第四讲 教案
思维拓展第4讲《盈亏问题》(教案)五年级上册数学人教版
思维拓展第4讲《盈亏问题》教案一、教学目标1. 让学生理解盈亏问题的概念,掌握盈亏问题的解题方法。
2. 培养学生运用盈亏问题的解题方法解决实际问题的能力。
3. 培养学生分析问题、解决问题的能力,提高学生的数学思维水平。
二、教学内容1. 盈亏问题的概念。
2. 盈亏问题的解题方法。
3. 盈亏问题在实际生活中的应用。
三、教学重点与难点1. 教学重点:盈亏问题的解题方法。
2. 教学难点:盈亏问题在实际生活中的应用。
四、教学过程1. 导入新课通过一个实例引入盈亏问题,激发学生的学习兴趣。
实例:小明去商店买苹果,每斤苹果3元,他买了5斤,共支付15元。
请问小明买苹果的过程中,商店是盈利还是亏损?2. 探究新知(1)引导学生理解盈亏问题的概念。
盈亏问题是指在实际生活中,由于价格、数量等因素的变化,导致收入和支出之间的差额问题。
(2)引导学生掌握盈亏问题的解题方法。
解题方法:盈亏问题的解题方法是通过计算收入和支出的差额,来判断是盈利还是亏损。
如果收入大于支出,则为盈利;如果收入小于支出,则为亏损。
(3)通过例题,让学生掌握盈亏问题的解题方法。
例题1:小明去商店买苹果,每斤苹果3元,他买了5斤,共支付15元。
请问小明买苹果的过程中,商店是盈利还是亏损?解答:商店的收入为15元,支出为5斤苹果的成本,即5斤 3元/斤 = 15元。
收入等于支出,所以商店既没有盈利也没有亏损。
例题2:小明去商店买苹果,每斤苹果3元,他买了5斤,共支付16元。
请问小明买苹果的过程中,商店是盈利还是亏损?解答:商店的收入为16元,支出为5斤苹果的成本,即5斤 3元/斤 = 15元。
收入大于支出,所以商店盈利1元。
3. 巩固练习让学生独立完成一些盈亏问题的练习题,巩固所学知识。
4. 课堂小结对本节课所学内容进行小结,让学生明确盈亏问题的概念和解题方法。
五、课后作业1. 让学生完成一些盈亏问题的练习题,巩固所学知识。
2. 让学生观察生活中的盈亏问题,并尝试运用所学知识解决。
第4讲-整式的概念-教案
学员姓名: 年级:学科教师:辅导科目:1. 采用课堂提问的方式,提问内容涌盖本节课的基本知识点•2. 学生回答完毕后,老师加以补充,对一些柢念可以举例说明(建议7分钟)授课日期时 间主 «第4讲整式的概念学习目标1. 理解单项式、多项式和整式中的有关概念:2. 知道“指数”与“次数”的联系与区别,能写出单项式中的系数;3. 会把多项式按某一字母进行升麻或降屏排列.教学内容1.观察并思考:(1)2%、-2a 2 . ab\ |x 2y 2 , 〃这些代数式包含哪些运算?>单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式.(单独一个数或者字母也是单项式).>单项式的系数:单项式中的数字因数叫做这个单项式的系数.> 单项式的次数:一个单项式中所有字时的指数的和叫做这个单项式的次数.> 注意:单独一个非零数的次数是0,当单项式的系数为1或-1时,这个'T'应省略不写.问题:请说出⑴中的儿个单项式的系数和次数。
(2)2x+3,妒+2々_1, 3亍-垢+&-3这些代数式包含哪些运算>多项式:由几个单项式的和组成的代数式叫做多项式.>多项式的项:在多项式中的每个单项式叫做多项式的项.> 常数项:不含字时的项叫做常数项.> 多项式的次数:次数最高项的次数就是这个多项式的次数.问题:清说出(2)中的几个多项式是由哪几个单项式组成的?此中有没有常数项?它们的次数分别是多少?为什么注意:确定多项式的次数时,应先确定每个单项式每个字母的指数:再计算这个单项式中所有字母的指数的和"单项式与多项式的区别:异注意单项式没有加减运算单项式注意系数(包括符号)和次数多项式有加诚运算多项式注意项数和次数I>整式:单项式、多项式统称为整式.(采用教师引导,学生轮流回答的形式)【知识梳理1】字母表示数例1.用代数式表示:(1)把温度是的水加热到100C,水温升高了 C.(2)—个两位数,个位数字是°,十位数字是切则这个两位数可表示为.(3)用字母表示两个连续奇数为.(4)若正方体的棱长是〃一1,则正方体的表而积为.(5)如图,亮亮家装饰新家,他为自己的房间选了一款窗帘(上方阴影固定),请你帮他计算可以射进阳光的面积为米2.思路点拨:用字母表示数最关系,关键是理解题意.抓住关抵词句,再用适当的式子表达出来。
第4讲--设问检查法-教案
大多数人看见美丽的花时会发出“多美的花”这样的感叹,只有少数人会继续发问,“花为什么会这样红”,“为什么花会开在这里”,“这是什么花”,并积极求地寻答案。
创新的关键是能够发现问题,提出ห้องสมุดไป่ตู้题。
设问法就是对任何事物都多问几个为什么?
【讲授新课】
一、设问型创新方法的概念
通过有序地、有目标的提出一些问题,使问题具体化,缩小了需要探索和创新的范围,启发人们系统地思考解决问题的可能性,产生创新方案的创新方法。
7、硫酸铜溶液与铁钉的反应属于化学反应。硫酸铜溶液的颜色是蓝色,将铁钉浸入硫酸铜溶液中,我们发现铁钉变红了。
19、夏季是观察星座的好季节,天空中有许多亮星,其中人们称之为“夏季大三角”的是天津四、织女星和牛郎星。它们分别属于天鹅座、天琴座、天鹰座。
1、我们每天都要消耗食物和各种各样的生活用品,与此同时,也产生了许多垃圾。【教学总结】
12、太阳是太阳系里唯一发光的恒星,直径是1400000千米。1、奥斯本检核表法;
10、生物学家列文虎克于1632年出生在荷兰,他制成了世界上最早的可放大300倍的金属结构的显微镜。他用自制的显微镜发现了微生物。2、5W2H法。
例如:声音变化
悦耳的音乐能够使人心旷神怡,激发创造力,轻松的音乐能提高人的学习效果,使乳牛多产奶,西红柿多结果。
例如,钢化玻璃杯
【案例】火车车轮的发明
【案例】斑马线
【案例】水龙头的变换
【案例】豪斯发明的缝纫机
3、检核表法的优点
①是一种具有较强启发创新思维的方法。
②它强制人去思考,有利于突破一些人不愿提问题或不善于提问题的心理障碍。
3.《简明创新方法》,出版社中央广播电视大学出版社,作者:于惠玲,2014.6
国学经典之四书五经-第四讲《修身自省》教案
国学经典之四书五经-第四讲《修身自省》教案1. 教学目标•了解《四书五经》中的《大学》、《中庸》等经典著作的精髓内容;•理解“修身”、“自省”的概念及其重要性;•掌握相关的学习方法和技巧;•培养学生的自我认知和自我修养能力。
2. 教学重点•深入理解“修身”、“自省”的内涵;•探讨如何将国学经典中的智慧运用到日常生活中;•培养学生的自我反思与修养能力。
3. 教学准备•课件:包括《四书五经》相关内容的PPT;•教案:详细的教学安排和讲义;•学生参考资料:推荐相关书籍、文章供学生深入阅读。
4. 教学流程4.1 开场导入•展示相关名人语录或故事引入主题:“修身自省”。
4.2 知识讲解1.《大学》中的“修身”–介绍《大学》中关于“格物致知”、“诚意正心”等理念。
2.《中庸》中的“自省”–探讨《中庸》中关于“诚意正言”、“修身安民”等内容。
3.实践与应用–分组讨论如何将“修身自省”应用到实际生活中。
4.3 学生互动•鼓励学生分享个人看法和体会,互相交流心得。
4.4 练习和总结•布置相关练习,强化学生对内容的理解;•总结当天的教学内容,引导学生做好课后复习。
5. 课堂评价•课堂表现:学生积极参与讨论,表达清晰的观点;•作业评估:针对课堂内容设计相关的作业或问答,检验学生对知识点的掌握程度;•课后反馈:收集学生对本节课程的反馈意见,用于课堂教学的改进。
6. 教学延伸•鼓励学生深入学习《四书五经》其他经典著作,拓展国学研究的领域;•可组织相关文化体验活动或参观,加深学生对国学经典的了解。
7. 教学反思•回顾本节课的教学过程和效果,总结教学中的亮点和不足,为下一堂课的改进提供参考。
这是第四讲“修身自省”教案的详细内容,通过深入学习国学经典,培养学生的自律和自我反思能力,为其终身发展打下扎实的基础。
自助与成长——大学生心理健康教育之第四讲 人际关系(教案)
教案【教学单元首页】第 4 次课授课学时 2 教案完成时间:2011.9.10 章、节第四讲大学生的人际交往主要内容第一节人际关系概述第二节大学生人际交往及影响因素第三节大学生人际交往原则及技巧第四节大学生人际关系障碍及调适目的与要求要求学生能够理解人际关系、人际交往的基本概念,了解影响人际交往的因素,掌握人际交往的原则及人际交往技巧,并能在生活中灵活运用,解决日常生活中遇到的人际问题,提高自己的心理健康水平。
重点与难点1、影响人际交往的因素;2、大学生人际交往中的心理效应;人际交往的技巧;3、改善人际关系的方法教学方法与手段课堂讲授;游戏互动;多媒体展示;课堂讨论。
第四讲大学生的人际交往导入通过引言“戴尔•卡耐基:一个人的成功,只有15%是由于他的专业技术,而85%要靠人际关系和他的为人处世能力。
”导入人际交往的重要性:1、人际交往促进深化自我认识(了解自我)别人是我们的一面镜子,可以反映自己的优缺好坏。
观察别人的言行,可以从中观照、了解自己。
在我们的交往活动中,有时候两方面的评价会有一定的差距,不少人会因此而产生烦恼。
这就要求我们要善于调节两方面的评价,全面提高自己的综合素质。
正确的自我认识,有助于我们找到自己的社会位置,扮演好自己的社会角色。
2、人际交往促进社会化进程(了解他人)现代社会是一个讲求团队协作和共赢的社会,早已没有达芬奇(画家、寓言家、雕塑家、发明家、哲学家、音乐家、医学家、生物学家、地理学家、建筑工程师和军事工程师)式的大家,靠个人力量很难实现自我价值。
人际交往是社会发展的必然产物,也是社会发展的基本前提。
没有人际交往过程中所形成的各种各样的网络关系以及人们所担当的各种各样的社会角色,社会就不成其为社会,发展也无从谈起。
