气压(凸轮)鼓式制动器设计说明书
鼓式制动器说明书教材
8t载货汽车后桥鼓式制动器及其控制系统的设计摘要汽车制动系是用以强制行驶中的汽车减速或停车,使下坡形式的汽车的车速保持稳定以及使已停使的汽车在原地(包括在斜坡上)驻留不动的机构。
随着高速公路的发展和车速的提高及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要,也只有制动性能良好,制动系工作可靠的汽车,才能充分发挥其动力性能。
本设计是轻型货车的制动系设计,经过查资料和参考以往的设计,采用液压为动力源的行车制动和以人力手动机械式的驻车车制动.行车制动采用鼓式制动器驻车制动采用附装在后轮上的。
即行车制动和驻车制动同用一套制动蹄片和制动鼓。
它的特点是可以减少制动系所占的空间,使其总体结构简化,并且在后轮行车制动失效时驻车车制动可以充当刹车,使其安全性能更高。
关键词:轻型载货车,制动器,设计Design of bridge of drum brake andcontrol system of 8t truck rearABSTRACTAutomotive brake system is used to force the moving car slow down or stop, so that the car's speed downhill form stable and to have stopped the car in place (including the slope) resides not move the body. With the development of highway and the speed increases and increasing traffic density, in order to ensure traffic safety, vehicle brake system operational reliability is becoming increasingly important, and only the brake good, reliable car brake system, can fully play its dynamic performance.The design is light truck brake system design, through to find information and reference the previous design, the use of hydraulic brake for the power source and the human hand mechanical parking brake. Brake drum brake used in brake attached to the rear wheel using the. The brake and parking brake with a set of brake shoes and brake drums. It can reduce the braking system is characterized by the amount of space, so the overall structure is simplified, and the failure of the rear brake parking brake can act as a brake to secure higher performance.Key words:light trucks,brake,design摘要 (1)ABSTRACT (2)第一章制动系概述 (6)1.1 概述 (6)1.2 制动器的结构形式 (7)第二章鼓式制动器主要零件设计参数计算 (17)2.1 鼓式制动器的设计计算 (17)2.2 摩擦衬片的磨损特性计算 (22)2.3制动力与制动力分配系数 (23)2.4同步附着系数 (27)2.5制动器最大制动力矩 (27)第三章驻车车制动的设计计算 (29)3.1 满载时 (29)3.2 空载时 (30)第四章制动性能分析 (33)4.1 制动性能评价指标 (33)4.2 制动效能 (33)4.3 制动效能的恒定性 (33)4.4 制动时汽车方向的稳定性 (33)第五章制动器主要零件的结构设计 (35)5.1制动鼓 (35)5.2 制动蹄 (36)5.3 制动底板 (36)5.4 制动蹄的支承 (37)5.5 制动轮缸 (37)5.6 摩擦材料 (37)5.7 制动器间隙 (38)第六章制动驱动机构的结构形式选择及设计计算 (40)结论 (44)参考文献 (45)第一章制动系概述1.1 概述汽车制动系是用以强制行驶中的汽车减速或停车,使下坡形式的汽车的车速保持稳定以及使已停使的汽车在原地(包括在斜坡上)驻留不动的机构。
(完整word版)鼓式制动器说明书(word文档良心出品)
第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。
第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;gh--汽车质心高度;g --重力加速度;(取9.80N/kg)2 (汽车理论8,22)汽车制动时,如果不记车轮的滚动阻力矩和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b⨯R e=0 (4-2)式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。
鼓式制动器设计
鼓式制动器设计
设计说明书:鼓式制动器设计
第一部分:引言
