河北科技大学复变函数试题与答案 (6)
14-15-1复变、积变与场论A
河北科技大学理工学院2014——2015学年第一学期《复变函数、积分变换与场论》期末考试试卷(A )学院 理工学院 班级 姓名 学号一、填空题。
(本题共10个空,每空2分,共20分;将正确答案填在题中的横线上) 1、i --1的模 ,辐角主值 。
2、i 的三角表示式 ,指数表示式 。
3、k xy j zx i yz A ρρρρ222++=,则A rot ρ= 。
4、∑∞=-11n n nz 的收敛半径为 。
5、∑∞=12n ni n。
(绝对收敛或条件收敛)6、若i z 43+-=,则=Lnz ,=z ln 。
7、⎥⎦⎤⎢⎣⎡∞+,32Re 2z z s = 。
二、选择题(本题共5小题,每小题2分,共10分) 1、设iz t t=+(t 为参数),则其表示( )图形。
A)直线 B)双曲线 C )圆 D)抛物线 2、下列函数中为解析函数的是 ( )。
A)()f z =2x iy - B) ()f z =3323x i y + C )()f z =22xy ix y + D) ()f z =323z iz + 3、设1z e i =-,则z Im =( )。
A) 4π-B) 24k ππ- C )4πD) 24k ππ+ ( A ) 共( 2 )页,第( 1 )页4、设)(z f 是复平面上的解析函数,C 是简单闭曲线,则0()Cf z dz z z -⎰Ñ=0(其中0()0f z ≠)在下列( )条件下成立?A) 0z 在C 内 B) 0z 在C 外 C )0z 在C 上 D)A,B,C 均不对5、()f z =2(2)ze z -在z =2的留数( )。
A) 0 B)1 C )2e D) 22e 三、判断下列命题的对错,对的在其后面的括号内打“√”,错误的在其后的括号内打“╳”。
(本题共5小题,每小题2分,共10分)1.i i 2<.( )2.仅存在一个数z ,使得z z-=1.( )3.如果)(z f 在0z 连续,那末)(0z f '存在。
复变函数积分变换与场论试题A卷
河北科技大学2012—2013学年第一学期《复变函数、积分变换与场论》期末考试试卷(A 卷) 学院: 班级: 姓名: 学号:一、 填空题(每空3分,共24分) 1.11cos z dz z ==⎰ . 2. 1i n n n e z π∞=∑的收敛半径为 . 3.(1)ii += . 4.51z z e dz z =⎰= . 5.0z =是sin ()z f z z=的 奇点,且Re [(),0]s f z = . 6.232t t ++拉氏变换为 .7.已知3()f t t =,则()f t 的傅氏变换为 .二、 选择题(每小题3分,共12分).1.下列级数中,绝对收敛的为( )A. 111n i n n ∞=⎛⎫+ ⎪⎝⎭∑B.1(1)n n n ∞=-∑C. 1ln n n i n ∞=∑ D. 1(1)2n n n n i ∞=-∑ 2.22()()2f z x y xyi =-+,则()f z '=( )A. 22x yi +B. 22y xi +C. 22x yi -D. 22y xi -3.下列叙述不正确的是( )A.解析函数的导数仍为解析导数B.()f z 在0z 可导,则()f z 在0z 解析C.()(,)(,)f z u x y iv x y =+在D 区域内解析,则(,)u x y 、(,)v x y 都是D 内的调和函数D.若0z 是()f z 的孤立奇点,则()f z 在0z 的去心邻域内可以展成洛朗级数0()n n n C z z +∞=-∞-∑4. 设()1z f z z e =+ ,则下列叙述正确的是( )A. 0z =是()f z 的一级极点,z =∞是()f z 的可去奇点B. 0z =是()f z 的一级极点,z =∞是()f z 的一级极点C. 0z =是()f z 的可去奇点,z =∞是()f z 的一级极点D. 0z =是()f z 的本性奇点,z =∞是()f z 的一级极点三、计算题(每小题6分,共36分).1.将221(1)z +展开成z 的幂级数. 2.2(1)z z e dz z z =-⎰. 3.在(0,)+∞上求sin cos t t *.4.证明22y v x y =+为调和函数,并求解析函数()f z u iv =+. 5.求数量场23(,,)u x y z xy yz =+在点M(2,1,1)-处的梯度及在矢量22l i j k =+-方向的方向导数.6.求矢量场222222A y z i z x j x y k =++的散度和旋度.四、解答题(每小题9分,共18分).1.把函数()21()f z z z i =-在以i 为中心的圆环域内展开为洛朗级数. 2.求微分方程321y y y '''++=,(0)(0)0y y '==的解. 五、证明题(共10分.请将证明写在答题纸指定位置,应写出主要的证明过程).求函数()sin ,0,t t f t t ππ⎧≤⎪=⎨>⎪⎩的Fourier 积分,并推证: 20sin ,sin sin 210,t t t d t ππωπωωωπ+∞⎧≤⎪=⎨-⎪>⎩⎰.。
《复变函数》考试试题与标准答案各种总结