人际交往与我们密不可离,是我们生活的一部分,贯穿生命的始终。
良好的人际交往能力是青少年社会化的起点,是将来在社会立足的生存需要,也是为社会做贡献的本领。
3、人际交往是实现人生价值的桥梁(实现价值)良好的人际交往,能让我们掌握更多社会的信息,了解自己的生活和需要,才能得到更好的发展。
六年级奥数第4讲:工程问题-教案
( 六年级 ) 备课教员:×××第四讲 工程问题一、教学目标: 知识目标 1. 认识工程问题的结构特点。
2. 掌握它的数量关系、解题思路和解题方法。
3. 并能正确解答工程问题的基本题。
能力目标 1. 初步培养学生的分析概括能力和迁移类推能力。
2. 运用所学知识解决实际问题的能力。
情感目标 1. 通过课堂教学中引用国家发展建设中的图片, 渗透学生爱国思想,培养学生民族自豪感。
二、教学重点: 1. 工程问题的结构特点、解题思路和解题方法。
三、教学难点: 1. 理解用“单位1”表示工作总量,用单位时间完成工作总量的几分之一表示工作效率。
四、教学准备: PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过一组中国古代大型工程的图片和相关了解,渗透学生的爱国思想,培养学生民族自豪感。
再通过几个简单的问题,对工程问题的基本结构和解题思想做一个复习】师:这节课一开始,老师就想要考考大家。
同学们知道中国古代三大工程是什 么吗?生:长城、故宫……师:有的同学们猜到了,但是都没有完全猜对。
那老师给大家降低一些难度, 先给大家看图片,再由大家来猜,举手抢答哦!(出示PPT ,说出正确的名词后,再请一名同学或老师来读下面的介绍文字) 师:我们的古人是不是很厉害,很伟大?生:是。
师:但是在他们的伟大背后却付出了几代人甚至更多代人的努力,甚至付出生命的代价。
我们要学习这种艰苦奋斗的精神,好好学习,将来祖国的建设 需要你们。
那么回到我们的课堂,我们今天要来学习“工程问题”。
【板书课题:工程问题】师:我们再来看几个简单的问题?(出示PPT )师:修完一段路需要5天,每天修这段路的多少?生:51。
师:每天修一段路的51,修完这段路需要多少天?生:5天。
师:都是怎么计算的?生:第一个问题是:1÷5=51,第二个问题是:1÷51=5(天)。
师:我们在做工程问题的时候经常把工作总量看作单位“1”,那么这里工作总量是?生:一段路。
精品教案:《伟大的中国梦》
第4讲我们的中国梦精品教案:《伟大的中国梦》一、教材分析本课内容是第四讲《我们的中国梦》中的第2课《伟大的中国梦》。
教材分两部分,第一部分通过讲述个人的中国梦,理解中国梦的含义,第二部分通过几个科学家的事例,讲述国家的中国梦,懂得一代又一代、各行各业的中国人为了实现梦想付出了辛勤的汗水。
二、教学目标:1.理解中国梦的含义,明确中国梦是每个中国人的梦。
2.了解中国梦凝聚了一代又一代人中国人的梦想,凝聚了各行各业人的梦想。
3. 懂得中国人为实现梦想付出了艰苦的努力,感受中国人实现中国梦的奋斗精神。
三、教学重难点:1.重点:了解中国梦凝聚了一代又一代人中国人的梦想,凝聚了各行各业人的梦想。
2.难点:感受中国人实现中国梦的奋斗精神。
四、教学准备:收集相关图片、视频等资料,制作教学PPT五、教学过程:(一)畅谈希望,理解中国梦1、出示P35页第一段文字读一读,提问:什么是中国梦2、画一画:我的中国梦。
交流分享自己的画作(设计意图:通过学生课前对我的中国梦的理解,绘画出一幅幅心中的中国梦。
)3、访一访:他人眼中的中国梦。
(设计意图:通过访谈身边的人,了解中国梦凝聚了亿万中国人的梦想,每个人都为实现中国梦而默默地作出贡献。
)4、师归纳总结个人:家人开心幸福民族:民族团结一心国家:国家繁荣富强5、播放视频资料,直观感受中国梦6、出示P35习近平语读一读,说说你的理解。
(设计意图:通过学习习近平总书记讲话,进一步理解中国梦的含义,明确中国梦是每个中国人的梦。
)(二)伟大梦想,代代相传1、出示P36页第一段文字1.读一读:一代又一代人的中国梦读后交流:2、看一看:中国航天梦。
(设计意图:通过分享科学家的事迹,了解中国梦凝聚了一代又一代人中国人的梦想。
)3、说一说:航天梦是怎样实现的?艰辛的努力辛勤的汗水4、播放视频资料: 航天员沙漠野外生存训练,直观了解5、师小结:中国航天梦——中国富强(设计意图:设计意图:通过分享科学家以及航天人的事迹,体会中国梦凝聚了一代又一代人中国人努力付出,是一代又一代中国人的梦想。
高中数学教案 第4讲 直线与圆、圆与圆的位置关系
第4讲直线与圆、圆与圆的位置关系1.能根据给定直线、圆的方程判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )相离相切相交图形量化方程观点Δ□1<0Δ□2=0Δ□3>0几何观点d □4>r d □5=r d □6<r 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|O 1O 2|□7>r 1+r 2⇔⊙O 1与⊙O 2相离;|O 1O 2|□8=r 1+r 2⇔⊙O 1与⊙O 2外切;|r 1-r 2|□9<|O 1O 2|<r 1+r2⇔⊙O 1与⊙O 2相交;|O 1O 2|□10=|r 1-r 2|⇔⊙O 1与⊙O 2内切(r 1≠r 2);|O 1O 2|□11<|r 1-r 2|⇔⊙O 1与⊙O 2内含.两圆的位置关系与公切线的条数①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.常用结论1.过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r2.2.过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )·(y -b )=r 2.3.过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)设f(x,y)=0表示直线l,g(x,y)=0表示⊙C,则方程g(x,y)+λf(x,y)=0表示过l与⊙C交点的所有圆.()(4)设f(x,y)=0表示⊙C1,g(x,y)=0表示⊙C2,则方程f(x,y)+λg(x,y)=0表示过⊙C1与⊙C2交点的所有圆.()答案:(1)×(2)×(3)√(4)×2.回源教材(1)直线y=3x被圆C:x2+y2-2x=0截得的线段长为.解析:圆C:x2+y2-2x=0的圆心为(1,0),半径为1,圆心到直线y=3x的距离为d=3 2,故弦长为2×1-(32)2=1.答案:1(2)圆x2+y2-2y=0与圆x2+y2-4=0的位置关系为.解析:圆x2+y2-2y=0的圆心为C1(0,1),半径r1=1,圆x2+y2-4=0的圆心为C2(0,0),半径r2=2,由于|C1C2|=r2-r1,所以两圆内切.答案:内切(3)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为.解析:2+y2-4=0,2+y2-4x+4y-12=0,得两圆公共弦所在直线方程x-y+2=0.又圆x2+y2=4的圆心到直线x-y+2=0的距离为22= 2.由勾股定理得弦长为24-2=2 2.答案:22直线与圆的位置关系例1(1)(2024·南充高级中学模拟)已知直线l:kx-y-k-2=0和圆C:x2-2x+4y+y2-1=0,则直线l与圆C的位置关系是()A.相切B.相交C.相离D.相交或相切解析:B圆C的标准方程为(x-1)2+(y+2)2=6,圆心C(1,-2),直线l:kx-y-k-2=0可化为y+2=k(x-1),则直线l过定点(1,-2),因此直线l经过圆心C,所以直线l与圆C相交.故选B.(2)(2024·菏泽期中)已知直线l:x-y+2=0与圆C:x2+y2-2y-2m=0相离,则实数m的取值范围是()A.-12,-14 B.(-∞,-14)C.(-12,-14) D.(-12,+∞)解析:C圆C的标准方程为x2+(y-1)2=2m+1,则m>-12,所以圆心为(0,1),半径为2m+1,由直线与圆相离,可知圆心C到直线l的距离12>2m+1,可得-12<m<-14,即实数m的取值范围为(-12,-14).故选C.反思感悟判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系判断.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.训练1(1)(多选)(2021·新高考Ⅱ卷)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切解析:ABD选项A ,∵点A 在圆C 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2=|r |,∴直线l 与圆C 相切,A 正确.选项B ,∵点A 在圆C内,∴a 2+b 2<r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2>|r |,∴直线l 与圆C相离,B 正确.选项C ,∵点A 在圆C 外,∴a 2+b 2>r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2<|r |,∴直线l 与圆C 相交,C 错误.选项D ,∵点A 在直线l 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2=|r |,∴直线l 与圆C 相切,D 正确.故选ABD.(2)(2022·新高考Ⅱ卷)设点A (-2,3),B (0,a ),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是.