引言部分介绍了鼓式制动器的作用和设计的背景,解释了为何需要设
计新的鼓式制动器,并概述了本文档的结构和目标。
第二部分:设计要求
设计要求部分列出了鼓式制动器设计的主要目标和性能要求。
这些要
求主要包括制动力、制动效率、制动稳定性、耐久性等方面的要求。
同时,还需要考虑到制动器的重量、尺寸、成本等因素。
第三部分:结构设计
结构设计部分包括制动器的整体结构设计和各个部件的详细设计。
其中,整体结构设计需要考虑到制动器的安装位置和方式,以及与车辆其他
部件的配合关系。
各个部件的设计需要考虑到材料的选择、尺寸的确定、
加工工艺等因素。
第四部分:工作原理
工作原理部分详细介绍了鼓式制动器的工作原理。
包括制动器的构成、制动材料的摩擦特性、制动力的产生机制等内容。
同时,还需要考虑到制
动过程中的热量产生和传递机制,以确保制动器的稳定性和耐久性。
第五部分:性能评估
性能评估部分对鼓式制动器的主要性能进行评估。
主要包括制动力、制动效率、制动稳定性、耐久性等方面的测试和分析。
需要设计相应的测试方法和评估标准,以确保设计的鼓式制动器能够满足要求。
第六部分:结论
结论部分对整个设计过程进行总结,评价了设计的鼓式制动器的优缺点,并提出了进一步改进的建议。
同时,还需要总结设计过程中的经验和教训,以便在将来的鼓式制动器设计中能够有所借鉴。
鼓式制动器 设计说明书
车辆工程专业课程设计题目:鼓式制动器设计学院机械与能源工程学院专业车辆工程年级车辆10级班级车辆1012姓名李开航学号 2010715040成绩指导老师赖祥生目录第1章绪论 (1)1.1制动系统设计的目的 (1)1.2制动系统设计的要求 (1)第2章鼓式制动器的设计计算及相关说明 (2)2.1鼓式制动器有关计算 (2)2.1.1基本参数 (2)2.1.2确定前后轴制动力矩分配系数β (2)2.1.3鼓式制动器制动力矩的确定 (3)2.2鼓式制动器的结构参数与摩擦系数的选取 (4)2.2.1制动鼓半径 (4)2.2.2制动鼓摩擦衬片的包角、宽度、和起始角 (4)2.2.3张开力作用线至制动器中心的距离 (4)2.2.4制动蹄支销中心的坐标位置 (5)2.2.5摩擦片的摩擦系数 (5)2.3后轮制动轮缸直径与工作容积的设计计算 (5)2.4摩擦衬片的磨损特性计算 (6)2.5驻车计算 (8)第3章鼓式制动器主要零件的结构设计 (10)3.1制动鼓 (10)3.2制动蹄 (11)3.3制动底板 (12)3.4支承 (12)3.5制动轮缸 (13)3.6摩擦材料 (13)3.7制动器间隙 (13)第4章鼓式制动器的三维建模 (14)第5章结论 (15)参考文献 (16)第1章绪论1.1制动系统设计的目的汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。
汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。
而制动器又是制动系中直接制约汽车运动的一个关键装置,是汽车上最重要的安全件。
汽车的制动性能直接影响汽车的行驶安全性。
随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。
1.2制动系统设计的要求本次的课程设计选择了鼓式制动器,制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。
鼓式制动器设计说明书解析
课程设计小型轿车后轮鼓式制动器设计学生姓名:专业班级:指导教师:学院:年月东北林业大学课程设计任务书小型轿车后轮鼓式制动器设计学生姓名:专业班级:指导教师:学院:小型轿车后轮鼓式制动器设计摘要随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,制动系统是汽车主动安全的重要系统之一。
如何开发出高性能的制动器系统,为安全行驶提供保障是我们要解决的主要问题。
另外,随着汽车市场竞争的加剧,如何缩短开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。
本说明书主要介绍了小型轿车(0.9t)后轮鼓式制动器的设计计算,主要零部件的参数选择的设计过程。
关键词:汽车;鼓式制动器目录摘要1 绪论 ..................................................................................................................... 错误!未定义书签。
1.1 概述................................................................................................................... 错误!未定义书签。
1.2 设计要求.......................................................................................................... 错误!未定义书签。
1.3 设计目标.......................................................................................................... 错误!未定义书签。
机械凸轮鼓式制动器毕业设计
