人教版高一数学函数说课稿两篇

合集下载

函数概念人教版说课稿

函数概念人教版说课稿

函数概念人教版说课稿一、说课背景本次说课的内容是人教版高中数学必修一中的“函数概念”单元。

函数作为数学中的一个核心概念,是高中数学教学的重要组成部分。

通过本单元的学习,学生将建立起函数的基本概念,理解函数的图像和性质,为后续的数学学习打下坚实的基础。

二、教学目标1. 知识与技能目标:使学生理解函数的定义,掌握函数的基本概念,如定义域、值域、函数的表示方法等;能够识别和绘制基本初等函数的图像。

2. 过程与方法目标:培养学生通过观察、归纳、抽象等方法发现数学规律的能力;训练学生运用函数知识解决实际问题的思维。

3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学审美和创新意识,强化学生合作学习和交流的能力。

三、教学重点与难点1. 教学重点:函数的定义及其基本概念,如定义域、值域、函数的表示方法。

2. 教学难点:函数图像的绘制和理解,函数性质的抽象和应用。

四、教学过程1. 引入新课通过实际问题引入函数的概念,例如,通过速度与时间的关系来引出函数的概念,让学生感受到函数与现实生活的紧密联系。

2. 讲解新知详细讲解函数的定义,强调函数的三要素:定义域、对应关系和值域。

通过实例说明函数的表示方法,如表格法、解析式法和图象法。

3. 学生活动组织学生进行小组讨论,通过具体的例子来归纳函数的定义和性质。

让学生尝试绘制简单的函数图像,并进行交流和评价。

4. 巩固练习设计针对性的练习题,包括函数定义的填空题、绘制函数图像的作图题以及运用函数知识解决实际问题的应用题。

5. 课堂小结总结本节课的主要内容,强调函数的基本概念和性质,提醒学生注意函数图像与方程解的区别。

6. 布置作业布置适量的课后作业,包括基础题和拓展题,以巩固学生对函数概念的理解和应用。

五、教学方法采用启发式教学法和探究式学习法,通过问题引导学生自主学习和合作探究。

同时,运用多媒体教学工具辅助教学,使抽象的函数概念形象化、直观化。

六、教学评价1. 过程评价:通过小组讨论、课堂提问和学生作品的展示,评价学生对函数概念的理解和应用能力。

高中数学-函数的概念说课稿

高中数学-函数的概念说课稿

《函数的概念》说课稿说课人:张燕各位评委:大家好!今天我说课的内容是人教版高中数学必修1第一章第二节函数的概念第一课时。

我将从教材分析、教学目标、重点难点、教学过程设计及教学评价等方面来对本节课的教学进行说明。

一、教材分析——教材的特点、地位与作用本小节对函数概念的学习是在初中学过的函数概念的基础上从更严密的角度来定义函数.函数概念是整个中学数学中最重要的基本概念之一,它为后续学习指数函数、对数函数、幂函数等内容打下基础.而函数又是初等数学和高等数学中最基本最重要的内容之一,经常用到数学的各个分支里.它还是数形结合思想、函数与方程思想产生的载体.二、教学目标(1)知识与技能①理解函数的概念,初步学会用函数的定义判断函数.②会求一些最基本的函数的定义域、值域.③能通过函数的定义域和对应法则判断两个函数是否相等.(2)过程与方法①回顾初中函数的定义,然后通过三个背景实例,分别设置问题,在问题的引导下分析概括出三个实例的共同点,进而引出函数的概念.②在引入了函数概念的基础上给出函数的三要素.(3)情感、态度与价值观①通过对函数概念形成的探究,培养学生主动发现问题和分析问题的能力.②培养学生的抽象概括能力;学会数学表达和交流,发展数学应用意识.三、教学的重点和难点①重点:体会函数是描述变量之间相互依赖关系的重要数学模型,正确理解函数的概念、了解函数的三要素.②难点:对函数概念及符号()y f x的理解.四、教学过程设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(1).回忆旧知,引出困惑问题一:请举出初中学过的一些函数.x y 2=,2x y =,x y 1=等. 问题二:请同学们回忆初中函数的定义是什么? 在一个变化过程中,有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,那么说y 是x 的函数,x 叫自变量.[设计意图]:通过回忆初中的函数及函数的定义,为探究问题三作好铺垫. 问题三:)(0R x y ∈=是函数吗?学生活动:先由学生思考回答,对产生的两种意见展开小组讨论,学生可能解决不了.[设计意图]:由于受认知能力的影响,利用初中所学函数知识很难回答这些问题,形成认知冲突,让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望,从而引出本节课的主题(用幻灯片打出课题).(2).创设情境,形成概念实例一:一枚炮弹发射后,经过s 26落到地面击中目标.炮弹的射高为m 845,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:25130t t h -=.问题四1.t 的范围是什么?h 的范围是什么?2.t 和h 有什么关系?这个关系有什么特点?[设计意图]:引导学生用集合与对应的语言来刻画实例一,同时培养学生分析问题和提取信息的能力.事实上生活中这样的实例有很多,随着改革开放的深入,我们的生活水平越来越高,需求越来越大,对环境的影响也越来越重,下面请同学们自学有关臭氧层空洞的问题和恩格尔系数的问题(课本实例二、三):实例二:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从2001~1979年的变化情况. 