《复变函数》考试试题与标准答案各种总结《复变函数》考试试题与答案各种总结————————————————————————————————作者:————————————————————————————————日期:《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( )9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=?Cdz z f .10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.()二.填空题(20分)1、 =-?=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||?=z dz z3. 设?-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()(1)f z z z =-在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一.判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=??≠? ; 2. 1;3. 2k π,()k z ∈;4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0;10. ∞.三.计算题.1. 解因为01,z << 所以01z << 111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑. 2. 解因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=?. 3. 解令2()371?λλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ?λπ?λ==-?.所以1(1)2()2(136)2(613)z i f i i z i i i π?ππ=+''+==+=-+. 4. 解令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a b w z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b-=+++. 四. 证明题.1. 证明设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则. 两边分别对,x y 求偏导数, 得 0(1) 0(2)x x yy uu vv uu vv +=??+=?因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=??-=?. 消去x u 得, 22()0x u v v +=. 1) 若20u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =.所以12,u c v c ==. (12,c c 为常数). 所以12()f z c ic =+为常数.2. 证明()(1)f z z z =-的支点为0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()(1)f z z z =-的幅角共增加2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)22i f e i π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=?Cdz z f .8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=?+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-?=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:?-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ?=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×.二. 填空题 1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=??≠?; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0;8. i ±;9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解令i z re θ=. 则22(),(0,1)k if z z rek θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===?.4. 解dz z zz ?=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++++=≠ 有且只有 n 个根”.证明令1011()0n n n n f z a z a z a z a --=++++=, 取10max ,1n a a R a ??++??>?, 当z在:C z R =上时, 有111110()()n n n n n n z a R a R a a a R a R ?---≤+++<++<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++++= 与 00na z = 有相同个数的根. 而 00na z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f .()8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-?=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数试卷及答案