目录摘要 (I)Abstract ................................................................ I I 第1章绪论 (1)1.1本课题的目的和意义 (1)1.2汽车制动系在国内外的研究状况及发展趋势 (1)1.3鼓式制动器技术研究进展和现状 (1)1.4研究重点 (2)第2章汽车总体参数的选择及计算 (3)2.1汽车形式的确定 (3)2.1.1 轴数 (3)2.1.2驱动形式 (3)2.1.3布置形式 (3)2.2汽车质量参数的确定 (3)2.2.1质量系数 (4)2.2.2汽车总质量 (4)2.2.3载荷分配 (4)2.3汽车主要数据的确定 (5)2.3.1质心高度 (5)2.3.2轴距 (5)第3章制动器的结构型式及要求 (6)3.1鼓式制动器的结构形式 (7)3.1.1领从蹄式制动器 (8)3.1.2单向双领蹄式制动器 (12)3.1.3双向双领蹄式制动器 (13)3.1.4双从蹄式制动器 (14)3.1.5单向增力式制动器 (14)3.1.6双向增力式制动器 (14)3.2鼓式制动器方案的确定 (15)第4章理想制动力及其分配 (16)4.1 制动力与制动力分配系数 (16)4.2 同步附着系数 (21)4.3制动器最大制动力矩 (21)第5章制动器的设计计算 (23)5.1 鼓式制动器的结构参数 (23)5.1.1 制动鼓内径D (23)5.1.2 摩擦衬片宽度b和包角β (24)β (25)5.1.3 摩擦衬片起始角F作用线的距离e (26)5.1.4 制动器中心到张开力5.1.5 制动蹄支承点位置坐标a和c (26)5.1.6 摩擦片摩擦系数f (26)5.2 固定凸轮式(S型凸轮)气制动器的制动器因数计算 (26)5.3 制动力的计算 (28)5.3.1 所需的制动力计算 (28)5.3.2 制动器所能产生的制动力计算 (28)5.4 制动蹄片上的制动力矩 (30)5.5 行车制动效能计算 (33)5.6 驻车制动计算 (34)5.7 摩擦衬片的磨损特性计算 (36)第6章制动器的结构及主要零部件设计 (38)6.1制动蹄 (38)6.2制动鼓 (38)6.3摩擦衬片 (39)6.4摩擦材料 (40)6.5蹄与鼓之间的间隙自动调整装置 (41)6.6制动支承装置 (42)6.7制动轮缸 (43)6.8张开机构 (43)6.9制动蹄回位弹簧 (43)第7章结论 (44)致谢 (45)参考文献 (46)摘要据有关资料介绍,在由于车辆本身的问题而造成的交通事故中,制动系统故障引起的事故为总数的45%。
鼓式制动器设计方案(设计方案说明书)
毕业设计设计说明书题目 SC6408V 商用车鼓式制动器总成设计专业车辆工程<汽车工程)班级 2006级汽车一班学生 ___ 廖械兵指导老师___ 文孝霞重庆交通大学2018年前言1 本课题的目的和意义近年来,国内、外对汽车制动系统的研究与改进的大部分工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改进较少。
然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。
对于蹄-鼓式制动器,其突出优点是可利用制动蹄的增势效应而达到很高的制动效能因数,并具有多种不同性能的可选结构型式,以及其制动性能的可设计性强、制动效能因数的选择范围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除部分轿车以外的各种车辆的制动器中占主导地位。
但是,传统的蹄-鼓式制动器存在本身无法克服的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。
对于钳-盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦副的压力分布较均匀,而且结构较简单、维修较简便。
但是,钳-盘式制动器的缺点在于:其制动效能因数很低<只有0.7 左右),因此要求很大的促动力,导致制动管路内液体压力高,而且其摩擦副的工作压强和温度高;制动盘易被污染和锈蚀;当用作后轮制动器时不易加装驻车制动机构等。
因此,现代车辆上迫切需要一种可克服已有技术不足之处的先进制动器,它可充分发挥蹄-鼓式制动器制动效能因数高的优点,同时具有摩擦副压力分布均匀、制动效能稳定以及制动器间隙自动调节机构较理想等优点。
鼓式制动器设计说明书
第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。
第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;gh--汽车质心高度;g --重力加速度;(取9.80N/kg)2 (汽车理论8,22)汽车制动时,如果不记车轮的滚动阻力矩和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b⨯R e=0 (4-2)式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。
(完整word版)鼓式制动器说明书
第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。
第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;gh--汽车质心高度;g --重力加速度;(取9.80N/kg)2 (汽车理论8,22)汽车制动时,如果不记车轮的滚动阻力矩和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b⨯R e=0 (4-2)式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。
鼓式制动器毕业设计
