釜中通过间接加热使之部分汽化,产生的蒸气进入冷凝器中冷凝,冷凝液作为馏出液产品排入接受器中。

在一批操作中,馏出液可分段收集,以得到不同组成的馏出液。

1.1.4连续精馏操作流程化工生产以连续精馏为主。

操作时,原料液连续地加入精馏塔内,连续地从再沸器取出部分液体作为塔底产品(称为釜残液);部分液体被汽化,产生上升蒸气,依次通过各层塔板。

塔顶蒸气进入冷凝器被全部冷凝,将部分冷凝液用泵(或借重力作用)送回塔顶作为回流液体,其余部分作为塔顶产品(称为馏出液)采出。

1-精馏塔 2-全凝器3-储槽 4-冷却器5-回流液泵 6-再沸器 7-原料液预热器图1连续精馏装置示意图1.2精馏塔的踏板分类1.2.1塔板的结构形式1.泡罩塔板泡罩塔板是工业上应用最早的塔板,它由升气管与泡罩构成。

泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。

泡罩有φ80mm、φ100mm和φ150mm三种尺寸,可根据塔径大小选择。

泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。

泡罩在塔板上为正三角形排列。

它的优点是操作弹性适中塔板不易堵塞。

缺点是生产能力与板效率较低结构复杂、造价高。

图2泡罩塔板(a)操作示意图 (b)塔板平面图 (c)圆形泡罩2.筛孔塔板筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。

苯--甲苯体系板式精馏塔设计

苯--甲苯体系板式精馏塔设计

化工原理课程设计设计题目:苯-甲苯体系板式精馏塔设计化工原理课程设计任务书➢设计任务分离含苯35% ,甲苯65%的二元均相混合液,要求所得单体溶液的浓度不低于97% 。

(以上均为质量分率)物料处理量:20000吨/年。

(按300天/年计)物料温度为常温(可按20℃计)。

➢设计内容设计一常压下连续操作的板式精镏塔,设计内容应包含:方案选择与流程设计;工艺计算(物料、热量衡算,操作方式与条件确定等),主要设备的工艺尺寸计算(塔高、塔径);主体设备设计,塔板选型与布置,流体力学性能校核,操作负荷性能图,附属设备选型;绘制工艺流程示意图、塔体结构示意图、塔板布置图;(设计图纸可手工绘制或CAD绘图)➢计算机辅助计算要求物性计算①编制计算二元理想混合物在任意温度下热容的通用程序;②编制计算二元理想混合物在沸腾时的汽化潜热的通用程序。

气液相平衡计算①编制计算二元理想混合物在任意温度下泡点、露点的通用程序;②编制计算二元理想混合物在给定温度、任意组成下气液分率及组成的通用程序。

精馏塔计算①编制计算分离二元理想混合液最小回流比的通用程序;②编制分离二元理想混合液精馏塔理论塔板逐板计算的通用程序。

采用上述程序对设计题目进行计算➢报告要求设计结束,每人需提交设计说明书(报告)一份,说明书格式应符合毕业论文撰写规范,其内容应包括:设计任务书、前言、章节内容,对所编程序应提供计算模型、程序框图、计算示例以及文字说明,必要时可附程序清单;说明书中各种表格一律采用三线表,若需图线一律采用坐标纸(或计算机)绘制;引用数据与计算公式须注明出处(加引文号),并附参考文献表。

说明书前后应有目录、符号表;说明书可作封面设计,版本一律为十六开(或A4幅面)。

摘要化工生产与现在生活密切相关,人类的生活离不开各色各样的化工产品。

设计化工单元操作,一方面综合了化学,物理,化工原理等相关理论知识,根据课程任务设计优化流程与工艺,另一方面也要结合计算机等辅助设备与机械制图等软件对数据和图形进行处理。

苯-甲苯精馏塔课程设计

苯-甲苯精馏塔课程设计

课程设计任务书一、课题名称苯——甲苯混合体系分离过程设计二、课题条件(原始数据)1、设计方案的选定原料:苯、甲苯年处理量:108000t原料组成(甲苯的质量分率):0.5塔顶产品组成:%99>D x塔底产品组成:%2<W x2、操作条件操作压力:常压进料热状态:泡点进料冷却水:20加热蒸汽:0.2MPa塔顶为全凝器,中间泡点进料,连续精馏3、设备型式:筛板塔三、设计内容1、概述2、设计方案的选择及流程说明3、塔板的计算(板式塔)4、主要设备工艺尺寸设计板式塔:(1)塔径及提馏段塔板结构尺寸的确定(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高、总压降及接管尺寸的确定5、辅助设备选型与计算(泵、塔顶冷凝器和塔釜再沸器)6、设计结果汇总7、工艺流程图设计内容摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。

本设计的题目是苯—甲苯二元物系板式精馏塔的设计。

在确定的工艺要求下,确定设计方案,设计内容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。

关键词:板式塔;苯--甲苯;工艺计算;结构图一、简介塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。

板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。

填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。

工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。

此外,还要求不易堵塞、耐腐蚀等。

苯-甲苯板式塔设计

苯-甲苯板式塔设计

11 以下 110 以下 110~200 200~300
4000
11 以下 110 以下 110~230 230~350
5000
11 以下 110 以下 110~250 250~400
6000
11 以下
110~250 250~450
应用 用于较低 一般应用 高 液 气 比 极高 液 气 极
场合
液气比
2020/7/12
HD
4. 塔高 H(不包括封头、裙坐)
H=(n-nF-np-1)HT+nFHF+nPHp+HD+HB n——实际塔板数;
nF——进料板数 HF——进料板处板间距,m nP——人孔数 Hp——设人孔处的板间距,m HD——塔顶空间,m(不包括头盖部分) HB——塔底空间,m(不包括底盖部分)
1、板间距 H T 的初估
板间距的大小与液泛和雾沫夹带有密切的关系。板距取大些,塔 可允许气流以较高的速度通过,对完成一定生产任务,塔径可较小; 反之,所需塔径就要增大些。板间距取得大,还对塔板效率、操作弹 性及安装检修有利。但板间距增大以后,会增加塔身总高度,增加金 属耗量,增加塔基、支座等的负荷,从而又会增加全塔的造价。初选 板间距时可参考下表所列的推荐值。
2020/7/12
4.编写设计说明书 设计说明书应根据设计指导思想阐明设计特点,列出设
计主要技术数据,对有关工艺流程和设备选型作出技术上和 经济上的论证和评价。应按设计程序列出计算公式和计算结 果;对所选用的物性数据和使用的经验公式图表应注明来 历。
设计说明书应附有带控制点工艺流程图,塔板结构简图 和计算机程序框图和原程序。
设计题目:苯-甲苯连续精馏塔的设计
1、操作条件 进料热状态:自选 塔顶压强:4.0kPa 单板压降:不大于0.7KPa 每年实际生产天数:330天(一年中有一个月检修) 冷却水温度:自选 饱和水蒸汽压力(温度):自选