复变函数试卷及答案【篇一:《复变函数》考试试题与答案各种总结】xt>一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若{zn}收敛,则{re zn}{im zn}与都收敛. ( )4.若f(z)在区域d内解析,且f(z)?0,则f(z)?c(常数).( )5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.( )6.若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点. ( )7.若z?z0limf(z)存在且有限,则z0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域d内的单叶函数,则f(z)?0(?z?d). ( )9. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?cf(z)dz?0.( )10.若函数f(z)在区域d内的某个圆内恒等于常数,则f(z)在区域d 内恒等于常数.()二.填空题(20分)dz?__________.(n为自然数)1、 ?|z?z0|?1(z?z)n22sinz?cosz? _________. 2.3.函数sinz的周期为___________.f(z)?4.设?1z2?1,则f(z)的孤立奇点有__________.n?nzn?0的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若n??limzn??z1?z2?...?zn?n??n,则______________.limezres(n,0)?z8.________,其中n为自然数.sinz9. 的孤立奇点为________ .zlimf(z)?___zf(z)的极点,则z?z010.若0是.三.计算题(40分):1. 设1f(z)?(z?1)(z?2),求f(z)在d?{z:0?|z|?1}内的罗朗展式.1dz.?|z|?1cosz2.3?2?7??1f(z)??d?c??z3. 设,其中c?{z:|z|?3},试求f(1?i).w?4. 求复数z?1z?1的实部与虚部.四. 证明题.(20分) 1. 函数为常数. 2. 试证: f(z)?f(z)在区域d内解析. 证明:如果|f(z)|在d内为常数,那么它在d内在割去线段0?rez?1的z平面内能分出两个单值解析分支,并求出支割线0?rez?1上岸取正值的那支在z??1的值.《复变函数》考试试题(一)参考答案一.判断题?2?in?11. ? ;2. 1;3. 2k?,(k?z);4. z??i; 5. 1 0n?1?6. 整函数;7. ?;8. 三.计算题.1. 解因为0?z?1, 所以0?z?1?1?zn111n??z??(). f(z)???2n?02(z?1)(z?2)1?z2(1?)n?021; 9. 0; 10. ?.(n?1)!2. 解因为z?resf(z)?limz??2?2z??2?lim1??1, coszz???sinzz??2resf(z)?limz???2z???2?lim1?1. coszz????sinz所以1sf(z)?resf(z)?0. z?2cosz?2?i(re??z??z?2223. 解令?(?)?3??7??1, 则它在z平面解析, 由柯西公式有在z?3内, f(z)??(?)?c??z?2?i?(z).所以f?(1?i)?2?i??(z)z?1?i?2?i(13?6i)?2?(?6?13i). 4. 解令z?a?bi, 则 w?z?122a(?1?bi)2a(?1)b2. 2?1?1?122222z?1z?1(a?1)?b(a?1)?ba(?1)?bz?12(a?1)z?12b, . )?1?im()?z?1(a?1)2?b2z?1(a?1)2?b2故 re(四. 证明题.1. 证明设在d内f(z)?c.令f(z)?u?iv,则f(z)?u2?v2?c2.2?uux?vvx?0两边分别对x,y求偏导数, 得??uuy?vvy?0(1)(2)因为函数在d内解析, 所以ux?vy,uy??vx. 代入 (2) 则上述方程组变为?uux?vvx?022. 消去ux得, (u?v)vx?0. ??vux?uvx?01) 若u?v?0, 则 f(z)?0 为常数.2) 若vx?0, 由方程 (1) (2) 及 c.?r.方程有ux?0, uy?0, vy?0. 所以u?c1,v?c2. (c1,c2为常数).22所以f(z)?c1?ic2为常数. 2.证明f(z)?的支点为z?0,1. 于是割去线段0?rez?1的z平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z从支割线上岸一点出发,连续变动到z?0,1 时, 只有z的幅角增加?. 所以f(z)?的幅角共增加?. 由已知所取分支在支割线上岸取正值, 于是可认为该分2?i?2支在上岸之幅角为0, 因而此分支在z??1的幅角为,故f(?1)??.2《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数f(z)?u(x,y)?iv(x,y)在d内连续,则u(x,y)与v(x,y)都在d 内连续. ( )2. cos z与sin z在复平面内有界.( )3. 若函数f(z)在z0解析,则f(z)在z0连续. ( )4. 有界整函数必为常数. ( )5. 如z0是函数f(z)的本性奇点,则limf(z)一定不存在. ( )z?z06. 若函数f(z)在z0可导,则f(z)在z0解析. ( )7. 若f(z)在区域d内解析, 则对d内任一简单闭曲线c?f(z)dz?0.c( )8. 若数列{zn}收敛,则{rezn}与{imzn}都收敛. ( ) 9. 若f(z)在区域d内解析,则|f(z)|也在d内解析. ( )11110. 存在一个在零点解析的函数f(z)使f()?0且f()?,n?1,2,....n?12n2n( )二. 填空题. (20分)1. 设z??i,则|z|?__,argz?__,?__z?1?i2.