毕业设计说明书题目:轿车后轮制动器的设计学院(直属系):交通与汽车工程学院年级、专业: 2010级车辆工程姓名:李旺学号: 332010********* 指导教师:向阳完成时间: 2014年6月 1 日1 目录摘 要 (4)Abstract (5)1 绪论 (7)1.1概述 (7)1.2制动器研究现状和进展 (7)1.3制动器的设计意义 (8)2 制动器类型及方案的选择 (9)2.1 盘式制动器 (9)2.2 鼓式制动器 (10)2.3 制动器型式及方案的确定 (14)3制动系的主要参数的选择 (15)3.1理想的前、后制动力分配曲线 (15)3.2制动力分配系数与同步附着系数的确定 (16)3.3 制动力分配的合理性分析 (17)4制动器的设计计算 (24)4.1鼓式制动器主要参数的确定 (24)4.2 蹄片上力矩的计算 (27)4.3制动器效能因数 (32)4.4 制动器制动力的计算 (32)4.5 驻车制动的计算 (33)4.6 摩擦片磨损特性的计算 (35)4.7制动蹄支承销剪切应力的计算 (37)5 制动效能的评价 (39)5.1 制动减速度 (39)5.2 制动距离 (39)5.3 制动效能的稳定性 (40)6 液压操纵机构的设计 (41)6.1 工作轮缸的工作容积 (41)6.2 制动主缸的工作直径与工作容积 (41)6.3 制动踏板力与制动踏板行程的校核 (42)7 鼓式制动器的优化设计 (43)7.1 设计变量 (43)7.2 目标函数的建立 (43)7.3 建立约束函数 (43)7.4 优化求解 (44)7.5 优化结果 (45)8 制动器主要零部件的结构设计 (47)8.1 制动鼓的结构设计 (47)8.2 制动蹄的结构设计 (48)8.3 摩擦衬片的结构设计 (48)8.4 制动底板的结构设计 (49)8.5 支承形式的设计 (49)8.6 制动轮缸 (49)8.7 蹄与鼓之间的间隙调整装置 (49)9结论 (51)总结与体会 (52)致谢 (53)【参考文献】 (54)附录一 (55)附录二 (57)轿车后轮制动器的设计摘要制动系的功能是使汽车减速停车,在下坡行驶时稳定车速以及使汽车能可靠地驻留在平地或一定角度的坡道上。
鼓式制动器设计
5 鼓式制动器5.1 制动距离S S=6.31(t 1+22t )V 1+max2192.25j V (m)= 6.31(0.1+0.2/2)⨯50+86.692.25502⨯=14.8m m ax f F <F ϕ=ϕFz =7330⨯9.8⨯0.7=5028.38N m ax j =a f m F max=5028.38÷7330=6.86(m/s 2) (J>5.9)最大制动距离 St =0.15v+v 2/115=0.15⨯50+502÷115=29.2mS<St 所以符合要求。
式中 t 1:机构滞后时间0.1 s ;t 2:制动力增长时间 0.2s ;v 1:制动初速度50km/h ;J max :最大稳定制动减速度;m a :满载质量7330kg ;F fmax :最大地面制动力。
5.2 制动力分配系数β0ϕ=hgb L -β 代入数据得β=0.46式中 0ϕ:满载同步附着系数 0.6;L :汽车轴距 4000mm ;b :满载时汽车质心至后轴距离 1400mm ;h g :满载时质心高度 745mm 。
5.3 前后轴制动器总制动力F f =F μ=F μ1+F μ2 =24155.1+37389.6=61544.7(N)F μ1=βF μ<L g m a ϕ(b+ϕh g )=47.08.97330⨯⨯)(745.07.04.1⨯+⨯=24155.1(N) F μ2=(1-β)F μ<L g m a ϕ(a-ϕh g )= 47.08.97330⨯⨯)(745.07.06.2⨯-⨯=37389.6(N) 式中 F μ:前后轴制动器总制动力;F μ1 、F μ2:前、后轴制动器制动力;β:制动力分配系数0.46;g :重力加速度 9.8m/s ;L :汽车轴距 4000mm ;a 、b :分别为汽车质心至前、后轴中心的距离 a=2600mm ,b=1400mm ; ϕ:地面附着系数 0.7(干沥青路面);h g :汽车质心高度 hg=745mm ;ma :汽车满载质量 7330kg5.4 驻车所需制动力F z =a m g sin α5.4.1 汽车可能停驻的极限上坡路倾斜角αhgL a ϕϕα-=arctan =745.07.046.27.0arctan⨯-⨯ =27.6式中 ϕ:车轮与地面摩擦系数,取0.7;a :汽车质心至前轴间距离;L :轴距;hg :汽车质心高度。
鼓式制动器说明书
第一章概述随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系统的工作可靠性显得日益重要。
也只有制动性能良好、制动装置工作可靠的汽车,才能充分发挥其动力性能。
制动器是制动系统中用以产生阻碍车辆的运动或运动趋势的部件。
一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与路面的附着作用,产生路面对车轮的制动力以使汽车减速。
凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器,都称为摩擦制动器。
各类汽车所用的摩擦制动器可分为鼓式和盘式两大类。
前者的摩擦副中的旋转元件为制动鼓,其工作表面为圆柱面;后者的旋转元件则为圆盘状的制动盘,以端面为工作表面。
目前发动机排量较小的车型的制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,汽车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%~80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此,为了节省成本,就采用前盘后鼓的制动方式。