苯-甲苯板式精馏塔设计

苯-甲苯板式精馏塔设计

取同一横排的孔心距及排间距;
孔 心 距 : t 7 5 m m、 排 间 距 : t Aa N精 t
• 当塔的直径较大,必须用分块式塔顶,各分块板
的支承与衔接要占一部分鼓泡区面积,因此排间距 可取小于计算值; • 计算实际孔阀数并校正:按实际孔阀数重新核算 孔速及阀孔动能因子; •塔板开孔率:


180
R sin
2
1
X R
其 中 : 边 缘 区 宽 度 W C 0 .0 6 m 、 破 沫 区 宽 度 W S 0 .0 7 5 m R D 2 W C、 x D 2 (W d W S )
⑵浮阀数目排列 • 浮阀排列方式采用等腰三角形叉排,以等腰三角形 叉排方式作图(见附录图 );
5.2提馏段塔板结构的设计
5.2.1溢流装置 选择单溢流、弓形降液管、不改进口堰,
包括溢流堰、降液管的设计;
a .堰 长 : l w 0 .6 0 .8) D 0 .6 6 D ( b .出 口 堰 高 : h w h L h o w Lh 提 2 /3 2 .8 4 E( ) 堰 上 液 层 高 度 : ho w 1000 lW 其中: 板 上 液 层 : h L 0 .0 7 m
u u0
设计板式塔时,对所设计的塔径在φ 800以上应采用分块式 塔板时,必须考虑分块对塔板布置的影响 ; 塔板分数块,靠近塔壁的两块叫弓形板,其余是矩形板,为
了检修方便,不管分成几块,短形板中必有一块作为通道板, 通道板的宽度统一取 400mm; 分块式塔板基本结构:塔板分块数目与塔径大小有关, 按下表规定选取塔板分块数; 塔径: 800-1200 1400-1800 1800-2200 2200-2400 分块数: 3 4 5 6

苯-甲苯板式精馏塔的课程设计

苯-甲苯板式精馏塔的课程设计

目录板式精馏塔设计任务书 (3)设计题目: (3)二、设计任务及操作条件 (3)三、设计内容: (3)一.概述 (5)1.1 精馏塔简介 (5)1.2 苯-甲苯混合物简介 (5)1.3 设计依据 (5)1.4 技术来源 (6)1.5 设计任务和要求 (6)二.设计方案选择 (6)2.1 塔形的选择 (6)2.2 操作条件的选择 (6)2.2.1 操作压力 (6)2.2.2 进料状态 (6)2.2.3 加热方式的选择 (7)三.计算过程 (7)3.1 相关工艺的计算 (7)3.1.1 原料液及塔顶、塔底产品的摩尔分率 (7)3.1.2 物料衡算 (8)3.1.3 最小回流比及操作回流比的确定 (8)3.1.4精馏塔的气、液相负荷和操作线方程 (9)3.1.5逐板法求理论塔板数 (10)3.1.6 全塔效率的估算 (11)3.1.7 实际板数的求取 (13)3.2 精馏塔的主题尺寸的计算 (13)3.2.1 精馏塔的物性计算 (13)3.2.2 塔径的计算 (15)3.2.3 精馏塔高度的计算 (17)3.3 塔板结构尺寸的计算 (18)3.3.1 溢流装置计算 (18)3.3.2塔板布置 (19)3.4 筛板的流体力学验算 (21)3.4.1 塔板压降 (21)3.4.2液面落差 (22)3.4.3液沫夹带 (22)3.4.4漏液 (22)3.4.5 液泛 (23)3.5 塔板负荷性能图 (23)3.5.1漏夜线 (23)3.5.2 液泛夹带线 (24)3.5.3 液相负荷下限线 (25)3.5.4 液相负荷上限线 (25)3.5.5 液泛线 (26)3.6 各接管尺寸的确定 (29)3.6.1 进料管 (29)3.6.2 釜残液出料管 (29)3.6.3 回流液管 (30)3.6.4塔顶上升蒸汽管 (30)四.符号说明 (30)五.总结和设计评述 (31)板式精馏塔设计任务书设计题目:苯―甲苯精馏分离板式塔设计二、设计任务及操作条件1、设计任务:生产能力(进料量) 5万吨/年操作周期 7200 小时/年进料组成 50%(质量分率,下同)塔顶产品组成 99%塔底产品组成 2%2、操作条件操作压力常压进料热状态泡点进料冷却水 20℃加热蒸汽 0.2MPa3、设备型式筛板塔4、厂址安徽省合肥市三、设计内容:1、概述2、设计方案的选择及流程说明3、塔板数的计算(板式塔)( 1 ) 物料衡算;( 2 ) 平衡数据和物料数据的计算或查阅;( 3 ) 回流比的选择;( 4 ) 理论板数和实际板数的计算;4、主要设备工艺尺寸设计( 1 ) 塔内气液负荷的计算;( 2 ) 塔径的计算;( 3 ) 塔板结构图设计和计算;( 4 )流体力学校核;( 5 )塔板负荷性能计算;( 6 )塔接管尺寸计算;( 7 )总塔高、总压降及接管尺寸的确定。

苯—甲苯精馏分离板式塔设计

苯—甲苯精馏分离板式塔设计

一设计题目:苯—甲苯精馏分离板式塔设计二、设计任务及操作条件1、设计任务:生产能力(进料量)7000吨/年操作周期300天/年进料组成35%(质量分率,下同)塔顶产品组成99.8%塔底产品组成0.2%2、操作条件操作压力 4 kPa (表压)进料热状态泡点进料单板压降≯0.7 kPa回流比: R=2Rmin 由设计者自选塔顶采用全凝器泡点回流塔釜采用间接饱和水蒸气加热全塔效率为0.63、设备型式筛板精馏塔4、厂址荆门地区三、设计内容:1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔和塔板主要工艺结构的设计计算(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高、总压降及接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、对本设计的评述或对有关问题的分析与讨论。