设f(z)?(x2?2xy)?i(1?sin(x2?y2),?z?x?iy?c,则limf(z)?________.3.dz?|z?z0|?1(z?z0)n?_________.(n为自然数)4. 幂级数?nzn的收敛半径为__________ .n?0?5. 若z0是f(z)的m阶零点且m0,则z0是f(z)的_____零点.6. 函数ez的周期为__________.7. 方程2z5?z3?3z?8?0在单位圆内的零点个数为________. 8. 设f(z)?1,则f(z)的孤立奇点有_________. 21?z9. 函数f(z)?|z|的不解析点之集为________.z?110. res(,1)?____. 4z三. 计算题. (40分)3sin(2z)的幂级数展开式. 1. 求函数2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z?i处的值.??|z|dz,积分路径为(1)单位圆(|z|?1)?ii3. 计算积分:i的右半圆.4. 求sinzz?2(z?)22dz.四. 证明题. (20分)1. 设函数f(z)在区域d内解析,试证:f(z)在d内为常数的充要条件是f(z)在d内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.【篇二:复变函数试题与答案】>一、选择题1.当z?1?i时,z100?z75?z50的值等于() 1?i(a)i (b)?i(c)1 (d)?12.设复数z满足arc(z?2)??3,arc(z?2)?5?,那么z?() 61331?i (d)??i 2222(a)?1?3i (b)?3.复数z?tan??i(3?i (c)??????)的三角表示式是() 2 ???)?i??)] (b)sec?(a)sec22??3?3???)?i??)] 22?(c)?sec3?3?????)?i??)](d)?sec???)?i??)] 2222224.若z为非零复数,则z?与2z的关系是()2222(a)z??2z (b)z??2z22(c)z??2z (d)不能比较大小5.设x,y为实数,则动点(x,y)z1?x??yi,z2?x??yi且有z1?z2?12,的轨迹是()(a)圆(b)椭圆(c)双曲线(d)抛物线6.一个向量顺时针旋转?3,向右平移3个单位,再向下平移1个单位后对应的复数为1?3i,则原向量对应的复数是()(a)2(b)1?i (c)3?i (d)3?i17.使得z2?z成立的复数z是() 2(a)不存在的(b)唯一的(c)纯虚数(d)实数8.设z为复数,则方程z??2?i的解是()(a)?3333?i (b)?i (c)?i (d)??i 44449.满足不等式z?i?2的所有点z构成的集合是() z?i(a)有界区域(b)无界区域(c)有界闭区域(d)无界闭区域10.方程z?2?3i?2所代表的曲线是()(a)中心为2?3i,半径为2的圆周(b)中心为?2?3i,半径为2的圆周(c)中心为?2?3i,半径为2的圆周(d)中心为2?3i,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(a)z?1?2 (b)z?3?z?3?4 z?2z?a?1(a?1) (d)z?a?z?a?c?0(c?0) 1?az(c)12.设f(z)?1?,z1?2?3i,z2?5?i,,则f(z1?z2 )(a)?4?4i(b)4?4i(c)4?4i(d)?4?4i13.limim(z)?im(z0)() x?x0z?z0(a)等于i(b)等于?i(c)等于0(d)不存在14.函数f(z)?u(x,y)?iv(x,y)在点z0?x0?iy0处连续的充要条件是()(a)u(x,y)在(x0,y0)处连续(b)v(x,y)在(x0,y0)处连续(c)u(x,y)和v(x,y)在(x0,y0)处连续(d)u(x,y)?v(x,y)在(x0,y0)处连续 2z2?z?115.设z?c且z?1,则函数f(z)?的最小值为() z (a)?3 (b)?2(c)?1 (d)1二、填空题1.设z?(1?i)(2?i)(3?i),则z? (3?i)(2?i)2.设z?(2?3i)(?2?i),则argz?3.设z?,arg(z?i)?3?,则z? 4(cos5??isin5?)24.复数的指数表示式为 2(cos3??isin3?)5.以方程z?7?i的根的对应点为顶点的多边形的面积为6.不等式z?2?z?2?5所表示的区域是曲线的内部 67.方程2z?1?i?1所表示曲线的直角坐标方程为2?(1?i)z8.方程z?1?2i?z?2?i所表示的曲线是连续点和的线段的垂直平分线9.对于映射??2i22,圆周x?(y?1)?1的像曲线为 z410.lim(1?z?2z)? z?1?i三、若复数z满足z?(1?2i)z?(1?2i)?3?0,试求z?2的取值范围.四、设a?0,在复数集c中解方程z2?2z?a.五、设复数z??i,试证z是实数的充要条件为z?1或im(z)?0. 21?z3六、对于映射??11(z?),求出圆周z?4的像. 2z七、试证1.z1?0(z2?0)的充要条件为z1?z2?z1?z2; z2z1?0(zj?0,k?j,k,j?1,2,?,n))的充要条件为 z22.z1?z2???zn?z1?z2???zn.八、若limf(z)?a?0,则存在??0,使得当0?z?z0??时有f(z)?x?x01a. 2九、设z?x?iy,试证x?y2?z?x?y.十、设z?x?iy,试讨论下列函数的连续性: ?2xy,z?0?1.f(z)??x2?y2 ?0,z?0??x3y?,z?02.f(z)??x2?y2.?0,z?0?第二章解析函数一、选择题:1.函数f(z)?3z在点z?0处是( )(a)解析的(b)可导的(c)不可导的(d)既不解析也不可导2.