解析:由题意知点A (-2,3)关于直线y =a 的对称点为A ′(-2,2a -3),所以k A ′B =3-a 2,所以直线A ′B 的方程为y =3-a2x +a ,即(3-a )x -2y +2a =0.由题意知直线A ′B 与圆(x +3)2+(y +2)2=1有公共点,易知圆心为(-3,-2),半径为1,所以|-3(3-a )+(-2)×(-2)+2a |(3-a )2+(-2)2≤1,整理得6a 2-11a +3≤0,解得13≤a ≤32,所以实数a 的取值范围是13,32.答案:13,32圆的切线、弦长问题切线问题例2(2023·新课标Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64解析:B如图,由x 2+y 2-4x -1=0得(x -2)2+y 2=5,所以圆心坐标为(2,0),半径r =5,所以圆心到点(0,-2)的距离为(2-0)2+(0+2)2=2 2.由于圆心与点(0,-2)的连线平分角α,所以sin α2=r 22=522=104,又α2∈(0,π2),所以cos α2=64,所以sin α=2sin α2cos α2=2×104×64=154,故选B.弦长问题例3(2023·新课标Ⅱ卷)已知直线x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.解析:设直线x -my +1=0为直线l ,由条件知⊙C 的圆心为C (1,0),半径R =2,则圆心C 到直线l 的距离d =21+m 2,|AB |=2R 2-d 2=24-(21+m2)2=4|m |1+m 2.由S △ABC =85,得12×4|m |1+m 2×21+m 2=85,整理得2m 2-5|m |+2=0,解得m =±2或m =±12,故答案可以为2.答案:2(答案不唯一,可以是±12,±2中任意一个)最值(范围)问题例4由直线x-y+4=0上一点向圆(x-1)2+(y-1)2=1引切线,则切线长的最小值为()A.7B.3C.22D.22-1解析:A圆(x-1)2+(y-1)2=1的圆心C(1,1),半径为1,由直线x-y+4=0上一点P向圆(x-1)2+(y-1)2=1引切线,设切点为M,连接PC,MC(图略),则|PM|=|PC|2-|MC|2=|PC|2-1,要使切线长最小,则|PC|最小,而|PC|的最小值等于圆心C到直线x-y+4=0的距离,故|PC|min=|1-1+4|2=22,故切线长的最小值为(22)2-1=7.故选A.反思感悟直线与圆问题的解决方法(1)设圆的半径为r,圆心到直线的距离为d,若直线与圆相切,则d=r;若直线与圆相交,则所得弦长l=2r2-d2.(2)涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长度表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.训练2(1)(2024·陕西第一次大联考)已知圆C:x2+y2-4x+8y=0关于直线3x-2ay-22=0对称,则圆C中以(a2,-a2)为中点的弦长为()A.25B.5C.10D.210解析:D圆C的方程可化为(x-2)2+(y+4)2=20,圆心C(2,-4),r=25,∵圆C关于直线3x-2ay-22=0对称,∴直线过圆心C(2,-4),即3×2+8a -22=0,解得a=2.圆心C与点(1,-1)的距离的平方为10,则圆C中以(1,-1)为中点的弦长为2(25)2-10=210,故选D.(2)(2023·全国乙卷)已知实数x,y满足x2+y2-4x-2y-4=0,则x-y的最大值是()A.1+322B.4C.1+32D.72解析:C将方程x2+y2-4x-2y-4=0化为(x-2)2+(y-1)2=9,其表示圆心为(2,1),半径为3的圆.设z=x-y,数形结合知,只有当直线x-y-z=0与圆相切时,z才能取到最大值,此时|2-1-z|2=3,解得z=1±32,故z=x-y的最大值为1+3 2.故选C.圆与圆的位置关系例5(多选)(2024·福建师大附中第三次月考)已知⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,则下列说法中,正确的有()A.若点(1,-1)在⊙O1内,则m≥0B.当m=1时,⊙O1与⊙O2共有两条公切线C.若⊙O1与⊙O2存在公共弦,则公共弦所在直线过定点(13,16)D.∃m∈R,使得⊙O1与⊙O2公共弦的斜率为12解析:BC因为⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,所以⊙O1:(x-m)2+(y+1)2=m2+1,⊙O2:(x-1)2+(y-2m)2=4m2,则O1(m,-1),r1=m2+1,O2(1,2m),r2=2|m|,则m≠0.对于A,由点(1,-1)在⊙O1内,可得(1-m)2+(-1+1)2<m2+1,即m>0,故A错误;对于B,当m=1时,O1(1,-1),r1=2,O2(1,2),r2=2,所以|O1O2|=3∈(2-2,2+2),所以两圆相交,有两条公切线,故B正确;对于C,⊙O1和⊙O2的方程相减,得(-2m+2)x+(2+4m)y-1=0,即m(-2x+4y)+(2x+2y-1)=02x+4y=0,x+2y-1=0,=13,=16,所以⊙O1与⊙O2的公共弦所在直线过定点(13,16),故C正确;对于D,公共弦所在直线的斜率为2m-22+4m,令2m-22+4m=12,无解,故D错误.故选BC.反思感悟1.判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和与差的绝对值的关系,一般不用代数法.2.两圆公共弦长的求法先求出公共弦所在直线的方程,在其中一圆中,由弦心距d,半弦长l2,半径r构成直角三角形,利用勾股定理求解.训练3(1)圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,则m的取值范围是()A.(-∞,-5]B.[5,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:D将x2+2mx+y2+m2-1=0化为标准方程得(x+m)2+y2=1,即圆心为(-m,0),半径为1,圆x2+(y-2)2=4的圆心为(0,2),半径为2,因为圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,所以两圆的位置关系为外切或相离,所以m2+4≥2+1,即m2≥5,解得m∈(-∞,-5]∪[5,+∞).故选D.(2)(多选)已知圆O1:x2+y2-2x=0和圆O2:x2+y2+2x-8y=0的交点为A,B,则下列结论正确的是()A.直线AB的方程为x-2y=0B.|AB|=255C.线段AB的垂直平分线方程为2x+y-2=0D.若点P为圆O1上的一个动点,则点P到直线AB的距离的最大值为55+1解析:ACD根据题意,由x2+y2-2x=0,得(x-1)2+y2=1,则圆心O1(1,0),半径r=1,由x2+y2+2x-8y=0,得(x+1)2+(y-4)2=17,则圆心O2(-1,4),半径R=17.对于A 2+y2-2x=0,2+y2+2x-8y=0,得x-2y=0,即直线AB的方程为x-2y=0,A正确;对于B,圆心O1到直线AB的距离为d=|1-0|1+4=55,则|AB|=2×1-15=455,B错误;对于C,线段AB的垂直平分线即直线O1O2,由O1(1,0),O2(-1,4),易得直线O1O2的方程为2x+y-2=0,C正确;对于D,由圆心O1到直线AB的距离d=55,知点P到直线AB的距离的最大值为55+1,D正确.故选ACD.限时规范训练(六十)A级基础落实练1.圆(x+1)2+(y-2)2=4与直线3x+4y+5=0的位置关系为()A.相离B.相切C.相交D.不确定解析:B由题意知,圆(x+1)2+(y-2)2=4的圆心为(-1,2),半径r=2,则圆心到直线3x+4y+5=0的距离d=|-3+8+5|32+42=2=r,所以直线3x+4y+5=0与圆(x+1)2+(y-2)2=4的位置关系是相切.2.(2024·南京模拟)在平面直角坐标系中,圆O1:(x-1)2+y2=1和圆O2:x2+(y-2)2=4的位置关系是()A.外离B.相交C.外切D.内切解析:B由题意知,圆O1:(x-1)2+y2=1,可得圆心坐标O1(1,0),半径r1=1,圆O2:x2+(y-2)2=4,可得圆心坐标为O2(0,2),半径r2=2,则两圆的圆心距O1O2=1+4=5,则2-1<5<2+1,即|r2-r1|<O1O2<r1+r2,所以圆O1与圆O2相交.3.(2023·浙江嘉兴期末)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为22,则过圆心C且与直线l垂直的直线的方程为()A.x+y-3=0B.x-y+3=0C.x +y +3=0D.x -y -3=0解析:A 设所求的直线方程为x +y +m =0,圆C 的圆心坐标为(a ,0),则由题意知(|a -1|2)2+2=(a -1)2,解得a =3或a =-1,因为圆心在x 轴的正半轴上,所以a =3.因为圆心(3,0)在所求的直线上,所以有3+0+m =0,得m =-3,故所求的直线方程为x +y -3=0.故选A.4.