不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式制动的设计,而且还因为鼓式制动器还有其它优点:自刹作用:鼓式刹车有良好的自刹作用,由于刹车来令片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度(当然不会大到让你很容易看得出来)刹车来令片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别可能祗有大型采气动辅助,而小型车采真空辅助来帮助刹车。
成本较低:鼓式刹车制造技术层次较低,也是最先用于刹车系统,因此制造成本要比碟式刹车低。
制动器的设计应满足如下要求:(1)能适应有关标准和法规的规定。
各项性能指标除应满足设计任务书的规定和国家标准、法规制定的有关要求外,也应考虑销售对象国家和地区的法规和用户要求。
鼓式制动器设计方案
鼓式制动器设计方案设计方案说明书:鼓式制动器设计方案一、设计背景在现代汽车工业中,制动器是车辆行驶安全的重要组成部分。
鼓式制动器是目前广泛使用的制动系统之一,其结构简单、制动性能稳定,因此在汽车行业得到了广泛应用。
本设计方案旨在开发一种具有较高性能和可靠性的鼓式制动器。
二、设计目标1.提高制动效果:通过优化制动力的分配,提高制动器的整体性能,从而达到更高的制动效果。
2.减少制动器的磨损:通过优化制动器的材料和结构设计,减少制动器的磨损,延长使用寿命。
3.提高制动器的散热性能:通过改进散热器的设计,提高制动器的散热性能,避免制动过程中产生的高温对制动器产生不利影响。
4.提高制动器的可靠性:通过提升制动器的结构设计和选用优质材料,提高制动器的可靠性,降低故障率和维修成本。
5.提高制动器的安全性能:通过增加制动器的安全性能,保证车辆在刹车过程中能够稳定停车,防止制动失效等意外事故。
三、技术方案1.优化制动力分配系统:通过电子控制系统,合理调配前后轮制动力的比例,实现智能化的制动力分配,提高制动效果和安全性。
2.采用新型摩擦材料:选用高温耐磨的摩擦材料,并进行优化设计,在提高制动力的同时降低摩擦损失,减少制动器的磨损。
3.改进鼓式制动器的散热器设计:增加散热片的数量和密度,增强散热器的散热能力,有效降低制动器的温度,提高制动器的散热性能。
4.引入电子控制系统:采用电子控制系统对制动器进行智能监控和调控,实现制动力的实时监测和调整,提高制动器的可靠性和安全性。
5.优化制动器的结构设计:通过改进制动器的结构设计,提高制动器的稳定性和刹车性能,减少制动失效的风险,保证车辆在紧急情况下能够及时停车。
6.选用优质材料:选用高强度、高耐磨、高温抗氧化的材料,提高制动器的耐久性和抗热性能。
四、预期效果通过以上的技术方案的实施,预计能够实现以下效果:1.制动器的制动效果显著提高,提高车辆的制动安全性。
2.降低制动器的磨损程度,延长使用寿命,减少维修成本。
鼓式制动器说明书
hg)/L
(4-10)
即:β=L2/L+ hg/L
(4-11)
其中 L1=835mm L2=535mm L=1370mm hg=745mm 取 =0.6
得到
β=L2/L+ hg/L
=(535+0.6 ×745) ÷1370
=0.72
( 2)同步附着系数
0=(Lβ-L2 )/ hg
(4-12)
=(1370×0.72 -535) ÷745=0.61
满载时质心高度:
hg =745mm
空载时质心高度:
hg' =850mm
质心距前轴的距离:
L 1 =835mm L 1' =726mm
质心距后轴的距离:
L 2 =535mm L 2'=644mm
对汽车制动性有影响的重要参数还有:制动力及其分配系数、
同步附着系数、 制动强度、 附着系数利用率、 最大制动力矩与制动因
足够的间隙,通常要求该间隙不小于
20mm.否则不仅制动鼓散
热条件太差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制
动鼓直径与轮辋直径之比的范围如下:
乘用车 D / Dr =0.64 ~0.74
货车: D / Dr =0 .70 ~ 0 .83
制动鼓内径尺寸应参照专业标准
ZB T24 D05 — 89《制动鼓
因此过分延伸衬片的两端以加大包角,对减小单位压力的作用
不大,而且将使制动不平顺,容易使制动器发生自锁。因此,
包角一般不宜大于 120°。
取 β =100°
衬片宽度 b 较大可以减少磨损, 但过大将不易保证与制动鼓全
面接触。 中华人民共和国专业标准 QC/T 309 —1999 《制动鼓工
RT Manual 鼓式制动器说明书
RT 系列 电液鼓式制动器Type RT Drum Brakes应用/Application :行车大车、小车、起升制动皮带机高速端制动广泛应用于各种起重、输送机械Ø 柔性等退距机构①Ø 自动补偿机构,调节方便,准确可靠Ø 手动释放机构,简捷易用Ø 制动靴随位功能Ø 可选松闸限位开关、磨损限位开关、保留行程警报开关②Ø 可选液压缓冲软制动机构Ø 可选变频软制动单元Ø无石棉半金属摩擦片注:①彻底避免刚性机构由于两侧松闸间隙调整不够精确而带来的两侧受力不均的情形。
②使用摆杆式限位开关,保护限位开关不易损坏。
特点/Design advantage弹簧上闸,液压推动器松闸/Spring applied,Thrustor released注:制动器配有可选组件见后页型号举例:RT200/ED230-50注/Notes:1)多种因素如滑动速度、表面压力、温度及环境因素影响摩擦系数的大小,因此请参考DIN 15434标准选型。
图表中所示制动力矩为在常温下滑动速度为25m/s时制动力矩,标准摩擦片使用温度不超过200°C。