函数f(z)在点z可导是f(z)在点z解析的( )4 2(a)充分不必要条件(b)必要不充分条件(c)充分必要条件(d)既非充分条件也非必要条件3.下列命题中,正确的是( )(a)设x,y为实数,则cos(x?iy)?1(b)若z0是函数f(z)的奇点,则f(z)在点z0不可导(c)若u,v在区域d内满足柯西-黎曼方程,则f(z)?u?iv在d内解析(d)若f(z)在区域d内解析,则在d内也解析4.下列函数中,为解析函数的是( )(a)x2?y2?2xyi(b)x2?xyi(c)2(x?1)y?i(y2?z?x20?2x)(d)x3?iy35.函数f(z)?z2im(z)在处的导数( )(a)等于0 (b)等于1 (c)等于?1(d)不存在6.若函数f(z)?x2?2xy?y2?i(y2?axy?x2)在复平面内处处解析,那么实常数a?( )(a)0(b)1(c)2(d)?27.如果f?(z)在单位圆z?1内处处为零,且f(0)??1,那么在z?1内f(z)?( )(a)0(b)1(c)?1(d)任意常数8.设函数f(z)在区域d内有定义,则下列命题中,正确的是(a)若f(z)在d内是一常数,则f(z)在d内是一常数(b)若re(f(z))在d内是一常数,则f(z)在d内是一常数(c)若f(z)与f(z)在d内解析,则f(z)在d内是一常数(d)若argf(z)在d内是一常数,则f(z)在d内是一常数9.设f(z)?x2?iy2,则f?(1?i)?( )5【篇三:大学复变函数考试卷试题及答案】ss=txt>?z2?,z?01.设f?z???z,则f?z?的连续点集合为()。
复变函数课后习题答案(全)
精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+精心整理页脚内容3. 求下列各式的值: (1)5(3)i -(2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5)3i 3cossin22i ππ=+(6)1i +2(cossin )44i ππ=+ 4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)51,z i +=由此2551k i z i ei π=-=-,(0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:精心整理页脚内容(1), (1), (1), (1)2222a a a a i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。
《复变函数》考试试题与答案各种总结.docx
---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
复变函数期末考试复习题及答案详解
《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。
(完整版)复变函数试题及答案
-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7
14-15-1复变、积变与场论A答案
河北科技大学理工学院2014—2015学年第一学期《复变函数、积分变换与场论》期末考试试卷标准答案(A 卷)学院 理工学院 年级 13级 _考试班级 电气类L13一、填空题。
(本题共10个空,每空2分,共20分;将正确答案填在题中的横线上)1、2,π43-2、2sin 2cos ππi +, 2πi e 3、k z xz j y zy i x xy ρρρ)2()2()2(222-+-+-4、15、i k i ππ2)34arctan (5ln +-+,)34arctan (5ln -+πi 6、绝对收敛 7、0二、(本题共5小题,每小题2分,共10分) 1、B 2、D 3、B 4、B 5、C三、判断下列命题的对错,对的在其后面的括号内打“√”,错误的在其后的括号内打“╳”(本题共5小题,每小题2分,共10分)。
1 ╳2 ╳3 ╳4 ╳5 ╳ 四、(本题共2小题,每小题10分,共20分) 1. 将221(1)z +展开成z 的幂级数. 解:由211(1),11n n z z z z z=-+++-+<+L L …………………3分 12112(1),1(1)n n z n z z z --=-++-+<+L L …………………4分 212(1)222112(1)(1)(1),1(1)n n n n nn z nz n z z z =∞--==-++-+=-+<+∑L L ………3分 2. 把函数()21()f z z z i =-在以i 为中心的圆环域内展开为洛朗级数。
解:(1)在01z i <-<内 …………………1分A 卷标准答案 共( 4 )页,第( 1 )页()21()f z z z i =-11z i z '⎛⎫=-⋅ ⎪-⎝⎭…………………2分211i z z i z i i i '⎛⎫--⎛⎫=⋅-++ ⎪ ⎪ ⎪-⎝⎭⎝⎭L ()2111(1)n n n n nz i i∞--+==--∑ …………………2分(2)在1z i <-<+∞内 …………………1分()21()f z z z i =-11z i z '⎛⎫=-⋅ ⎪-⎝⎭…………………2分2341123()()()i z i z i z i z i ⎛⎫--=⋅+-+ ⎪----⎝⎭L 3(1)(1)()nnn n n i z i ∞+=+=--∑ ………………2分 五、(本题10分)用两种方法计算积分421z zdz z =-⎰Ñ。
大学《复变函数》试卷及答案
---------------------------- 6分
2.函数 在复平面内何处可导,何处解析,并求
解:设 , 则
.四个偏导数在复平面上都连续,
由C—R方程得: .