四、设计要求1、设计程序简练清楚,结果准确并有汇总表。

2、计算公式、图表正确并注明来源,符号和单位要统一。

五、设计时间:四周注意事项:1、写出详细计算步骤,并注明选用数据的来源;2、每项设计结束后,列出计算结果明细表3、图、表分别按顺序编号4、按规定的时间进行设计,并按时完成任务四、要求(1)对精馏过程进行描述(2)对精馏过程进行物料衡算和热量衡算(3)对精馏塔进行设计计算(4)对精馏塔的附属设备进行选型(5)画一张精馏塔的装配图(6)编制设计说明书符号说明英文字母-阀孔的鼓泡面积m2Aα-降液管面积 m2Af-塔截面积 m2ATb -操作线截距c -负荷系数(无因次)c-流量系数(无因次)D -塔顶流出液量 kmol/hD -塔径 md-阀孔直径 m-全塔效率(无因次)ETE -液体收缩系数(无因次)e-物沫夹带线 kg液/kg气vF -进料流量 kmol/h-阀孔动能因子 m/sFg -重力加速度 m/s2H-板间距 mTH -塔高 mH-清液高度 md-与平板压强相当的液柱高度 mhc-与液体流径降液管的压降相当液柱高度 m hd-与气体穿过板间上液层压降相当的液柱高度 m hr-板上鼓泡高度 mhf-板上液层高度 mhL-降液管底隙高度 mhh-堰上液层高度 m02v-与板上压强相当的液层高度 mhp-与克服液体表面张力的压降所相当的液柱高度 m hσ-溢液堰高度 mh2vK -物性系数(无因次)-塔内下降液体的流量 m3/sLs-溢流堰长度 mLwM -分子量 kg/kmolN -塔板数-实际塔板数Np-理论塔板数NTP -操作压强 PaΔP-压强降 Paq -进料状态参数R -回流比-最小回流比Rminu -空塔气速 m/sw -釜残液流量 kmol/h-边缘区宽度 mwc-弓形降液管的宽度 mwd-脱气区宽度 mwsx -液相中易挥发组分的摩尔分率y -气相中易挥发组分的摩尔分率z -塔高 m希腊字母α-相对挥发度μ-粘度 Cpρ-密度 kg/m3σ-表面张力下标r -气相L -液相l -精馏段q -q线与平衡线交点min-最小max-最大A -易挥发组分B -难挥发组分化工原理课程设计----------筛板塔的设计第一章流程及生产条件的确定和说明第一节概述流程示意图冷凝器→塔顶产品冷却器→苯的储罐→苯↑↓回流原料→原料罐→原料预热器→精馏塔↑回流↓再沸器←~ 塔底产品冷却器→氯苯的储罐→氯苯精馏塔是现在化工厂中必不可少的设备,因此出现了很多种的精馏塔。