(2024·深圳罗湖区期末)圆O 1:x 2+y 2-4y -6=0与圆O 2:x 2+y 2-6x +8y =0公共弦长为()A.5B.10C.25D.35解析:C联立两个圆的方程2+y 2-4y -6=0,2+y 2-6x +8y =0,两式相减可得公共弦方程为x -2y -1=0,圆O 1:x 2+(y -2)2=10的圆心坐标为O 1(0,2),半径r =10,圆心O 1(0,2)到公共弦的距离d 1=|0-4-1|1+4=5,公共弦长d =2r 2-d 21=210-5=25,故选C.5.(2024·抚州临川一中期末)已知圆C :(x -3)2+(y -4)2=4和两点A (-3m ,0),B (3m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最小值为()A.6B.5C.2D.3解析:D 由题意得,点P 在以原点为圆心,3m 为半径的圆上,因为点P 在圆C 上,所以只要两圆有交点即可,所以|3m -2|≤5≤3m +2,解得3≤m ≤733,所以m 的最小值为3,故选D.6.(2024·皖江名校第五次联考)已知⊙O :x 2+y 2=4,⊙C 与一条坐标轴相切,圆心C 在直线x -y +7=0上.若⊙C 与⊙O 相切,则满足条件的⊙C 有()A.1个B.2个C.3个D.4个解析:D设圆心C (a ,a +7).当⊙C 与x 轴相切时,半径r =|a +7|,故a 2+(a +7)2=2+|a +7|,即a 2-4=4|a +7|,解得a =-4或a =8,所以⊙C的方程为(x+4)2+(y-3)2=9或(x-8)2+(y-15)2=225.当⊙C与y轴相切时,半径r=|a|,故a2+(a+7)2=2+|a|,即(a+7)2=4+4|a|,解得a=-3或a=-15,所以⊙C的方程为(x+3)2+(y-4)2=9或(x+15)2+(y+8)2=225,则满足条件的⊙C有4个.故选D.7.(2024·长沙模拟)若圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,则正实数a的取值范围为.解析:|C1C2|=9+(a+1)2,因为圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,所以|a-2|<9+(a+1)2<a+2,解得a>3.答案:(3,+∞)8.若一条光线从点A(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为.解析:点A(-2,-3)关于y轴的对称点为A′(2,-3),故可设反射光线所在直线的方程为y+3=k(x-2),化为kx-y-2k-3=0,∵反射光线与圆(x+3)2+(y-2)2=1相切,∴圆心(-3,2)到直线的距离d=|-3k-2-2k-3|k2+1=1.化为24k2+50k+24=0,∴k=-43或-34.答案:-43或-349.(2024·苏北四市模拟)过点P(1,1)作圆C:x2+y2=2的切线交坐标轴于点A,B,则PA→·PB→=.解析:∵12+12=2,∴点P 在圆C 上,∴PC ⊥AB .∵k CP =1-01-0=1,∴直线AB 的斜率k AB =-1,∴直线AB 的方程为y -1=-(x -1),即x +y -2=0.不妨设直线AB 与x 轴交点为A ,与y 轴交点为B ,得点A (2,0),B (0,2),∴PA →=(1,-1),PB →=(-1,1),∴PA →·PB →=-1-1=-2.答案:-210.已知圆C :x 2+y 2-6x -8y +21=0,直线l 过点A (1,0).(1)求圆C 的圆心坐标及半径长;(2)若直线l 与圆C 相切,求直线l 的方程;(3)当直线l 的斜率存在且与圆C 相切于点B 时,求|AB |.解:圆C 的方程为(x -3)2+(y -4)2=22.(1)圆C 的圆心坐标是(3,4),半径长是2.(2)①当直线l 的斜率不存在,即其方程是x =1,满足题意.②当直线l 的斜率存在时,可设直线l 的方程是y =k (x -1),即kx -y -k =0.由圆心(3,4)到直线l 的距离等于圆C 的半径,即|3k -4-k |k 2+1=2,解得k =34,此时直线l 的方程是3x -4y -3=0.综上,直线l 的方程是x =1或3x -4y -3=0.(3)由(2)得直线l 的方程是3x -4y -3=0.圆C 的圆心是点C (3,4),则|AC |=4+16=25,所以|AB |=|AC |2-|BC |2=20-22=4.11.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0.(1)设直线l 与圆C 交于不同两点A ,B ,求弦AB 的中点M 的轨迹方程;(2)若定点P (1,1)分弦AB 为AP ∶PB =1∶2,求此时直线l 的方程.解:(1)直线l :mx -y +1-m =0变形为m (x -1)-y +1=0,可知直线l 恒过点(1,1),由圆C 的方程可知圆心C (0,1),过C 作CM ⊥l 于M ,可知M 为线段AB 的中点,设M (x ,y ),则有x 2+(y -1)2+(x -1)2+(y -1)2=12,化简得x 2+y 2-x -2y +1=0,点(1,1)也满足此方程,故M 的轨迹方程为x 2+y 2-x -2y +1=0.(2)设A (x 1,y 1),B (x 2,y 2),由AP ∶PB =1∶2,得1-x 1=12(x 2-1),化简得x 2=3-2x 1,①-y +1-m =0,2+(y -1)2=5,消去y 得(1+m 2)x 2-2m 2x +m 2-5=0,②∴x 1+x 2=2m 21+m 2,③由①③解得x 1=3+m 21+m 2,代入②式,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0.B 级能力提升练12.(2024·南通海安期末)已知圆心均在x 轴上的两圆外切,半径分别为r 1,r 2(r 1<r 2),若两圆的一条公切线的方程为y =24(x +3),则r 2r 1=()A.43B.2C.54D.3解析:B不妨设两圆为圆C 1和C 2,圆C 1:(x -a )2+y 2=r 21,圆C 2:(x -b )2+y 2=r 22,其中r 1>0,r 2>0,-3<a <b .由于两圆的公切线方程为x -22y +3=0,则r 1=|a +3|1+(-22)2=a +33,r 2=|b +3|1+(-22)2=b +33.由两圆外切,得|C 1C 2|=b -a =r 1+r 2=a +33+b +33,化简得b =2a +3,则r 2r 1=b +3a +3=2,故选B.13.(多选)有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),则下列命题正确的是()A.不论k 如何变化,圆心C k 始终在一条直线上B.所有圆C k 均不经过点(3,0)C.存在定直线始终与圆C k 相切D.若k ∈(-22,322),则圆C k 上总存在两点到原点的距离均为1解析:ABC圆C k 的圆心C k (k ,k ),在直线y =x 上,A 正确;由(3-k )2+(0-k )2=4,化简得2k 2-6k +5=0,Δ=36-40=-4<0,无实数解,B 正确;由A 选项的分析知,圆心C k 在直线y =x 上,半径为定值2,假设存在定直线始终与圆C k 相切,则定直线的斜率一定为1,设为y =x +b ,则圆心到定直线的距离为|b |2=2,得b =±22,故存在定直线y =x ±22始终与圆C k 相切,C 正确;圆C k 上总存在两点到原点的距离均为1,可转化为圆x 2+y 2=1与圆C k 有两个交点,则2-1<|2k |<2+1,得-322<k <-22或22<k <322,即k ∈(-322,-22)∪(22,322),D 错误.故选ABC.14.已知圆C :(x -3)2+(y -4)2=4.(1)若直线l :(m -2)x +(1-m )y +m +1=0(m ∈R ),证明:无论m 为何值,直线l 都与圆C 相交;(2)若过点P (1,0)的直线m 与圆C 相交于A ,B 两点,求△ABC 面积的最大值,并求此时直线m 的方程.解:(1)证明:转化l 的方程(m -2)x +(1-m )y +m +1=0,可得m (x -y +1)-2x +y +1=0,-y +1=0,2x +y +1=0,=2,=3,所以直线l 恒过点(2,3),由(2-3)2+(3-4)2=2<4,得点(2,3)在圆内,即直线l恒过圆内一点,所以无论m为何值,直线l都与圆C相交.(2)由C的圆心为(3,4),半径r=2,易知此时直线m的斜率存在且不为0,故设直线m的方程为x=my+1(m≠0),直线m的一般方程为my-x+1=0,圆心到直线m的距离d=|4m-3+1|m2+(-1)2=|4m-2|m2+1,所以|AB|=2r2-d2=24-(4m-2)2 m2+1,所以S2=(12|AB|·d)2=4-(4m-2)2m2+1·(4m-2)2m2+1,令t=(4m-2)2m2+1,可得S2=4t-t2,当t=2时,S2max=4,所以△ABC面积的最大值为2,此时由2=(4m-2)2m2+1,得7m2-8m+1=0,得m=1或m=17,符合题意,此时直线m的方程为x-y-1=0或7x-y-7=0.。
高中数学教案 第4讲 随机事件与概率