一、自动补偿机构/Automatic Compensate Unit三、松闸、上闸、保留行程限位开关组/Brake Control Limit Switches四、磨损限位开关/Pad wear Limit Switches1、尺寸X和尺寸Y请另行参考我公司参数表Dimensions X and Y due to spec. drawings.2、磨损限位开关出厂设定为:当摩擦片磨损5mm时,限位开关触发给出信号The switch signal poit is factory adjusted so that, if the brake pad wears to a thickness about 5 mm a signal will be given.3、限位开关的摆臂角度已经出厂调整完毕,无需另行调整The roller is factory adjusted with a 100 angle catch4、如需另行设定限位触发点,请垂询我们please contact us for resetting the triger point.5、机械式限位开关,内置常开及常闭触电供选择使用Mechanical limit switch with normal open and normal close signal point in side.TURBEL系列 ED型电液推动器Type TURBEL ED ThrustorØ 按照DIN15430 标准制造Ø 良好的密封性能,不漏油Ø 推动力稳定持久Ø 良好的工作稳定性Ø良好的电机性能及散热性特点/Design advantage1、推动器及剖视图/Sectional ViewØ 符合DIN15430标准的Ed 型液压推动器According DIN15430Ø 标准供货电压(订货时需注明):Standard service voltages are e.g.: 380V,50Hz,3~400V,50Hz,3~460V,60Hz,3~ 500V,50Hz,3~ 690V,50Hz,3~其余电压可按客户要求定制,请联系我们/Other service voltages and frequencies are availableØ 适用环境温度:-20℃ to 50℃(-4°F to 122°F)/Ambient temprature range:-20℃ to 50℃(-4°F to 122°F)其余特别使用环境请垂询我们,提供特别解决方案/Please contact us for other ambient temprature solutions.Ø 行程为60mm 的推动器可以倾斜安装,甚至可以水平安装(接线盒和蓄油腔朝上)Installation can be done even horizontally(terminal box and tank upwards)and in any intermediate Ø 可选组件/Additional OptionsØ 可选上升阀或者下降阀以调节上升或者下降时间By integrating a lifting and/or lovering valve setting times can be extended.Ø 可选装限位开关The thrustor can be equipped with mechanical or inductive limit switches.Ø 加热器(适用低温环境)For operation below -20℃ a heating equipment must be installed.Ø 可选装制动弹簧或者复位弹簧Brake spring or re-setting spring on request.DIN 15430W2U2V22、技术参数及安装尺寸/Technical data and dimensions表1:技术参数/Technical data以上所有参数为在常规室外温度20℃时额定值.All indications are valid for thrustors at operating temperature and an ambient temperature at 20 ℃1) 额定电压380VAC时电流/Current consumption at service voltage of 380VAC.2) 额定力下,不含上升阀和下降阀时/with normalforce,without lifting or lowering valve3) 出厂时已经添加液压油/With oil filling实际外形会与图纸有微小区别,当增加上升阀或者下降阀时尺寸A2增加15mm。
鼓式制动器设计
目录一.选定车型 (3)整车性能参数 (3)二.制动器的设计计算 (4)2.1 地面对车轮的法向反作用力 (4)2.2汽车前后轴制动力 (5)2.3同步附着系数的确定 (7)2.4制动器最大制动力矩 (7)三.制动器结构设计与计算 (8)3.1制动鼓内径D (8)3.2制动鼓厚度n (8)3.3摩擦村片宽度b和包角β (9)3.4摩擦衬片起始角β0 (10)3.5制动器中心到张开力P作用线的距离a (10)3.6制动体制动蹄支撑点位置坐标k和c (10)3.7 摩擦片摩擦系数f (11)四.制动器主要零部件的结构设计 (11)4.1 制动鼓 (11)4.2 制动蹄 (11)4.3制动底板 (12)4.4制动蹄的支承 (12)4.5制动轮缸 (12)4.6制动器间隙 (12)五.校核 (13)5.1校核制动器的热容量和温升的核算 (13)5.2制动器的校核 (14)参考文献 (15)一.选定车型:比亚迪整车性能参数:轴距 2600mm车轮滚动直径: 615mm轮距前/后 1480/1460整备质量 1200kg空载时前轴分配负荷 60%空载时质心高度 600mm最高车速 180km/h最大爬坡度 21%(12°左右)最小转向直径 10.2m最大功率/转速 78/6000 kw/rpm最大转矩/转速 134/4500N*m/rpm轮胎型号 195/60R15手动5挡二.制动器的设计计算2.1 地面对车轮的法向反作用力B F ——地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称为地面制动力,其方向与汽车行驶方向相反,N ;e r ——车轮有效半径,m 。