苯—甲苯精馏塔设计

苯—甲苯精馏塔设计

苯—甲苯精馏塔设计目录苯-甲苯精馏塔设计任务书 (I)前言 (1)一.设计方案的确定 (1)1.1设计流程的说明 (2)1.2操作方案的说明 (2)1.3本设计中符号的说明 (3)二.精馏塔的物料衡算 (4)2.1原料液及塔顶、塔底产品的摩尔分率 (4)2.2原料液及塔顶、塔底产品的平均摩尔质量 (4)三.塔板数的确定 (5)3.1理论板数N T的求取 (5)3.2实际板层数的求取 (7)四. 精馏塔的工艺条件及物性数据的计算 (8)4.1操作压力的计算 (8)4.1操作温度的计算 (8)4.3平均摩尔质量的计算 (8)4.4平均密度的计算 (8)4.5平均粘度计算 (8)4.6液体平均表面张力计算 (9)五.精馏塔的塔体工艺尺寸计算 (9)5.1塔径的计算 (10)5.2精馏塔有效高度的计算 (11)六. 塔板主要工艺尺寸的计算 (11)七. 塔板的流体力学验算 (12)八. 塔板负荷性能图 (15)九. 筛板塔设计计算结果 (16)十.参考文献 (17)十一.设计感言 (18)板式精馏塔设计任务(一)设计题目苯—甲苯溶液连续精馏塔设计。(二)设计任务及操作条件(1)进精馏塔的料液含苯35%(质量),其余为甲苯。(2)塔顶产品的苯含量不得低于96%(质量)(3)塔底产品的苯含量不得高于0.01(质量)(4)混合液处理量为5t/h(5)操作条件(A)精馏塔顶压强4kpa(表压)(B)饱和液料进料(C)回流比R/Rmin=1.5(D)间接蒸汽加热(E)单板压降不大于0.7Kpa。(三)设备形式设备形式为筛板塔。(四)设计内容1.设计方案的确定及流程说明。2.塔的工艺计算。3.塔和塔板主要工艺尺寸的设计。(1)塔高,塔径及塔板结构尺寸的确定。(2)塔板的流体力学验算。(3)塔板的负荷性能图。4.设计结果概要货设计一览表。5.塔板结构俯视图和塔板安装图。6.对本设计的评述或有关问题的分析讨论。苯—甲苯分离过程筛板精馏塔设计(南华大学化学化工学院,衡阳,421001黄刚)摘要:本设计对苯—甲苯分离过程筛板精馏塔装置进行了设计,主要进行了以下工作:1、对主要生产工艺流程和方案进行了选择和确定。2、对生产的主要设备—筛板塔进行了工艺计算设计,其中包括:①精馏塔的物料衡算;②塔板数的确定;③精馏塔的工艺条件及有关物性数据的计算;④精馏塔的塔体工艺尺寸计算;⑤精馏塔塔板的主要工艺尺寸的计算。3、绘制了生产工艺流程图和精馏塔设计条件图。4、对设计过程中的有关问题进行了讨论和评述。本设计简明、合理,能满足初步生产工艺的需要,有一定的实践指导作用。关键词:苯—甲苯;分离过程;精馏塔前言塔设备的应用有着悠久的历史,在很多工业部门都有应用,尤其用在化工、石油、能源等部门。精馏塔是分离混合主份的常用方法。由于、蒸馏属于气液两相见的传质过程。塔设备主要包括以下两类:板式塔、填料塔两大类。对一个具体达到分离过程,设计中选择何种塔型,应该根据生产能力、分离效率、塔压力降、操作弹性等要求,并结合制造、维修、造价等因素综合考虑。精馏塔的设计主要包括以下内容:①根据分离任务和有关要求确定设计方案;②初步确定精馏塔的结构尺寸;③核算流体力学;④确定塔的工艺结构。⑤绘制塔板的负荷性能图。(一)设计方案的确定本设计任务为分离苯-甲苯溶液混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点送入精馏塔内。塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。1.设计流程的说明:精馏装置包括精馏塔,原料预热器,再沸器,冷凝器。釜液冷却器和产品冷凝器等设备。热量自塔釜输入,物料在塔内经多次部分汽化与与部分冷凝器进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。在此过程中,热能利用率很低,为此,在确定流程装置时应考虑余热的利用,注意节能。另外,为保持塔的操作稳定性,流程中除用泵直接送入塔原料外,也可以采用高位槽送料以免受泵操作波动的影响塔顶冷凝装置根据生产状况以决定采用全凝器,以便于准确地控制回流比。若后继装置使用气态物料,则宜用全分凝器。总而言之确定流程时要较全面,合理的兼顾设备,操作费用操作控制及安全因素。冷凝器再沸器连续精馏操作流程图2.操作方案的说明:本设计任务为分离苯—甲苯混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,降原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸汽采用全凝器冷凝。冷凝器在泡点下一部分回流到塔内,其余部分经产品冷却器冷却后送入储罐。该物系属于易分离物系,最小回流比较小,故操作回流比去最小回流比的两倍。塔釜采用间接蒸汽加热,塔底产品冷却送到储罐。设计操作流程图3. 本设计中符号的说明英文字母:A0筛孔面积,㎡h0降液管底高度,mA a塔板开孔面积,㎡hσ相克服表面张力压降所当高度,m A f降液管面积, ㎡k筛板的稳定系数A T 塔截面积,㎡L塔内下降液体流量,kmol/hC计算时u max的负荷因数l W溢流堰高度,mC O流量系数L S下降液体流率,m3/sD塔径,m N 理论板数d0 筛孔直径,mm N P实际塔板数E液流收缩系数N T理论塔板数E T 全塔效率n筛孔数e v 雾沫夹带量,kg液/kg气P操作压强,p a或kp aF 进料流量, kmol/h △P压强降, p a或kp aF a气相动能因数q 进料热状态承参数H 板间距,mm R回流比h c 与干板压降相当液柱高度,m S直接蒸汽量,kmol/hh1 进口堰与降液管的水平距离,m t筛孔中心距,mmh l 与气流穿过液层的压降相当液柱高度m u空塔气速,m/sh f 板上鼓泡层高度,m u0 筛孔气速,m/sh L 板上液曾高度,m u′0降液管底隙处液体流速,m/s h d,与液体流经降液管压降相当液柱高度,mD F进料管直径, m D l回流管直径, mD W 釜液出口管直径, m D T 塔顶蒸汽管直径, m下标:h p 与单板压降相当液层高度,m A易挥发组分B难挥发组分h ow 堰上液层高度,m D馏出液h w 溢流堰长度,m L液相W釜残液流量,kmol/h h小时W C 无效区块度,m i组分序号W d 弓形降液管高度,m m平均w s安定区宽度,m F原料液X液相中易挥发组分摩尔分率min最小Y气相中易挥发组分摩尔分率max最大Z塔的有效高度,m n塔板序号v s塔内上升蒸汽流量,m3/s希腊字母:α相对挥发度,无因次β干筛孔流量系数的修正系数,无因次σ液体表面张力, mN/mδ筛板厚度,mmμ粘度, mP a.sψ液体密度校正系数φ开孔率t时间,sρL 液相密度,kg/m 3ρV 液相密度,kg/m 3(二)精馏塔的物料衡算1.原料及塔顶产品的摩尔分率苯的摩尔质量为:78.11kg/kmol甲苯的摩尔质量为: 92.13kg/kmolx f =(0.35/78.11)/(0.35/78.11+0.65/92.13)=0.388x d =(0.96/78.11)/(0.96/78.11+0.04/92.13)=0.966x w =(0.01/78.11)/(0.01/78.11+0.99/92.13)=0.0122.原料液及塔顶产品的平均摩尔质量M f =0.388×78.11+92.13×(1-0.412)=86.69kg/kmolM d =0.966×78.11+92.13×(1-0.966)=78.59kg/kmolMw=0.012×78.11+92.13×(1-0.012)=91.96 kg/kmol则可知:原料的处理量:F=50000/86.69=57.67kmol/h由总物料衡算:F= D+W以及: x f ×F= x d ×D+W ×x w容易得出: D=22.73 kmol/hW=34.94 kmol/h(三)塔板数的确定1.理论板数T N 的求取(1)相对挥发度的求取苯的沸点为80.1℃,甲苯额沸点为110.63℃① 当温度为80.1℃时 006.279.2201.80033.12110355.6lg =+-=A P591.1482.2191.808.134407954.6lg =+-=B P 解得KPa P A 34.101= ,KPa P B 96.38=② 当温度为110.63℃时376.279.22063.110033.12110355.6lg =+-=A P006.2482.21963.1108.134407954.6lg =+-=B P 解得KPa P A 95.237= ,KPa P B 34.101=则有 600.296.31.1011==α 348.234.10195.2372==α47.2348.2600.221=⨯==ααα(2)最小回流比的求取由于是饱和液体进料,有q=1,q 线为一垂直线,故388.0==F q x x ,根据相平衡方程有610.0388.0)147.2(1388.047.2)1(1=⨯-+⨯=-+=q q q x x y αα 最小回流比为60.1388.0610.0610.0966.0min =--=--=q q qD x y y x R 回流比为最小回流比的1.5倍,即4.260.15.15.1min =⨯==R R(3)精馏塔的气、液相负荷h Kmol RD L /55.5473.224.2=⨯==hKmol D R V /28.7773.22)60.21()1(=⨯+=+=h Kmol qF