第4讲随机事件与概率1.了解随机事件发生的不确定性和频率的稳定性,理解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E 的每个可能的□1基本结果称为样本点,常用ω表示.全体样本点的集合称为试验E 的样本空间,常用Ω表示.②有限样本空间:如果一个随机试验有n 个可能结果ω1,ω2,…,ωn ,则称样本空间Ω={ω1,ω2,…,ωn }为有限样本空间.(2)随机事件①定义:将样本空间Ω的□2子集称为随机事件,简称事件.②表示:大写字母A ,B ,C ,….③随机事件的极端情形:必然事件、不可能事件.2.事件的关系定义表示法图示包含关系若事件A 发生,事件B □3一定发生,称事件B 包含事件A (或事件A 包含于事件B )□4B ⊇A (或A □5⊆B )互斥事件如果事件A 与事件B □6不能同时发生,称事件A 与事件B 互斥(或互不相容)若A ∩B =∅,则A 与B 互斥对立事件如果事件A 和事件B 在任何一次试验中□7有且仅有一个发生,称事件A 与事件B 互为对立,事件A 的对立事件记为A -若A ∩B =∅,且A ∪B =Ω,则A 与B 对立3.事件的运算定义表示法图示并事件事件A 与事件B 至少有一个发生,称这个事件为事件A 与事件B 的并事件(或和事件)□8A ∪B (或A +B )交事件事件A 与事件B 同时发生,称这样一个事件为事件A 与事件B 的交事件(或积事件)□9A ∩B (或AB )4.概率与频率(1)频率的稳定性:一般地,随着试验次数n 的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率f n (A )会逐渐稳定于事件A 发生的□10概率P (A ).我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用:可以用频率f n (A )估计□11概率P (A ).常用结论1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).1.思考辨析(在括号内打“√”或“×”)(1)事件发生的频率与概率是相同的.()(2)在大量的重复试验中,概率是频率的稳定值.()(3)若随机事件A 发生的概率为P (A ),则0≤P (A )≤1.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()答案:(1)×(2)√(3)√(4)×2.回源教材(1)某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是()A.至多一次中靶B.两次都中靶C.只有一次中靶D.两次都没有中靶解析:D连续射击两次中靶的情况如下:①两次都中靶;②只有一次中靶;③两次都没有中靶,故选D.(2)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:B射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”,与该事件不能同时发生的是“两次都中靶”.(3)把一枚质地均匀的硬币连续抛掷1000次,其中有496次正面朝上,504次反面朝上,则掷一次硬币正面朝上的概率为.解析:掷一次硬币正面朝上的概率是0.5.答案:0.5随机事件的关系运算例1(1)若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”解析:A根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件.故选A.(2)(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则下列说法正确的是()A.A∪B=CB.B∪D是必然事件C.A∩B=CD.A∩D=C解析:AB根据已知条件以及利用和事件、积事件的定义进行判断.事件A∪B 指至少有一件次品,即事件C,故A正确;事件B∪D指至少有两件次品或至多有一件次品,次品件数包含0到5,即代表了所有情况,故B正确;事件A和B 不可能同时发生,即事件A∩B=∅,故C错误;事件A∩D指恰有一件次品,即事件A,而事件A和C不同,故D错误.反思感悟1.事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析,也可类比集合的关系和运用Venn图分析事件.2.辨析互斥事件与对立事件的思路(1)在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能同时发生.(2)两个对立事件必有一个发生,但不可能同时发生.即两事件对立,必定互斥,但两事件互斥,未必对立.对立事件是互斥事件的一个特例.(3)互斥的概念适用于两个或多个事件,但对立的概念只适用于两个事件.训练1(1)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件解析:C事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,故它们是互斥事件,但由于这两个事件的和事件不是必然事件,故这两个事件不对立.(2)(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是()A.A与D为对立事件B.B与C是互斥事件C.C与E是对立事件D.P(C∪E)=1解析:AD当取出的两个球为一黄一白时,B与C都发生,B不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,C不正确;显然A与D是对立事件,A正确;C∪E为必然事件,P(C∪E)=1,D正确.互斥事件与对立事件的概率例2某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解:(1)P(A)=11000,P(B)=101000=1100,P(C)=501000=1 20 .(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵事件A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501000=611000,故1张奖券的中奖概率为61 1000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-(11000+1100)=9891000,故1张奖券不中特等奖且不中一等奖的概率为989 1000.反思感悟当所求概率的事件较为复杂时,可考虑把其分解为几个互斥的事件,利用互斥事件的概率公式求解,或求其对立事件的概率,利用对立事件的概率求解.训练2经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.随机事件的频率与概率例3(经典高考题)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D频数40202020乙分厂产品等级的频数分布表等级A B C D频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525-5-75频数40202020因此甲分厂加工出来的100件产品的平均利润为65×40+25×20-5×20-75×20100=15(元).由数据知乙分厂加工出来的100件产品利润的频数分布表为利润70300-70频数28173421因此乙分厂加工出来的100件产品的平均利润为70×28+30×17+0×34-70×21100=10(元).比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.反思感悟1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.利用概率的统计意义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.训练3某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;若最高气温不低于25,则Y=450×(6-4)=900,所以,利润Y的所有可能值为-100,300,900.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y大于零的概率的估计值为0.8.限时规范训练(七十六)A级基础落实练1.在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均有可能解析:A从1,2,3,…,10这十个数字中任取三个不同的数字,那么这三个数字和的最小值为1+2+3=6,∴事件“这三个数字的和大于5”一定会发生,∴由必然事件的定义可以得知该事件是必然事件.2.同时抛掷两枚完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是()A.3B.4C.5D.6解析:D事件A包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.3.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定解析:C不可能事件的概率为0,必然事件的概率为1,故A错误;频率是由试验的次数决定的,故B错误;概率是频率的稳定值,故C正确,D错误.4.(2024·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,-)=()则P(AA.0.5B.0.1C.0.7D.0.8解析:A∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P(A-)=1-P(A)=1-0.5=0.5.5.掷一枚质地均匀的骰子,“向上的点数是1或3”为事件A,“向上的点数是1或5”为事件B,则()A.A∪B表示向上的点数是1或3或5B.A=BC.A∪B表示向上的点数是1或3D.A∩B表示向上的点数是1或5解析:A设A={1,3},B={1,5},则A∩B={1},A∪B={1,3,5},∴A≠B,A∩B表示向上的点数是1,A∪B表示向上的点数为1或3或5.6.