故 仅在直线 上可导,在复平面上处处不解析.
--------------------------- 4分
且因为点 在曲线 上,所以 .
大学《复变函数》试卷及答案
一.判断题(每小题2分,共10分.
正确打“√”,错误打“×”.)
评
分
阅
卷
人
1. .()
2.若 在 不解析,则 不存在.()
3. 为函数 的孤立奇点.()
4.级数 收敛.()
5. 在点 处不连续.()
二.填空题(每小题2分,共10分.
将正确结果填在横线上.)
评
分
阅
卷
人
1.复参数方程 (t为参数)的直角坐标方程为
3.下列结论错误的是()
(A) 是函数 的二阶极点.(B) 是函数 的可去奇点.
(C) .(D) 是函数 的本性奇点.
4.下列结论错误的是()
(A)C为不通过原点的简则 也为解析函数.
(C)在点 解析的函数一定可以在点 的邻域内展开成泰勒级数.
(D)对于任意的复数 .
解:由于 在平面上处处解析,所以积分
与路径无关,又 的一个原函数为 ,
---------------------------- 5分
故
= .
------------------------ 7分
2. .
解: 在 内有两个不解析点, 分别为简单极
点、二级极点
,
------------------------ 5分
(完整版)《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2.证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解 令i z re θ=.则22(),(0,1)k if z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相同个数的根. 而 00na z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数课后习题答案(全)
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。
(完整版)《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1.若f (z)在z 0的某个邻域内可导,则函数f(z )在z 0解析. ( )2.有界整函数必在整个复平面为常数。
( ) 3。
若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6。
若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( ) 7。
若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点. ( )8。
若函数f (z )在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠。
( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z )在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。
( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。
=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________。
5。
幂级数0n n nz ∞=∑的收敛半径为__________。
6.若函数f (z )在整个平面上处处解析,则称它是__________。
7。
若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8。
=)0,(Re n zz e s ________,其中n 为自然数。
9. zz sin 的孤立奇点为________ .10。
复变函数练习题及答案
复变函数卷答案与评分标准一、填空题:1.叙述区域内解析函数的四个等价定理。
定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1)(,)u x y ,(,)v x y 在D 内可微,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1),,,x y x y u u v v 在D 内连续,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰ 。
(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。
(3分)2.叙述刘维尔定理:复平面上的有界整函数必为常数。
(3分)3、方程2z e i =+的解为:11ln 5arctan 222i k i π++,其中k 为整数。
(3分) 4、设()2010sin z f z z+=,则()0Re z s f z ==2010。
(3分) 二、验证计算题(共16分)。
1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。
(8分)解:(1)22u x x ∂=+∂,222u x ∂=∂;2u y y∂=-∂,222u y ∂=-∂。
由于22220u u y x∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。
(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有22v u x y x∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y∂∂=-=∂∂又2()v y C x x ∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。
(精品)《复变函数》习题及答案
第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
河北科技大学 复变函数 2009—2010第一学期_补考(答案)
1 π
∫
π
0
cos(t cos θ )dθ ,试求其Laplace变换的
(1分) (1分) 上的|z| =1一周变为ζ平面上的|ζ| =1两周. 4s z F (s ) = dz 2 Ñ ∫ 2π i |ς |=1 ς + 2(2s 2 + 1)ς + 1 =4sRes[f (ζ),单位圆内] −2(2s 2 + 1) ± 4(2p 2 + 1)2 − 4 f (ζ)的奇点 ς = 2 2 = −(2s + 1) ± 2s s 2 + 1
(A) 第 5 页 共 6 页
得分 评阅人
六、(10分)利用留数求积分 I = ∫
+∞
0
cos x dx 的值. x + 10 x 2 + 9
4
解: 在上半平面内, f ( z ) =
Q
e iz 有一阶极点 z = i 和 z = 3i z 4 + 10 z 2 + 9
(2 分) (2分) (2分) (3分) (1分)
∞ c
0
z
.