L L /22.11267.5755.54'=+=+=h Kmol V V /28.77'==(4)操作线方程精馏段操作线方程 284.0706.0160.2966.0160.260.2111+=+++=+++=+x x R x x R R y n D n n 提馏段操作线方程 005.0452.11-=-+--++=+m w m m x WqF L Wx x W qF L qF L y两操作线交点横坐标为 388.0160.2388.0)160.2()1()1(=+⨯+=+-++=q R x q x R x D F F 理论板计算过程如下:气液平衡方程x x x a ax y 47.1147.2)1(1+=-+=变形有yy x 47.147.2-= 由y 求的x,再将x 带入平衡方程,以此类推W F D x x y x y x y x y x y x y x y x x y x y x y x y x y x y x y x x y <=−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==<=−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==−−→−==006.0013.00123.0030.0017.0041.0032.0075.0055.0126.0090.0197.0139.0480.0388.0334.0554.0385.0607.0458.0676.0556.0739.0645.0818.0756.0884.0851.0934.0920.0966.0151514141313121211111010998877665544332211相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡相平衡总理论板数为15(包括蒸馏釜),精馏段理论板数为7,第8块板为进料板。2.实际板层数的求取由t-x-y 图td=82.1 ℃ tw=110.5℃平均温度 tm=(td+tw)/2=(82.1+110.5)/2=96.3查手册,知tm 下的粘度为 μA =0.27 μB=031由t-x-y 图得 xa=0.365 xb=0.635 ya=0.581 yb=0.419μL=0.365×0.27+0.635×0.31=0.296a=(ya xb)/(yb xa)=(0.581×0.635)/(0.419×0.365)=2.412 Et=T E =0.49(αL μ)245.0-=0.49×(2.412×0.296)245.0-=0.53精馏段实际板层数 N 精=6/0.53=11.3=12N 提=7.5/0.53=14.15=15(四) 精馏塔的工艺条件及有关物性数据的计算⑴ 操作压力的计算塔顶操作压力 Pd=101.3+4=105.3( Kpa)每层板压力:Pm=0.7(KPa)进料板压力: P W =105.3+12×0.7=189.3(KPa)精馏段平均压力:Pm ’=(105.3+189.3/2=147.3(KPa) ⑵ 操作温度的计算塔顶温度 t D =82.1℃进料板温度 t F =97.2℃塔釜温度 t W =103.2℃精馏段平均温度 t m =(82.1+103.2)/2=89.65(℃)⑶ 平均摩尔质量的计算塔顶平均摩尔质量的计算由理论板的计算过程可知,983.01==D x y ,92.01=xmol Kg M VD m /59.7813.92)966.01(11.78966.0=⨯-+⨯= mol Kg M LD m /23.7913.92)92.01(11.78959.0=⨯-+⨯=进料板平均摩尔质量的计算由理论板的计算过程可知,610.0=F y ,388.0=F xmol Kg M VFm /58.8313.92)610.01(11.78610.0=⨯-+⨯= mol Kg M LFm /69.8613.92)388.01(11.78388.0=⨯-+⨯=精馏段的平均摩尔质量为mol Kg M Vm /085.812/)58.8359.78(=+=mol Kg M Lm /96.822/)69.8623.79(=+=⑷平均密度的计算a. 精馏段平均密度的计算Ⅰ气相由理想气体状态方程得ρVm=P m M vw/RT m=(147×81.91)/[8.314×(273.15+89.65)]=4.00kg/m3Ⅱ液相查不同温度下的密度,可得t D=82.1.℃时ρA=812.7kg/m3B=807.9kg/m3t F=97.2℃时ρA=793.0kg/m3ρB=788.54kg/m3ρLDm=1/(0.96/812.7+0.04/807.9)=812.5kg/m3进料板液相的质量分率αA=(0.388×78.11)/(0.388×78.11+0.612×92.13)=0.35ρLFm=1/(0.35/793.0+0.65/788.54)=791.6kg/m3精馏段液相平均密度为ρLm=(789.9+791)/2=790.45kg/m3⑸平均粘度的计算液相平均粘度依下式计算即lgμLm=∑xilgμia.塔顶液相平均粘度的计算由t D=82.1℃查手册得μA=0.302mPa.s μB=0.306mPa.slgμLDm=0.966lg(0.302)+0.034lg(0.306)解得μLDm=0.302mPa.sb.进料板平均粘度的计算由t F=97.2℃查手册得μA=0.261mPa.s μB=0.3030mPa.slgμLFm=0.388lg(0.2610)+0.612lg(0.3030)解得μLFm=0.261mPa.s精馏段平均粘度μLm=(0.302+0.261)/2=0.282mPa.s⑹液相平均表面张力的计算液相平均表面张力依下式计算即σLm=∑xiσia.塔顶液相平均表面张力的计算由t D=82.1℃查手册得σA=21.24mN/m σB=21.42mN/mσLDm=0.966×21.24+0.034×21.42=21.25 mN/mb.进料板液相平均表面张力的计算由t F=97.2℃查手册得σA=19.10mN/m σB=19.56N/mσLFM =0.388×19.10+0.612×19.56=19.43 mN/m精馏段液相平均表面张力σLm =(21.25+19.43)/2=20.34 mN/m(五) 精馏塔的塔体工艺尺寸计算 1.塔径的计算精馏段的气、液相体积流率为V S =VM Vm /3600ρVm =(77.28×81.085)/(3600×4.00)=0.451m 3/s L S =LM Lm /3600ρLm =(54.55×82.96)/(3600×790.45)=0.0017m 3/smax L VV u Cρρρ-=式中,负荷因子2.020)02.0(σC C =由史密斯关联图查得C 20再求 图的横坐标为 F lv =L/V×(ρl /ρv )0.5=0.0533取板间距,H T =0.40m,板上清液层高度取h L =0.06m ,则H T -h L =0.34 m史密斯关联图由上面史密斯关联图,得知 C 20=0.073气体负荷因子 C= C 20×(σ/20)0.2=0.0732U max =1.033 m/s取安全系数为0.7,则空塔气速为0.7 U=U max =0.7×1.033=0.723m/su14.3s4/V D=0.891m 按标准塔径圆整后为D=0.9m 塔截面积为At=3.14×0.9×0.9=0.636 m 2实际空塔气速为U 实际=0.451/0.636=0.709 m/sU 实际/ U max =1.887/2.43=0.78(安全系数在充许的范围内,符全设计要求)⑵ 由上面可知提馏段 L=389.65kmol/hV=189.61kmol/h2.精馏塔有效高度的计算精馏段有效高度为 Z 精=(N 精-1)H T =(12-1)×0.40=4.4 m 提馏段有效高度为 Z 提=(N 提-1)H T =(15-1)×0.40=5.6 m 在进料板上方开一个人孔,其高度为0.8 m故精馏塔有效高度为Z=Z 精+Z 提+0.5=4.4+5.6+0.8=10.8m(六)塔板主要工艺尺寸的计算 1.溢流堰装置计算因塔径 D=0.9m,所以可选取单溢流弓形降液管,采用凹形受液盘。( 此种溢流方式液体流径较长,塔板效率较高,塔板结构简单,加工方便,在直径小于2.2m 的塔中被广泛使用。)各项计算如下: 1) 堰长lw可取lw=0.65D=0.59m 2) 溢流堰高度hw 由hw=h L -how 选用平直堰,( 溢流堰板的形状有平直形与齿形两种,设计中一般采用平直形溢流堰板。) 堰上层液高度how 由下列公式计算,即有 how=2.84/1000×E×(Lh/lw)(2/3)并由图液流收缩系数计算图⑷,则可取用E= 1.0 ,则 how=0.014m取板上清液层高度h L =0.06 m 故 hw=0.046m3) 弓形降液管的宽度Wd和截面积Af由Wd/D=0.65 m 查图可求得Af/A T=0.071 1 Wd/D=0.122Af=0.057×0.636=0.0452m2Wd=0.122×0.9=0.110 m并依据下式验算液体在降液管中的停留时间,即θ=3600 Af×H T/L h= 3600 ×0.0452×0.40/ (3600×0.0017)=10.64s>5s其中H T即为板间距0.40m,L h即为每小时的体积流量验证结果为降液管设计符合要求。