(多选)下列说法中正确的有()A.若事件A与事件B是互斥事件,则P(AB)=0B.若事件A与事件B是对立事件,则P(A+B)=1C.某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D.把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件解析:ABC事件A与事件B互斥,则A,B不可能同时发生,所以P(AB)=0,故A正确;事件A与事件B是对立事件,则事件B即为事件A-,所以P(A+B)=1,故B 正确;事件“至少有两次中靶”与“至多有一次中靶”不可能同时发生,且二者必有一个发生,所以为对立事件,故C正确;事件“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D错误.7.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9.若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为双.解析:∵第1,2,4组的频数分别为6,7,9,∴第1,2,4组的频率分别为640=0.15,740=0.175,940=0.225.∵第3组的频率为0.25,∴第5组的频率是1-0.25-0.15-0.175-0.225=0.2,∴售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).答案:608.(2024·天津调研)某射击运动员平时100次训练成绩的统计结果如下:命中环数12345678910频数24569101826128如果这名运动员只射击一次,估计射击成绩是6环的概率为;不少于9环的概率为.解析:由题表得,如果这名运动员只射击一次,估计射击成绩是6环的概率为10100=110,不少于9环的概率为12+8100=15.答案:110159.我国西部一个地区的年降水量在下列区间内的概率如表所示:年降水量(mm)(100,150)(150,200)(200,250)(250,300)概率0.210.160.130.12则年降水量在(200,300)(mm)范围内的概率是.解析:设年降水量在(200,300),(200,250),(250,300)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.答案:0.2510.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为200 1000=0.2.(2)从统计表可以看出,在这1000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200 1000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以如果顾客购买了甲,则该顾客同时购买丙的可能性最大.11.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85a a 1.25a 1.5a 1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.B级能力提升练12.(多选)(2023·枣庄调研)一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地随机摸出2个球,每次摸出一个球.设事件R1=“第一次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两球颜色相同”,N=“两球颜色不同”,则()A.R1⊆RB.R∩G=∅C.R∪G=MD.M=N-解析:BCD样本空间为{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)},R1={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)},R={(1,2),(2,1)},G={(3,4),(4,3)},M={(1,2),(2,1),(3,4),(4,3)},N={(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)},由集合的包含关系可知B,C,D正确.13.如果事件A,B互斥,记A-,B-分别为事件A,B的对立事件,那么()A.A∪B是必然事件B.A-∪B-是必然事件C.A-与B-一定互斥D.A-与B-一定不互斥-∪B-是必然事件,A-与B-不解析:B如图①所示,A∪B不是必然事件,A互斥;如图②所示,A∪B是必然事件,A-∪B-是必然事件,A-与B-互斥.图①图②14.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦·时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,降雨量为160毫米的有7个,降雨量为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量70110140160200220频率120320420720320220(2)根据题意,Y=460+X-7010×5=X2+425,故P(“发电量低于490万千瓦·时或超过530万千瓦·时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦·时)或超过530(万千瓦·时)的概率为310 .。
第四讲《工程问题上》教案
一、教学内容
第四讲《工程问题上》教案,本讲主要围绕教材第七章“工程问题”的内容进行展开,包括以下知识点:
1.工程问题的定义与分类;
2.工程问题中的数量关系;
3.工程问题的解题策略;
4.实际工程问题的分析与解决。
具体内容包括:
1.了解工程问题的基本概念,掌握其分类方法;
2.学会分析工程问题中的工作总量、工作效率、工作时间等数量关系;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“工程问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学过程中,我发现学生们对工程问题的理解程度参差不齐。有些学生能够迅速掌握基本概念和数量关系,而部分学生则在分析问题和求解方法上存在一定困难。针对这种情况,我认为在今后的教学中应注意以下几点:
1.强化基础知识教学。在讲解工程问题时,要着重强调基本概念和数量关系,让学生充分理解并掌握。对于基础薄弱的学生,可以适当增加课堂提问和课后辅导,帮助他们巩固知识。
6.拓展学生思维。在教学过程中,引导学生从多角度思考问题,培养他们的创新意识。可以设置一些开放性问题,让学生在课后进行思考和探索。
难点解析:学生在分析工程问题时,往往难以准确地把握工作总量、工作效率、工作时间等数量关系,需要通过典型例题的讲解和练习,帮助学生理解并掌握。
(2)解题策略的灵活运用;
难点解析:学生在面对不同类型的工程问题时,可能难以选择合适的解题策略。教师应通过对比分析,让学生理解各种解题策略的适用场景,提高解题能力。
第四讲 自我意识与心理健康--教案
第三课大学生的自我意识主讲马玉教学目标:掌握自我意识发展的特点和影响因素,了解大学生自我意识的特点;了解自我意识的含义及发展过程形成正确积极的大学生自我意识,对自我意识有清晰的认识和理解;健全自我意识的完善途径。
教学重点:自我意识发展的特点教学难点:自我意识的不断完善教学时间: 2 学时授课类别: 理论课教学方法:讲授法、讨论法教学组织与设计:列举的实验与实例,深入浅出地把学生带入心理健康的基本理论中,激发学生的学习兴趣,教学过程采用师生互动的形式,让学生对本章的重难点有较清晰的认识,在教学过程的组织中特别注重学生学习方法的培养。
教具、多媒体等教学手段的应用。
教学内容:进入大学的学生,都会思考一个问题:“我是谁?”“我有什么目标?”“我为什么上大学?”等形而上的问题。
当我们再问一个简单的问题:请你向别人描述你自己时,你首先想到的特征是什么?是你的性格特征如外向、内向还是外表特征如高、矮、胖、瘦?还是社会类别如男女等?事实上,你可能更倾向于用概括性的语言对自己做一个总体评价。
如“我是一个追求优秀的大学生”,“我是一个有理想、有抱负但有些懒惰自制力弱的人”等。
所有这一切,都是大学生自我意识的真实体现。
第二节自我意识与心理健康大学生自我意识的发展与完善,始终昭示着一条通往未来的光明大道,正如古希腊哲学家苏格拉底所说的“认识你自己”,自我意识的完善也是一个不断地进行自我认知、自我评价、自我改造、自我完善的过程,正如雕琢一件工艺品一样,真正的匠人为了心中的追求,终生不悔。
一、健全自我意识的标准自我意识对人的心理健康起着很重要的作用,它制约着人格的形成发展,在人格的优化中发挥着强大的动力功能。
健全的自我意识是心理健康的重要标准,是人类自身内在的一种成功机制,在人才发展中发挥着重要作用。
健全的自我意识有如下标准:(一)自我意识健全的人,应该是一个有自知之明的人,既知道自己的优势,也知道自己的劣势,能正确评价自我和自我发展。
第四讲朱熹“四个之本”阐释教案
第四讲朱熹“四个之本”阐释主讲教师杨太源肖秋妹吴成松一、尤溪县博物馆有朱熹手迹板联四块,内容为:“读书起家之本,循理保家之本,和顺齐家之本,勤俭治家之本”。
儒家的宗旨是修身齐家治国平天下,欲治国平天下,首先要学会修身齐家。
二、四个之本的解读(一)读书起家之本朱熹把读书看作是兴家立业之根本。