(n + 1)! n 幂极数 ∑ z 的收敛半径为 n =1 ( 2 n )!
e dz = π i / 12 . (z − π i )5 ∞ .
10. 方程 | z + 2 − 3i |= 2 代表的曲线是中心为 −2 + 3i ,半径为 2 的圆周.
(A) 第 2 页 共 6 页
得分 评阅人
(A) 第 6 页 共 6 页
三、(10分) 已知 f (t ) =
象函数F(s). 1 π s 1 2π s 解: F (s ) = ∫ 2 dθ = dθ 2 2 ∫ π 0 s + cos θ 2π 0 s + cos2 θ 1 s dz = 2 −1 2 Ñ ∫ 1 | z | = 1 2π s + 4 (z + z ) iz 4s z = dz 4 2 Ñ ∫ | z | = 1 2π i z + 2(2s + 1)z 2 + 1
2021《复变函数》参考答案
1,〔1〕 〔2〕〔3〕sin sin1(1)cos1i i -+- 〔4〕182[cos()sin()]0123162162k k i k ππππ-++-+=,,,, 〔5〕l =-3、m =1、n =-3 〔6〕23011()!n n f z n z ∞-==∑2,〔1〕12Ln(512)ln13[arctan (21)]5i k i π--=+++,(2)(2)22i i k i k i i Lni i e e e ππππ+-+=== 〔2〕参数方程3[01]x t y t t ==∈,,,,因此10||(3)C z dz t it =+=⎰。
〔3〕0002112121111()(2)2124332433n n n n n n n n z z f z z z z ∞∞∞===⎡⎤----⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--⎢⎥ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑∑ 〔4〕2123410122-ln 323z z z z z z z e e e e e e e z k i k i ππ---++=⇒-+=⇒=⇒=原方程即或或 〔5〕010u v u x v x y∂∂==⇒==⇒⇒∂∂,,处处不可导处处不解析;分别沿x 轴和y 轴方向令0z ∆→,可知()f z x z x i y∆∆=∆∆+∆的极限分别为1和0,因此处处不可导,处处不解析。
〔6〕()f z 的分子有一阶零点-1和2k π,分母有一阶零点0和二阶零点2±,因此f 具有可去奇点0和二阶极点2±;2101()()sin (1)(21)!n n n i z g z i z n +∞=+==-++∑,可知g 有本性奇点i - 3,令i z e θ=,那么11sin ()2dz z d i z izθθ=-=,,记C 为单位圆,那么 4, (此题10分) 计算如下幂级数的收敛半径:〔1〕111(1)!!lim lim lim (1)(1)n n n n n n n n nc n n n R e n n c n e ++→∞→∞→∞+===⇒=++; 〔2〕lim 5n n R →∞===。
河北科技大学成人高等教育期末考试 复变函数及积分变化复习资料
复变函数与积分变换考试复习题一、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。
1.互为共轭的两个复数的模相等.( √ )2.函数sin z 在区域|z|<1内为有界函数.( √ )3.解析函数的零点必是孤立的.( × )4.若函数f(z)在点a 解析,且f ′(a)=0,f ″(a)≠0,则a 是f(z)的二阶零点.( × )5.若z=a 分别是f(z)和g(z)的三阶极点,则z=a 也是f(z)+g(z)的三阶极点.( × )6.如果z=1是函数f(z)的可去奇点,则1z Res =f(z)=0.( √ ) 7.分式线性变换必将圆周变换成圆周或直线.( √ )二、填空题1复数z=(1+i)3的主幅角argz=________(-π<argz ≤π).2.不等式Rez>0表示z 平面上的区域是________.3.|e 3i |=________.4.函数w=e z 将z 平面上的带形区域0<Imz<3π变换为w 平面上的区域________. 5.积分⎰=++1|z |222z z dz=________.6.方程z 8+3z 3-1=0在单位圆|z|<1内有________个根.7.复数-2是复数________的一个平方根。
8设y 是实数,则sin(iy)的模为________。
9.设a>0,则Lna=________。
10.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。
11.方程z=t+it (t 是实参数)给出的曲线为________。
12.设幂级数c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则n C =______ (n=0,1,…)。
13.cosz 在z=0的幂级数展式为________。