令 ef f r T F =并称之为制动器制动力,它是在轮胎周缘克服制动器摩擦力矩所需的力,因此又称为制动周缘力。
f F 与地面制动力B F 的方向相反,当车轮角速度ω>0时,大小亦相等,且f F 仅由制动器结构参数所决定。
即f F 取决于制动器的结构型式、尺寸、摩擦副的摩擦系数及车轮有效半径等,并与制动踏板力即制动系的液压或气压成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要目前,随着汽车行业的日益兴旺,对汽车零件的要求也越来越高,制动系执行机构-制动器的设计缺陷导致汽车制动系统的忽视进而使汽车交通事故现象越来越严重。
因此正确的制动器设计应该被准确深入研究。
本文对应用在豪华客车上的气压制动器的设计,对制动系的参数选择进行详细的分析,并且估算了应用该豪华客车的制动器的参数及结构形式,同时对制动器的制动主要部件制动蹄片进行了受力分析,并且分析在驻车情况下车的受力及坡角。
豪华客车上的气压凸轮制动器对汽车安全性能的提高起到重要作用,这也为以后的研究设计提供了必备的参数。
关键词:客车;制动器;参数;分析;结构。
AbstractAt present, as the auto industry's increasingly prosperous auto parts are also getting higher and higher requirements, implementation of the braking system - brake design flaw led to the neglect of the vehicle braking system so that the phenomenon of more and more serious car accident. Therefore, the correct brake designed to be accurate and in-depth study.Application of this article in the luxury passenger car brake pressure on the design parameters of the braking system of choice for detailed analysis and estimates the application of the luxury passenger car brakes in the form and structure of the parameters, at the same time the brakes on the brake of the main brake parts Carried out a shoe analysis, and analysis of the situation in the car and get off in the force and slope angle.The luxury bus cam brake pressure on the improvement of vehicle safety performance has played an important role in this for the future research and design to provide the necessary parameters.Key words: passenger cars; brakes; parameters; analysis; structure.1 绪论1.1 汽车制动系概述尽可能提高车速是提高运输生产率的主要技术措施之一。
但这一切必须以保证行驶安全为前提。
因此,在宽阔人少的路面上汽车可以高速行驶。
但在不平路面上,遇到障碍物或其它紧急情况时,应降低车速甚至停车。
如果汽车不具备这一性能,提高汽车行驶速度便不可能实现。
所以,需要在汽车上安装一套可以实现减速行驶或者停车的制动装置——制动系统。
制动系是汽车的一个重要组成部分,它直接影响汽车的行驶安全性。
随着高速公路的迅速发展和汽车密度的日益增大,交通事故时有发生。
因此,为保证汽车行驶安全,应提高汽车的制动性能,优化汽车制动系的结构。
制动装置可分为行车制动、驻车制动、应急制动和辅助制动四种装置。
其中行驶中的汽车减速至停止的制动系叫行车制动系。
使已停止的汽车停驻不动的制动系称为驻车制动系。
每种车都必须具备这两种制动系。
应急制动系成为第二制动系,它是为了保证在行车制动系失效时仍能有效的制动。
辅助制动系的作用是使汽车下坡时车速稳定的制动系。
汽车制动系统是一套用来使四个车轮减速或停止的零件。
当驾驶员踩下制动踏板时,制动动作开始。
踏板装在顶端带销轴的杆件上。
踏板的运动促使推杆移动,移向主缸或离开主缸。
主缸安装在发动机室的隔板上,主缸是一个由驾驶员通过踏板操作的液压泵。
当踏板被踩下,主缸迫使有压力的制动液通过液压管路到四个车轮的每个制动器。
液压管路由钢管和软管组成。