在朱熹看来,追求至高至上的天理是个人的修养目标,要达到这个目标,一方面要内省,明志养性,保持良好的精神状态;另一方面也要外求,认真学习,体认客观事物。
朱熹认为“涵养须用敬,进学则在致知”。
学习的首要内容自然还是儒家经典,读圣贤之书并非一般的增知识、长见识,而是要体认天理,朱熹概括为读书穷理,朱熹将读书与修身结合起来,读书的目的是兴家立业,是修身齐家治国平天下。
今天讲“读书”,可读的书要比“四书五经”广泛得多了,必须持之以恒地“活到老,学到老”。
朱熹的读书观朱熹主张学习之法应当“循序渐进”。
有的人读书性子急,一打开书就匆匆忙忙朝前赶。
朱熹批评他们像饿汉走进饭店,见满桌大盘小碟,饥不择食,狼吞虎咽,食而不知其味。
究竟怎样读书呢?就是说,读书要扎扎实实,由浅入深,循序渐进,有时还要频频回顾,以暂进的退步求得扎实的学问。
朱熹说:“读书之法,莫贵于循守而致精。
”就是说,读书要有个先后顺序,读通一书,再读一书。
他认为有些人读书收效不大,是由于在“熟”和“精”二字上下功夫不够。
他强调读书要耐心“涵泳”,就是要反复咀嚼,深刻体会此中的旨趣。
除外,还需切已体察。
朱熹主张“读书穷理,当体之于身”。
什么叫“体之于身”?就是要心领神会,身体力行。
朱熹强调读书要着紧用力。
这里面包含两层意思:一是指时间上要抓紧,要“饥忘食,渴忘饮,始得”;二是指精神上要振作,要“如撑上水船,一篙不可放缓”。
朱熹认为只要是有价值的书籍,都是能给人以思想、睿智的。
对今天的读书人来说,则应倡导创造性的阅读。
我以为,一个人的才情如要提升,得读些益智或拓宽思维、有助建立价值判断的书才行,这些书要新旧中外都读,而且得消化吸收才有用。
第四讲一次函数平移变换与等腰三角形(教案)
最后,总结回顾环节,我发现学生们对今天所学知识点的掌握程度参差不齐。为了帮助学生们更好地巩固知识,我计划在课后布置一些有针对性的练习题,并鼓励学生在遇到问题时及时向我请教。
3.重点难点解析:在讲授过程中,我会特别强调一次函数图像的平移规律和等腰三角形的判定这两个重点。对于难点部分,我会通过举例和动态演示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数平移变换或等腰三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图像的平移变换的基本原理。
第四讲一次函数平移变换与等腰三角形(教案)
一、教学内容
本讲主要围绕人教版八年级数学上册第四章“一次函数”及第五章“等腰三角形”的相关内容进行展开。具体教学内容包括:
1.一次函数图像的平移变换:通过对一次函数图像的平移,让学生理解平移变换对函数图像的影响,掌握平移变换的规律。
2.等腰三角形的性质:讲解等腰三角形的定义、性质(两边相等、两角相等),以及等腰三角形在实际问题中的应用。
4.培养学生的数学应用意识:将一次函数和等腰三角形的知识应用于实际问题,让学生体会数学在生活中的价值,提高数学应用意识。
5.培养学生的团队合作精神:在小组讨论和互动交流中,培养学生合作解决问题、共同探讨的学习习惯。
三、教学难点与重点
1.教学重点
(1)一次函数图像的平移变换:重点讲解一次函数图像的平移规律,包括水平方向和垂直方向的平移,并引导学生理解平移变换对函数图像的影响。
第四讲中国近现代史纲要教材教案
第六章中华民族的抗日战争第一节日本发动灭亡中国的侵略战争—、日本灭亡中国的计划及其实施从九一八事变到华北事变19世纪60年代明治维新以后,日本开始走上资本主义道路,并逐渐发展成为军国主义国家。
第一次世界大战结束后,日本军国主义势力进一步控制本国政权,对内镇压人民,对外侵略扩张。
1927年,日本首相田中义一主持召开“东方会议”,宣示了《对华政策纲要》,企图把“满蒙”从中国本土彻底分割出去,并决心为之诉诸武力。
日本军国主义势力主张:惟欲征服支那,必先征服满蒙;如欲征服世界,必先征服支那。
对外扩张的“大陆政策”进一步发展和具体化。
日本成为亚洲的战争策源地。
1929年10月,由美国开始的经济危机席卷整个资本主义世界。
为了摆脱危机,日本军国主义者决心加紧实施其既定的侵华政策。
1931年9月18日深夜,日本关东军炸毁南满铁路沈阳北郊柳条湖的一小段路轨,反诬中国军队“破坏”铁路、“袭击”日本守备队,当即炮轰东北军驻地北大营;接着,驻扎在南满铁路沿线的日本军队分别向沈阳城内和长春、四平街、公主岭等地发起进攻。
这就是九一八事变。
日本变中国为其独占殖民地的阶段由此开始。
1932年2月,中国东北全境沦陷。
日本侵占了山海关至黑龙江之间相当于日本本土3倍的110万平方公里的中国领土。
面对日本的大举侵略,国民党政府一再退让。
蒋介石在1931年7月已提出“攘外必先安内”的方针。
九一八事变发生后,国民党政府电告东北军:“日本此举不过寻常寻衅性质,为免除事件扩大起见,绝对抱不抵抗主义。
”这种态度,使日本侵略者更加无所顾忌地用武力大规模进攻中国。
日本占领中国东北以后,随即开始入侵中国华北地区。
1935年,日本在华北制造一系列事端,向中国政府提出使华北政权“特殊化”的要求。
中国政府在河北、察哈尔两省的主权大部丧失,华北成为日军可以自由岀人的“真空地带”。
接着,日方又策动华北五省(河北、察哈尔、绥远、山西、山东)两市(北平、天津)“防共自治运动”,制造傀儡政权。
普通话培训教案第四讲
第四讲声调和音变第一节声调一、教学目的与要求掌握普通话声调的性质和作用、调值和调类,并发准每一个声调。
课时安排:2学时二、教学重点与难点声调辩正三、教学环境与教具准备教学环境:多媒体教室教具准备:多媒体教室教学课件四、教学过程(一)、声调的性质声调是什么?声调就是贯穿于整个音节的高低升降。
声调的性质是由音高决定的,也就是说,声调的本质特征是音高。
音高的变化又是由人在发音时控制声带的松紧决定的。
声调的变化有两个特点:一是声调的音高是相对的:二是声调的高低升降变化是滑动的,不是跳动的。
(二)调值和调类1、调值调值的描写和标记:五度制坐标和五度制调符(见概说部分)。
汉语的调值的基本类型:平、升、曲、降。
2、调类给每个调类定下一个名称就是调名。
普通话的调值调类:普通话有四种基本调值(单音节的调值),因而有四个调类。
它们分别叫做:阴平、阳平、上声、去声。
分别标记如下:有区别意义作用的音高变化。
阴阳上去坚持改进jiān chí gǎi jìn中华伟大zhōng huá wěi dà千锤百炼qiān chuí bǎi liàn光明磊落guāng míng lěi luò花红柳绿huāhóng liǔlǜ去上阳阴破釜沉舟 pò fǔchén zhōu 调虎离山diào hǔlí shān 弄巧成拙nòng qiǎo chéng zhuō信以为真xìn yǐwéi zhēn妙手回春miào shǒu huí chūn 异口同声yì kǒu tóng shēng阴平与阳平对比练习欺qī人—旗qí人呼hū喊—胡hú喊知zhī道—直zhí道掰bāi 开—白bái开包bāo子—雹báo子大锅ɡuō—大国ɡuó拍pāi球—排pái球窗chuānɡ帘—床chuánɡ帘大哥ɡē—大格ɡé 抽chōu丝—愁chóu思小蛙wā—小娃wá 大川chuān—大船chuán放青qīnɡ—放晴qínɡ开初chū—开除chú抹mā布—麻má布猎枪qiān ɡ—列强qiánɡ阳平与去声对比练习:•大麻má—大骂mà 小格ɡé—小个ɡè 正直zhí—政治zhì 发愁chóu—发臭chòu 布娃wá—布袜wà 斗奇qí—斗气qì 同情qínɡ—同庆qìnɡ荆棘jí—-经纪jì白bái军—败bài军肥féi料—废fèi料协xié议—谢xiè意凡fán人—犯fàn人钱qián款—欠qiàn款阳平与上声对比练习:•好麻má—好马mǎ土肥féi—土匪fěi 战国ɡuó —战果ɡuǒ小乔qiáo—小巧qiǎo 返回huí—反悔huǐ老胡hú—老虎hǔ牧童tón ɡ—木桶tǒnɡ大学xué—大雪xuě直zhí绳—纸zhǐ绳洋yánɡ油—仰yǎnɡ游琴qín室—寝qǐn室情qínɡ调—请qǐnɡ调骑qí马—起qǐ码油yóu井—有yǒu井五、作业复习思考题:1.声调的性质如何?举例说明声调的作用。
第4讲-数的整除性(一)教案资料
• 5.8232;2232。 • 提示:先由能被8整除判断
出个位数是2。
•
• 6.从0,2,3,6,7这五 个数码中选出四个,可以组成 多少个可以被8整除的没有重复 数字的四位数?
•
• 6.16个。
• 提示:6320,3720,2360, 2760,6032,3072,2736, 7632,
第4讲-数的整除性(一)
• 数的整除具有如下性质:
• 性质1 如果甲数能被乙数整除,乙数 能被丙数整除,那么甲数一定能被丙 数整除。例如,48能被16整除,16能 被8整除,那么48一定能被8整除。
• 性质2 如果两个数都能被一个自然数 整除 都能被3整除,那么21+15及21-15都 能被3整除。
• 当A=0,B=1,C=5时,六位数 能被36整除,而且所得商最小,为 150156÷36=4171。
•
• 1.6539724能被4,8,9,24, 36,72中的哪几个数整除?
•
• 1.4,9,36。 •
• 2.个位数是5,且能被9整 除的三位数共有多少个?
•
• 2.10个。 提示:百位与十 位的数字和为4或13。
• 例3 从0,2,5,7四个数字中任选三 个,组成能同时被2,5,3整除的数, 并将这些数从小到大进行排列。
• 解:因为组成的三位数能同时被2,5 整除,所以个位数字为0。根据三位数 能被3整除的特征,数字和2+7+0与5 +7+0都能被3整除,因此所求的这些 数为270,570,720,750。
• 例6 要使六位数
能被36整除,
而且所得的商最小,问A,B,C各代
表什么数字?