4)降液管底隙高度h oh o= L h/(3600×lw×uo')取u o'=0.09m/s则h o=0.0017×3600/(3600×0.65×0.09)=0.029 mH w-h o=0.046-0.029=0.017m>0.006 m故降液管底隙高度设计合理选用凹形受液盘,深度h’w=50mm。2.塔板布置1) 塔板的分块因为D≥800mm,所以选择采用分块式,查表可得,塔板可分为3块。2) 边缘区宽度确定取Ws=W’s= 65mm , Wc=35mmc.开孔区面积计算开孔区面积Aa按下面式子计算,则有Aa=2【x(r2-x2)0.5+∏r2/180×sin-1(x/r)】其中x=D/2-(Wd+Ws)r= D/2-Wc并由Wd/D=0.122, 推出Wd=0.110由上面推出Aa=0.420m2d 筛孔计算与排列本实验研究的物系基本上没有腐蚀性,可选用δ= 3mm碳钢板,取筛孔直径do=5mm⑷筛孔按正三角形排列,取孔中心距t为t=3do=15mm筛孔的数目n为n=1.155Ao/t2=2156个开孔率为φ=0.907(do/t)2=10.1%气体通过阀孔的气速为u o=Vs/Ao=0.451/(Aa×φ)=10.63m/s(七)塔版流体力学验算1) 塔板的压降a干板的阻力hc计算干板的阻力hc计算由公式hc=0.051(u o/c o)2×(ρv/ρl)并取do/δ= 5/3=1.67 ,可查史密斯关联图得,c o=0.772所以hc=0.051(10.63/0.772) 2×(4/801.2)=0.0483m液柱b 气体通过液层的阻力hl的计算气体通过液层的阻力hl由公式hl=βh Lu a=Vs/(A T-Af)=0.451(0.636-0.0452)=0.763m/sFo=0.763 (4.00)1/2=1.53kg1/2/(s m1/2)可查⑸得,得β=0.59所以hl=βh L=0.59×(0.046+0.014)=0.0354 m液柱c 液体表面张力的阻力hσ计算液体表面张力的阻力hσ由公式hσ=4σL/(ρl×g×do)计算,则有hσ=(4×20.34×10-3)/(801.2×9.81×0.005)=0.0021 m液柱气体通过每层塔板的液柱高度h P,可按下面公式计算h P=hc+hl+hσ=0.0483+0.0354+0.0021=0.0858m液柱气体通过每层塔板的压降为△Pp= h P×ρl×g =0.0858×801.2×9.81=674KPa<0.9KPa(设计允许值) 2) 液面落差对于筛板塔,液面落差很小,由于塔径和液流量均不大,所以可忽略液面落差的影响。3) 液沫夹带液沫夹带量,采用公式e v=5.7×106/σL×【u a/(H T-h f)】3.2由h f=2.5h L=2.5×0.06=0.15m 所以:e v=(5.7×10-6/20.34×10-3) 【0.763/(0.4-0.15)】=0.010kg液/kg气<0.1kg液/kg气可知液沫夹带量在设计范围之内。4) 漏液对于筛板塔,漏液点气速u o,min可由公式Uo,min=4.4Co【(0.0056+0.13 h L-hσ)/ρL /ρV】1/2=5.110m/s实际孔速为Uo10.63m/s>Uo,min稳定系数为K=Uo/Uo,min=10.63/5.110=2.08>1.5故在本设计中无明显漏液。5) 液泛为防止塔内发生液泛,降液管内液高度Hd应服从式子Hd≤ψ(H T+h w)甲醇与水属于一般物系,取ψ= 0.5,则ψ(H T+h w)=0.5(0.40+0.046)=0.223m而Hd=hp+h L+hd板上不设进口堰,则有hd=0.153(u o’)2=0.153×(0.099)2=0.00151m液柱Hd=hp+h L+hd=0.0858+0.06+0.00151=0.147m液柱则有: Hd≤ψ(H T+h w)于是可知本设计不会发生液泛(八)塔板负荷性能图精馏段a 漏液线U o,min=4.4Co【(0.0056+0.13 h L-hσ)/ρL /ρV】1/2U o,min=V s, min/Aoh L= h w +h OWh OW =2.84/1000×E×(Lh/lw)(2/3)V s, min =4.4Co Ao{【0.0056+0.13( h W+2.84/1000×E×(Lh/lw)(2/3))- hσ】ρL /ρV }1/2 =2.039(0.00948+0.127Ls2/3) 1/2在操作范围内,任取几个Ls值,依上式计算出Vs值计算结果列于下表b 液沫夹带线e v =0.1kg液/kg气为限,求Vs—Ls关系如下:e v=5.7×10-6/σL×【u a/(H T-h f)】3.2u a=Vs/(A T-Af)=1.693 Vsh f=2.5h L=2.5(h w+ h ow)h w=0.046h ow=2.84/1000×E×(Lh/lw)(2/3)h f=2.5(0.046+ 0.98 Ls2/3)=0.115+2.5 Ls2/3H T-h f=0.40-0.115-2.5Ls2/3=0.285-2.5 Ls2/3e v=5.7×10-6/20.34×10-3【1.693Vs/(0.285-2.5 Ls2/3)】3.2 =0.1整理得Vs=1.06-9.27 Ls2/3在操作范围内,任取几个Ls值,依上式计算出Vs值计算结果列于下表c 液相负荷下限线对于平流堰,取堰上液层高度h ow=0.005m作为最小液体负荷标准,由式h ow=2.84/1000×E×(Lh/lw)(2/3) =0.006Ls,min=0.00056m/s据此可做出与气体流量无关的垂直液相负荷下限线3d 液相负荷上限线以θ=5s作为液体在降液管中停留时间的下限,由下式θ=(Af×H T)/L s=5故Ls,max=(Af×H T)/5=(0.0452×0.40)/5=0.00362 m3/s据此可以作出与气体流量无关的垂直液相负荷上限e 液泛线令Hd=ψ(H T+h w)Hd=hp+h L+hdh P=hc+hl+hσhl=βh Lh L= h w +h OW联立得ψH T+(ψ-β-1)h w=(β+1) h OW+ hc + hd + hσ,将h OW与Ls、hd和Ls、hc与Vs的关系代入上式,得忽略hσa’ V2s=b’-c’ Ls2-d’ Ls2/3式中a’=[0.051/(A o c o)2]×(ρv/ρl)b’=ψH T+(ψ-β-1)h wc’=0.153/(lwh O)2d’=2.84×10-3×E×( 1+β)(3600/lw)(2/3)将有关数据代入,得a’=[0.051/(0.101×0.42×0.772)2]×(4.00/801.2)=0.237b’=0.5×0.4+(0.5-0.59-1)×0.046=0.150c’=0.153/(0.59×0.029)2=522.63d’=2.84×10-3×1×( 1+0.59)(3600/0.59)(2/3)=1.552 故V2s=0.63-2205.19 Ls2-6.55 L2/3s在操作范围内,任取几个Ls值,依上式计算出Vs的值,计算结果如下表在负荷性能图上,作出操作点A,连接OA,即作出操作线。由图二可看出,该筛板的操作上限为液泛控制,下限为漏控制。由图查得V s,max = 0.704m 3/s V s,min =0.207 m 3/s故操作弹性为 V s,max / V s,min =0.704/0.207=3.400sV s,max 1.01.02.03.02.0(1)(2)(3)(4)(5)Ps m Ls /,1033-⨯图二(408.0,10787.44-⨯) (179.1,10833.134-⨯)(九)、筛板塔设计计算结果(十).参考文献[ 1 ]、汪恺主编,《机械设计标准应用手册》,第1版, 机械工业出版社,1997[ 2 ]、夏清、陈常贵主编,《化工原理》(修订版),天津大学出版社,2005[ 3 ]、《化工原理课程设计》,化工原理教研室[ 4 ]、姚玉英主编,《化工原理》(上册),新版.天津:天津大学出版社,1999.8[ 5 ]、《化工设计设计基础》,上海科学技术出版社[ 6 ]、《化工设备设计基础》,编写组编,1987年6月版[ 7 ]、《塔设备》,工设备设计全书编辑委员会,上海科学技术出版社化,1988年4月版[ 8 ]、《材料与零部件》(上),上海人民出版社(十一).设计感言本次课程设计通过给定的生产操作工艺条件自行设计一套苯-甲苯物系的分离的塔板式连续精馏塔设备。通过两周的努力,反复计算和优化,小组成员终于设计出一套较为完善的塔板式连续精馏塔设备。其各项操作性能指标均能符合工艺生产技术要求,而且操作弹性大,生产能力强,达到了预期的目的。课程设计需要我们把平时所学的理论知识运用到实践中,使我们对书本上所学理论知识有了进一步的理解,更让我们体会到了理论知识对实践工作的重要的指导意义。课程设计要求我们完全依靠自己的能力去学习和设计,而不是像以往课程那样一切都由教材和老师安排。因此,课程设计给我们提供了更大的发挥空间,让我们发挥主观能动性独立地去通过书籍、网络等各种途径查阅资料、查找数据,确定设计方案。通过这次课程设计提高了我们的认识问题、分析问题、解决问题的能力。更重要的是,该课程设计需要我们充分发挥团队合作精神,组员之间必须紧密合作,相互配合,才可能在有限的时间内设计出最优的设计方案。总之,这次课程设计既是对我们课程知识的考核,又是对我们思考问题、解决问题能力的考核,课程设计让我们学到了很多东西。最后感谢老师在这次课程设计的精心指导!附录【1】苯----甲苯连续精馏过程板式精馏塔示意图。