它们将压力液从主缸传递到车轮制动器。
盘式制动器多用于汽车的前轮,有不少车辆四个车轮都用盘式制动器。
制动盘装在轮辋上、与车轮及轮胎一起转动。
当驾驶员进行制动时,主缸的液体压力传递到盘式制动器。
该压力推动摩擦衬片靠到制动盘上,阻止制动盘转动。
图1-1汽车制动系统的基本部件1.液压助力制动器2.主缸和防抱死装置3.前盘式制动器4.制动踏板5.驻车制动杆6.防抱死计算机7.后盘式制动器很多汽车都采用助力制动系统减少驾驶员在制动停车时必须加到踏板上的力。
助力制动器一般有两种型式。
最常见的型式是利用进气歧管的真空,作用在膜片上提供助力。
另一种型式是采用泵产生液压力提供助力。
驻车制动器总成用来进行机械制动,防止停放的车辆溜车,在液压制动完全失效时实现停车。
绝大部分驻车制动器用来制动两个后车轮。
有些前轮驱动的车辆装有前轮驻车制功器,因为在紧急停车中绝大部分的制动功需要用在车辆的前部。
驻车制动器一般用手柄或脚踏板操作。
当运用驻车制动器时,驻车制动钢索机械地拉紧施加制动的秆件。
驻车制动器由机械控制,不是由液压控制。
每当以很强的压力进行制动时,车轮可能完全停止转动。
这叫做“车轮抱死”。
这并不能帮助车辆停下来,而是使轮胎损失—些与路面的摩擦接触,在路面上滑移。
轮胎滑移时,车辆不再是处于控制下的停车,驾驶员处在危险之中。
有经验的驾驶员知道,防止车轮抱死的对策是迅速上、下踩动制动踏板。
这样间歇地对制动器提供液压力,使驾驶员在紧急制动时能控制住车辆。
现今许多新型车辆装备了防抱死制动系统(ABS)。
防抱死制动系统做的工作与有经验驾驶员做的相同,只是更快、更精确些。
它感受到某车轮快要抱死或滑移时,迅速中断该车轮制动器的制动压力。
在车轮处的速度传感器监测车轮速度,并将信息传递给车上计算机。
于是,计算机控制防抱死制动装置,输送给即将抱死的车轮的液压力发生脉动。
1.2 汽车制动器的工作原理一般制动系的工作原理可用下图所示的一种简单的液压制动系示意图来说明。
—个以内圆面为工作表面的金属的制动鼓8固定在车轮轮毅上,随车轮一同旋转。
在固定不动的制动底板11上,有两个支承销12,支承着两个弧形制动卸10的下端。
制动蹄的外圆面上又装有一般是非金属的摩擦片9。
制动底板上还装有液压制动轮缸6,用油管5与装在车架上的液压制动主缸4相连通。
主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。
制动系不工作时,制动鼓的内圆面与制动蹄摩擦片的外圆面之间保持有一定的间隙,使车轮和制动鼓可以自由旋转。
要使行驶中的汽车减速,驾驶员应跺下制动踏板l,通过推杆2和主缸活塞3,使主缸内的油液在一定压力下流人轮缸6,并通过两个轮缸活塞7推使两制动蹄10绕支承销12转动,上端向两边分开而以其摩擦片9压紧在制动鼓的内圆面上。
这样,不旋转的制动卸就对旋转着的制动鼓作用一个摩擦力矩M,其方向与车轮旋转方向相反。
制动鼓将该力矩传到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的周绕力F,同时路面也对车轮作用一个向后的反作用力,即制动力F。
制动力F由车轮经车桥和悬架传给车架及车身,迫使整个汽车减速。
制动力愈大,汽车减速度也愈大。
当撤开制动踏板时.回位弹簧13即将制动蹄拉回原位,摩擦力矩M和制动力F消失,制动作用即行终止。
图1-2 鼓式制动器结构图1.制动踏板2.推杆3.主缸活塞4.制动主缸5.油管6.制动轮缸7.轮缸活塞8.制动鼓9.摩擦片 10.制动蹄 11.制动底板 12.支承销 13.制动体回位弹簧图中所示的制动器中,由制动鼓8、摩擦片9和制动蹄10所构成的系统产生了一个制动力矩(摩擦力矩M)以阻碍车轮转动该系统称为制动器。
显然,阻碍汽车运动的制动力F不仅取决于制动力矩M,还取决于轮胎与路面间的附着条件。
如果完全丧失附着,则这种制动系事实上不可能产生制动汽车的效果。
不过,在讨论制动系的结构问题时,一般都假定具备良好的附着条件。
1.3 设计的目的和意义毕业设计和毕业论文是本科生培养方案中的重要环节。
学生通过毕业设计,综合性地运用几年内所学知识去分析、解决一个问题,在作毕业设计的过程中,所学知识得到疏理和运用,它既是一次检阅,又是一次锻炼。
不少学生在作完毕业设计后,感到自己的实践动手、动笔能力得到锻炼,增强了即将跨入社会去竞争,去创造的自信心。
通过大学四年的学习,从理论与实践上均有了一定程度的积累。
毕业设计就是对我们以往所学的知识的综合运用与进一步的巩固加深,并对解决实际问题的能力的训练与检验,目的在于:1、培养正确的设计思想与工作作风。
2、进一步培养制图、绘图的能力。
3、学会分析与评价汽车及其各总成的结构与性能,合理选择结构方案及其有关参数。
4、学会汽车一些主要零部件的设计与计算方法以及总体设计的一般方法,以毕业后从事汽车技术工作打下良好的基础。
5、培养独立分析、解决问题的能力。
2 制动器结构简介汽车的制动器设计究竟采用哪一种结构方案较为合理,能够最大限度的发挥制动器的功用,首先应该从制动器设计的一般原则上谈起。
2.1 鼓式制动器l-调整楔2-推杆3-制动蹄4-连接弹簧5-上回位弹簧6-弹簧座7-手制动拉杆8-下回位弹簧9-车轮制动缸l0-制动底板ll—旋塞12-制动摩擦片l3-弹簧鼓式制动器总成的主要零部件有:制动鼓和轮毅总成、制动蹄总成、制动底板、液压轮缸、制动蹄回位弹簧/压紧装置、调节机构和驻车制动机构。
为制动车轮、制动鼓和制动蹄提供摩擦表面,制动鼓的内圆周是一加工过的制动表面。
车轮通过螺母和双头螺栓安装到制动鼓轮毅上。
该轮毂安放在允许车轮总成转动的车轮轴承上。
各种鼓式制动器的示意图如下:1、领从蹄式2、双领蹄式3、双向领从蹄式4、双从蹄式5、单向增力式6、双向增力式。