• 分析与解:因为36=4×9,且4与
9互质,所以这个六位数应既能被4整
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章短期经济波动模型:总需求——总供给分析教学目的与要求:通过本章的学习,使学生了解AS—AD模型的特点和涵义,掌握凯恩斯需求管理理论的基本原理。
教学重点:总需求AD、总供给AS的含义、总需求曲线与总供给曲线的推导方法;总需求曲线与总供给曲线的变动;用AD、AS曲线分析均衡国民收入、均衡就业量和价格总水平的决定。
教学难点:总供给曲线AS的推导本章主要阅读文献资料:[1] (美)N.格里高利·曼昆著,梁小民,梁砾译,经济学原理(第7版):宏观经济学分册,北京大学出版社,2015年5月第1版。
[2] (美)萨缪尔森,诺德豪斯著,萧琛主译,宏观经济学,人民邮电出版社,2012年1月第1版。
[3] (美)奥利维尔布兰查德(Olivier Blanchard)、大卫约翰逊(David Johnson)著,王立勇等译,宏观经济学(第6版),清华大学出版社,2014年6月版。
第一节总需求曲线及其变动一、总需求曲线的含义和相关效应(一)总需求曲线的含义总需求(Aggregate Demand,AD)是产出需求量与物价总水平之间的关系。
AD曲线描述了在任何一种给定的物价水平上,人们想购买的产品与服务量。
(二)价格变动的效应1.利率效应。
货币供给不变时,价格上升会引起利率上升,总需求和收入水平下降。
价格水平变动引起利率同方向变动,进而是投资和产出水平反方向变动的情况叫做利率效应。
影响机制:当物价水平上升时,家庭和企业需要更多的钱来进行买卖活动。
因此物价水平的上升使得增加了人们对货币的需求,而这将导致利率水平上升(这一过程发生在实际货币越市场,利率是持有货币的机会成本)。
同时利率又是投资的借贷成本,所以更高的利率将减少人们的投资需求。
也就是说当物价水平上升时,会带来投资的减少。
反之,当物价水平下降时,会带来投资的增加。
2.财富效应。
价格变动导致人们持有货币的实际购买力下降,或消费水平相应减少的效应,叫做财富效应或实际余额效应。
(该效应也叫做“庇古效应”)影响机制:影响家庭消费的重要变量除了当期收入外,还有家庭的财富存量(资产和负债的价值差额)。
一些家庭财富是以现金的形式或者其他名义资产的形式存在,当价格水平发生变化时,这些家庭财富的实际价值就发生了变化,从而影响家庭的消费行为。
当物价价格水平上升时,名义资产贬值,家庭实际财富减少,消费也就会减少。
反之,当物价水平上升时,名义资产升值,家庭财富增加,消费就会增加。
财富效应实际上与微观经济学部分所讲的价格变动会导致收入效应相对应。
而利率效应却是宏观经济学谈到的特有效应,与微观不同。
3.国际贸易效应。
价格变动导致本国商品和外国商品相对价格的变动,影响进出口,从而影响国民收入,即国际贸易效应。
影响机制:净出口等于国外家庭和企业对于本国的产品与服务的消费支出减去本国家庭和企业对外国产品与服务的消费支出。
当本国物价水平相对于其他国家上升时,本国出口品价格更贵,而外国的进口品价格更便宜。
这样一来,本国的出口将会下降,而进口会增加,导致了净出口下降。
反之,当本国物价水平下降时,净出口将会增加。
二、总需求曲线的推导以IS-LM曲线推导我们通过之前学习过的IS-LM模型来推导出向右下方倾斜的A下面D曲线。
我们考虑当物价水平变化时,IS-LM模型会发生什么变动。
如图12-1所示,对于任意给定的货币供给M,较高的物价水平P减少了实际货币余额的供给(M/P)。
这将使得LM曲线向上移动,从而使得均衡利率上升,同时使得均衡收入水平下降。
如果把这一过程中,物价水平的变动和相应均衡收入水平的变动结合在一起,我们就得到了向右下方倾斜的AD曲线。
三、总需求曲线的变动和影响因素在其他情况不变的情况下,总需求曲线告诉我们价格水平和实际GPD需求之间的关系。
当影响家庭、企业和政府消费意愿的其他变量发生变化时,总需求本身将发生移动。
能够引起总需求曲线移动的变量可以分成以下三类:(一)政府政策的变化政府政策包括货币政策(利率)和财政政策(政府购买和税收)。
央行通过公开市场业务调低利率或者增加国币供给都属于扩张性的货币政策,更低的利率使得企业和家庭的借贷成本降低,从而刺激消费和投资,这将使得AD曲线向右移动,如下图12-2所示。
是在任意给定的物价水平上,增加了均衡收入水平。
如下图12-3所示。
(二)家庭和企业预期的变化如果家庭对将来收入的预期乐观,他们就会增加当前的消费,从而使得AD曲线右移。
如果企业对将来投资收益率的预期乐观,他们会增加投资支出,从而使得AD曲线右移。
(三)外贸变量的变化有两个重要的因素将会影响净出口的变动:本国GDP相对于外国GDP的增长速度。
当实际GDP增加时,消费者的可支配收入也会增加,从而增加消费支出。
所以当本国GDP增加快于其他国家时,本国的进口增加将大于出口增加,净出口减少。
汇率(本国货币相对于国外国币的价值)。
当本国货币兑换其他国家货币的汇率上升时,以国外货币计价的本国出口品将变便宜,以本国货币计价的外国进口品将会贵,于是出口增加,进口减少,净出口减少。
实际上,影响需求的任何因素的变动,都会影响总需求曲线。
比如,消费、投资、政府支出、出口、进口、税收额、税率、名义货币供给量、实际货币需求等因素的自发变动。
在其他因素不变时。
消费、投资、政府支出、出口、名义货币供给量的自发变动,引起总需求曲线同方向变动。
进口、税收额、税率、实际货币需求等因素的自发变动,引起总需求曲线反方向变动。
总需求曲线可以较为直观地表明经济冲击和经济政策的效应。
但总需求曲线不能决定价格水平和均衡的总需求水平。
第二节总供给曲线及其变动一、总供给曲线的含义总供给(Aggregate Supply, AS)是产品与服务供给量和物价水平之间的关系。
总供给(AS)曲线用来价格水平变化对于企业能够和愿意提供的产品与服务量的影响。
由于供给产品与服务的企业的价格在长期中有伸缩性,但在短期中是粘性的。
所以总供给(AS)曲线的关系取决于时间范围。
二、总供给曲线的推导(一)推导凯恩斯主义的总供给曲线1.凯恩斯主义总供给曲线的一般形式2.凯恩斯主义总供给曲线的特殊情况该曲线也被成为凯恩斯萧条模型的总供给曲线。
因为,在经济严重的萧条状态时,由于存在大量闲置生产资料,当整个社会的产出量或国民收入增长时,价格水平和货币工资会大致保持不变。
(二)推导古典总供给曲线古典经济学主张,人们会得到关于市场价格变化的充分信息,价格和货币工资都具有充分的伸缩性。
三、总供给曲线的变动和影响因素(一)生产函数变动导致的总供给曲线变动(二)劳动需求变动导致的总供给曲线变动(三)劳动供给变动导致的总供给曲线变动四、特殊的总供给曲线及其变动特殊的总供给曲线:凯恩斯主义萧条情况下的总供给曲线和古典的长期稳定情况下的总供给曲线。
五、总供给曲线不同特征的经济含义第三节总需求-总供给模型一、总需求-总供给模型的含义总需求-总供给模型表明的是总供求和总价格水平之间的关系,如图12-14所示。
二、总需求-总供给模型的基本类型(一)一般情况的总需求-总供给模型其主要特征是供给曲线向右上方倾斜,斜率为正。
(二)凯恩斯情况的总需求-总供给模型其主要特征是总供给曲线呈水平形状,斜率为零,如图12-15所示。
(三)古典情况的总需求-总供给模型其主要特征是总供给曲线呈水平形状,斜率为1,如图12-16所示。
第四节总需求▬总供给模型对外来冲击的反应一、对总需求方面扰动和冲击的反应(一)凯恩斯极端模型对财政政策扰动和需求冲击的反应在凯恩斯的极端情况下,外来的对总需求的扰动和冲击会引起总需求曲线的移动,从而引起总产量(总收入)增加或减少,单价格却不变。
(二)古典的极端模型对财政政策扰动和需求冲击的反应在古典的极端情况下,外来的对总需求的扰动和冲击会引起总需求曲线的移动,但只会导致更高的价格,不能提高产量。
(三)凯恩斯极端模型对货币政策扰动和需求冲击的反应在凯恩斯的极端情况下,外来的货币政策扰动和冲击不会影响总需求。
(四)古典的极端模型对货币政策扰动和需求冲击的反应在古典的极端情况下,外来的货币政策扰动和冲击会影响总需求,但总供给不变,只会带来价格变化。
二、对总供给方面扰动和冲击的反应(一)总需求▬总供给模型对生产能力变动的反应(二)总需求▬总供给模型对一般价格冲击的反应(三)总需求▬总供给模型对资源供给变动的反应同总需求▬总供给模型对一般价格冲击的反应(四)凯恩斯极端模型对供给冲击的反应凯恩斯极端情况的总供给曲线是短期的,一般很少遇到总供给冲击,因而不会发生变化。
(五)古典极端模型对供给冲击的反应第五节本章评析一、对总需求-总供给模型的评析总需求-总供给模型是宏观经济学的基本模型总供给曲线实际上是套用了微观供给曲线的推导方法,假定了存在一个宏观生产函数,并且将微观的劳动市场套用到宏观分析中。
实际上并不存在宏观生产函数。
由此可知,是否在严格意义上存在宏观总供给曲线和总需求曲线都值得怀疑。
当然,这些作为粗略地和抽象地理解宏观经济问题的工具是有一定帮助的,只是无法在严格意义上使用它们。
总供求模型是对古典模型和凯恩斯模型偏向的一种纠正,也是微观模型的宏观运用。
可以解释一些在IS-LM模型中无法解释的问题。
严格意义上的总供给曲线和总需求曲线都不存在,这里只是一种理论的抽象。
因此,对于经济运行原理的理解是有帮助的,但用它进行数量分析和预测就显得远远不够了。
总供求模型比起古典经济学片面强调供给的理论和原凯恩斯主义片面强调需求的理论来,是一种进步。
它兼顾了经济中可能出现供给冲击或需求冲击,或者两方面的冲击的情况,因而更接近现实。
总需求-总供给模型本身的局限性是十分明显的:它只涉及价值或价格总量,不涉及供求的实物总量和结构,也不顾及其他因素。
所以,该模型只能很粗略地避免经济是否均衡的情况,而无法进行更深入的分析。
至于对其进行精确的数值计算,就更谈不上了。
二、总需求-总供给模型、IS-LM模型和凯恩斯主义国民收入决定模型的比较和评析这三个模型的共同点是:都可以在不同角度反映国民收入水平及其决定。
他们的区别在于:总需求-总供给模型同时重视需求和供给两个方面,而IS-LM模型和凯恩斯主义国民收入决定模型只注重需求,不涉及供给。
IS-LM模型较好反映了凯恩斯主义理论的核心问题,但它不具有广泛的合理性,而且,实际上以偶然的均衡来说明经济均衡的必然性是站不住脚的。
IS-LM模型以古典经济学的观点将投资唯一地和利率联系起来,很容易使人忘记影响投资的其他因素。
IS-LM模型对货币市场与物价关系缺乏明确的说明,而物价水平问题与货币供求密切相关,它恰恰未能说明物价水平与货币需求的联系。
尽管这是凯恩斯理论本身所暗含的假定,但是,谈货币市场而不谈物价,还是存在明显的缺陷。