分离苯—甲苯混合液的浮阀板式精馏塔工艺设计

分离苯—甲苯混合液的浮阀板式精馏塔工艺设计

分离苯—甲苯混合液的浮阀板式精馏塔工艺设计苯和甲苯是两种常用的有机溶剂,它们通常通过精馏过程进行分离。

浮阀板式精馏塔是一种常用的精馏设备,具有高效、节能、操作方便等特点。

下面就对分离苯和甲苯混合液的浮阀板式精馏塔工艺进行设计。

1.工艺流程:分离苯和甲苯混合液的浮阀板式精馏塔工艺流程一般包括进料、初留、尾留和回流等环节,具体流程如下:1)进料:将苯和甲苯混合液进料到精馏塔的顶部。

进料包括苯和甲苯的混合物以及一部分回流。

2)初留:通过多个塔板的精馏,将苯分离出来,初留液位以下的液体为初馏液,初留液通过凝气冷却器冷却后分为初留顶部产品和初留底部回流。

3)尾留:在塔底通过降温器冷却后,即可得到尾液,尾留底部产品通常作为顶部产品的回流,以保证塔托和稳定操作。

4)回流:回流是为了提高塔板的效率,减小焦失和能耗。

可通过将一部分的顶部产品送回到塔顶部作为回流。

2.浮阀板式精馏塔的设计参数:在进行浮阀板式精馏塔的工艺设计时,需要考虑以下参数:1)塔高:塔高应根据塔板的数量和塔板高度来确定,总体来说,塔高越高,分馏效果越好,但是设备成本和能耗也会增加。

2)塔板数:塔板数的确定需要考虑到初留和尾留的要求,一般根据初留质量分数和尾留质量分数进行迭代计算。

3)流量:进料流量、回流流量以及所需的产品流量都需要根据需求和经验来确定,可通过仪表和流量控制阀来调节。

4)进料温度:进料温度一般在常温下进行,如果需要提高分离效率,可以适当降低进料温度。

5)塔底温度:塔底温度是通过冷凝器来冷却的,根据具体情况来确定冷凝器的设计参数。

3.优化调整:在实际工艺操作中,可能需要对工艺参数进行优化调整,以达到更好的分离效果和降低能耗。

具体调整方法如下:1)调整回流比:根据实际需要,调整回流比可以提高塔板的效率。

2)改变操作压力:通过改变操作压力,可以改变馏出物的温度和塔板的效果,进而实现优化调整。

3)塔板节流孔调整:通过调整塔板节流孔的大小,可以影响流体的分布和液体在塔板上的停留时间,从而达到更好的分离效果。

苯_甲苯的分离过程连续板式精馏塔设计书

苯_甲苯的分离过程连续板式精馏塔设计书

苯-甲苯的分离过程连续板式精馏塔设计书第一章绪论1.1 精馏塔设计任务常压操作的连续板式精馏塔分离苯-甲苯混合物,间接蒸汽加热,生产时间为300/年,每天24小时,生产能力为18万吨/年,原料组成为0.46,塔顶组成为0.98,塔底组成为0.02 [1]。

1.1.1 操作条件塔顶压力:常压冷却水入塔温度:25℃冷却水出塔温度:45℃回流比:2.268单板压降:0.7KPa水蒸汽加热温度:120~160℃设备形式:筛板浮阀塔厂址:地区1.2 精馏与筛板塔简介在工业生产中,广泛应用精馏方法分离液体混合物,从石油工业、酒精工业直至焦油分离,基本有机合成,空气分离等等,特别是大规模的生产中精馏的应用更为广泛。

蒸馏按操作可分为简单蒸馏、平衡蒸馏、精馏、特殊精馏等多种方式。

按原料中所含组分数目可分为双组分蒸馏及多组分蒸馏。

按操作压力则可分为常压蒸馏、加压蒸馏、减压(真空)蒸馏。

此外,按操作是否连续分为连续蒸馏和间歇蒸馏。

工业生产中的蒸馏多为多组分精馏,本设计着重讨论常压下的双组分精馏,即苯-甲苯体系。

在化学工业和石油工业中广泛应用的诸如吸收,解吸,精馏,萃取等单元操作中,气液传质设备必不可少。

塔设备就是使气液两相通过紧密接触达到相际传质和传热目的的气液传质设备之一。

塔设备一般分为阶跃接触式和连续接触式两大类。

前者代表是板式塔,后者代表则为填料塔。

筛板塔在十九世纪初已应用于工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。

五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。

筛板塔板简称筛板,结构持点为塔板上开有许多均匀的小孔。

根据孔径的大小,分为小孔径筛板(孔径为3-8mm)和大孔径筛板(孔径为10-25mm)两类。

工业应用以小孔径筛板为主,大孔径筛板多用于某些特殊场合(如分离粘度大、易结焦的物系)。

筛板的优点足结构简单,造价低;板上液面落差小,气体压降低,生产能力较大;气体分散均匀,传质效率较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《化工原理》课程设计------苯--甲苯板式精馏塔塔的设计专业:化学工程与工艺班级:1014101学号:**********名:***指导教师:***日期 2013-01-09序言化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。

通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。

精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。

根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。

本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录一、化工原理课程设计任书 (3)二、设计计算 (4)1.设计方案的确定 (4)2.精馏塔的物料衡算 (7)3.塔板数的确定 (7)4.精馏塔的工艺条件及有关物性数据的计算 (11)5.精馏塔的塔体工艺尺寸计算 (16)6.塔板主要工艺尺寸的计算 (17)7.筛板的流体力学验算 (21)8.塔板负荷性能图 (23)9.接管尺寸确定 (29)三、个人总结 (31)四、参考书目 (31)一、设计任务书一、设计题目:设计分离苯―甲苯连续精馏筛板塔二、设计任务及操作条件1、设计任务:物料处理量: 5万吨/年进料组成: 55%苯,苯-甲苯常温混合溶液(质量分率,下同)分离要求:塔顶产品组成苯≥98%塔底产品组成苯≤2%2、操作条件平均操作压力: 101.3 kPa平均操作温度: 94℃回流比:自选单板压降: <=0.7kPa工时: 330天三、设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。

对选定的工艺流程,主要设备的形式进行简要的论述。

2、主要设备工艺尺寸设计计算(1)收集基础数据(2)工艺流程的选择(3)做全塔的物料衡算(4)确定操作条件(5)确定回流比(6)理论板数与实际板数(7)确定冷凝器与再沸器的热负荷(8)初估冷凝器与再沸器的传热面积(9)塔径计算及板间距确定(10)堰及降液管的设计(11)塔板布置及筛板塔的主要结构参数(12)塔的水力学计算(13)塔板的负荷性能图(14)塔盘结构(15)塔高(16)精馏塔接管尺寸计算3、典型辅助设备选型与计算(略)包括典型辅助设备(换热器及流体输送机械)的主要工艺尺寸计算和设备型号规格的选定。

4、设计结果汇总5、工艺流程图及精馏塔工艺条件图6、设计评述四、参考资料⑴天津大学华工学院柴诚敬主编《化工原理》上册,高等教育出版社,2006.1。

⑵天津大学华工学院柴诚敬主编《化工原理》下册,高等教育出版社,2006.1。

⑶大连理工大学主编《化工原理》下册,高等教育出版社,2002.12 。

⑷谭天恩,李伟等编著《过程工程原理》,化学工业出版社,2004.8 。

⑸大连理工大学化工原理教研室主编《化工原理课程设计》。

⑹汤金石等著《化工原理课程设计》,化学工业出版社,1990.6。

⑺《化学工业物性数据手册》,有机卷。

(8)《化工原理及设备课程设计》,化学工业出版社,2011.8。

(9)《化工原理课程设计》天津大学化工原理教研室,柴诚敬刘国维李阿娜编;(二)、设计计算1.设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物。

由于对物料没有特殊的要求,可以在常压下操作。

对于二元混合物的分离,应采用连续精馏流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。

塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐。

其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量。

塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列。

筛板塔也是传质过程常用的塔设备,它的主要优点有:(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2) 处理能力大,比同塔径的泡罩塔可增加10~15%。

(3) 塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:(1) 塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3) 小孔筛板容易堵塞。

下图是板式塔的简略图项目分子式分子量M 沸点(℃)临界温度t C(℃)临界压P C(kPa)苯A C6H678 80.1 288.5 6833.4甲苯B C6H5—CH392 110.6 318.57 4107.7 080.1 85 90 95 100 105 110.6 温度C表3 常温下苯—甲苯气液平衡数据([2]:例1—1附表2)表4 纯组分的表面张力([1]:附录图7)表5 组分的液相密度([1]:附录图8)表6 液体粘度µ([1]:)83.33 85.0 93.6 82.25 90.0 95.9 81.11 95.0 98.0 80.66 97.0 98.8 80.21 99.0 99.61 80.01100.0100.02 精馏塔的物料衡算(1) 原料液及塔顶、塔底产品的摩尔分率苯的摩尔质量 甲苯的摩尔质量0.55/780.59040.55/780.45/92F x ==+0.98780.9830.98780.0292D x ==+0.02/780.02350.02780.98/92W x ==+(2)原料液及塔顶、塔底产品的平均摩尔质量0.5904780.40969283.73F M kg kmol =⨯+⨯= 0.983780.0179278.24D M kg kmol =⨯+⨯= 0.0235780.97659291.67W M kg kmol =⨯+⨯=(3)物料衡算原料处理量5000000074.893302484.3F kmol h ==⨯⨯总物料衡算 74.89=D +W苯物料衡算 74.89×0.5904=0.983D +0.0235 W 联立解得 D =44.25 kmol /h W=30.64 kmol /h式中 F------原料液流量 D------塔顶产品量 W------塔底产品量3 塔板数的确定(1)理论板层数N T的求取苯一甲苯属理想物系,可采用图解法求理论板层数。

①由手册查得苯一甲苯物系的气液平衡数据,绘出x ~y图,见下图100959085807570656055504540353025201510505101520253035404550556065707580859095100②求最小回流比及操作回流比采用作图法求最小回流比。

在上图中对角线上,自点e(0.5904,0.5904)作垂线ef即为进料线(q线),该线与平衡线的交点坐标为q y =0.7741 ,q x =0.5904 故最小回流比为min 0.9830.77411.1370.77410.5904q q D qx y R y x --===--依据实际生产中的经验取min 1.8 2.047R R ==③求精馏塔的气、液相负荷2.04744.2590.58L R D =⨯=⨯=kmol h(1) 3.04744.25134.83V R D kmol h =+=⨯='(1)(1)(2.0471)44.25134.83/V R D q F kmol h =+--=+⨯= (泡点进料:q=1)' 2.04744.25174.89165.47/L RD qF kmol h =+=⨯+⨯=④求操作线方程精馏段操作线方程为10.67180.322611D n n n x Ry x x R R +=+=+++ 提馏段操作线方程为 '1'' 1.22720.00534m m w m L Wy x x x V V+=-=-⑤逐板法求理论板对于精馏段α=2.378 又由相平衡方程1(1)xy xαα=+- 得(1)y x y y =+α-则1D y x = = 0.983 1111111(1) 2.378(1)y y x y y y y ==+α-+-=0.9605210.67180.32260.9719y x =+= 22220.9357(1)y x y y ==+2.378-320.67180.32260.9552y x =+= 3333(1)y x y y ==+2.378-0.9022430.67180.32660.9327y x =+= 44440.8535(1)y x y y ==+2.378-540.67180.32260.9000y x =+= 55550.7910(1)y x y y ==+2.378-650.67180.32260.8580y x =+= 66660.7176(1)y x y y ==+2.378-750.67180.32260.8087y x =+= 77770.6400(1)y y y x ==+2.378-580.67180.32260.7566x y=+= 88880.5666(1)y x y y ==+2.378-因为8x <f x =0.5904 故精馏段理论板数 n=7 对于提馏段α=2.378 又由相平衡方程1(1)xy xαα=+- 得(1)y x y y =+α-则'180.5666x x == ''211.22720.005340.6900y x =-= 222''2''0.4835(1)y x y y ==+2.378- ''321.22720.005340.5880y x =-=233''3''0.3751(1)y x y y ==+2.378- ''431.22720.005340.4550y x =-= 44''4''40.2599(1)y x y y ==+2.378- ''541.22720.005340.3136y x =-= 555''5''0.1612(1)y x y y ==+2.378- ''651.22720.005340.1925y x =-= 666''6''0.09111(1)y x y y ==+2.378- ''711.22720.005340.1065y x =-= 77''7''70.04773(1)y x y y ==+2.378- ''871.22720.005340.05323y x =-= 888''8''0.02310(1)y x y y ==+2.378-<w x =0.0235 故提留段理论板数 n=7(2)实际板层数的确定①全塔效率的计算(查表得各组分黏度A μ=0.269,B μ=0.277)(1)0.59040.256(10.5904)0.2650.260m F A F B x x μμμ=+-=⨯+-⨯=平均年度0.2450.2450.490.49(2.3780.260)0.551T L E αμ--==⨯⨯=全塔效率()②实际板层数的确定精馏段实际板层数7/0.551=12.704≈13,提馏段实际板层数7/0.551=12.704≈13,进料板在第14块板4 精馏塔的工艺条件及有关物性数据的计算(1)操作压力计算塔顶操作压力D P = 101.325 kPa 每层塔板压降 △P =0.7 kPa 塔底操作压力w P =101.325+0.7⨯26=119.525 kPa进料板压力F P =101.325+0.7×13=110.425kPa精馏段平均压力 P m =(101.325+110.425)/2=105.875 kPa 提馏段平均压力P m =(110.425+119.525)/2 =114.975 kPa(2)操作温度计算用内插法由已知数据可算出塔内各点的工作温度。

相关文档
最新文档