实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”通过先对两个实例学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题五:实例一、实例二、实例三的对应关系在呈现方式上有什么不同? 问题六:以上三个实例有什么相同的特征?学生活动:让学生分组讨论交流,总结归纳出.共同特点:①都有两个非空数集B A 、;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B中都有唯一确定的y 值和它对应.[设计意图]:由前三个实例,抽象出函数概念的本质,未设计不是函数关系的对应图,这样处理有利于形成知识的正迁移.通过学生的“观察 分析 比较 归纳 概括 培养学生抽象思维的能力,同时也培养了学生的创新意识.问题七:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(先让学生说,老师再做补充)函数概念:设B A 、是非空的数集,如果按某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(. 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集. 问题八:请同学们根据现在函数的定义判断前面三个实例是否表示两个集合的函数关系?问题九:)(0R x y ∈=是函数吗?问题十:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时叫学生判断这些平移和旋转中的弧是否表示函数图像.方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词? [设计意图]:是对函数概念的简单理解,同时也解决了问题三.(3).质疑解惑,辨析概念:问题十一:请同学们勾画出概念中的关键词,并用简洁的语言说明. 通过交流得出以下几点:① B A 、都是非空的数集;② 任意性与唯一性;③ 确定的对应关系,对应关系f 可以是解析式、图象、表格.问题十二:函数由几部分组成?三要素:定义域、值域、对应法则,缺一不可.问题十三:怎样理解符号)(x f ?在法则f 下,x 所对应的函数值,并结合生活实例说明.[设计意图]:目的在于帮助学生巩固函数的概念.(4).讨论研究,深化理解【例1】已知函数213)(+++=x x x f , (1)求函数的定义域;(2)求)32(),3(f f -的值;(3)当0>a 时,求)1(),(-a f a f 的值.想一想:函数的定义域该怎么求?符号()f a (a 为常数)与()f x 有哪些区别与联系?(学生先思考、计算,老师提问,师生共同完成)[设计意图]: 教师引导学生总结常见函数定义域的求法,使学生加深对定义域的认识;重在强化任意自变量的函数值是唯一的,加深对符号)(x f 的理解,体会由特殊到一般、具体到抽象的分析问题的方法,同时培养运算能力.这组问题重在加深对函数三要素的理解,以此培养学生观察问题、分析问题的能力.(5).即时训练,巩固新知练习1.求函数131)(-++-=x x x f 的定义域:练习2.已知函数,23)(3x x x f +=求)()2(a f f -+的值;学生活动:抽两位学生到讲台在黑板上分别完成(其他同学在下面完成),完成后,师生共同评价完善。

数学说课(高中)函数的概念说课稿.docx

数学说课(高中)函数的概念说课稿.docx

《函数的概念》说庁果稿各位领导和老师:大家好!我说课的内容是人教版高中数学新教材必修1第一章第二节第一课吋函数的概念。

我将从教材分析、学情分析、教学过程、板书设计等四个方面汇报我的教学设想。

一、教材分析(5分钟)教材分析包括教材的编写意图、教学重点与难点、教学目标设计和教法与学法选择。

1、教材的编写意图“函数”是高中数学的核心概念,函数的思想方法贯通整个高中数学课程,它不仅对所学过的集合作了巩固和发展,而且也是学好指数函数、对数函数、三角函数以及数列等后继知识的基础和工具。

下面从纵横两个方面作简要分析:横向分析:旧教材在导入新课时基本上采用复习回顾初中函数知识导入新课或直接单刀直入给岀新知识点,强调数学知识的逻辑性、系统性和连续性,而幼师学生往往初屮数学基础薄弱,齐加尼克现彖突出,而对枯燥乏味理论的数学知识早已失去兴趣,缺乏学习动力, 这种导入将是无效的。

新教材注重问题情境的设置,选取了丰富的背景实例和应用实例,从学生熟悉的生活情境或趣味问题导入,最能激发人们的思维活动,唤起学习兴趣和主动的参与意识。

纵向分析:初中时学生都接触了函数,比如一次函数、反比例函数和二次函数,只强调函数是两个变量问的依赖关系,不涉及抽象符号f(x),不强调定义域和值域,采用的定义是“变量说”,是一个描述性概念,而对“变量”,“变化”,“对应关系”等涉及函数本质的内容,耍求是初步的。

高中阶段要建立函数的“对应说”,突出函数概念的核心与本质是“对应关系”,虽然它比“变量说”更具一般性,但两者的本质一致。

不同的是:①表达方式不同,高中用集合与对应语言表达;②明确了定义域和值域;③引入了抽象符号f(X)o2、教学重点与难点根据上述分析,教学重点为通过丰富实例,使学生感受和体会在两个集合之间所存在的对应关系进而用集合和对应的语言刻画这一关系,获得函数概念。

自然地,本节课的难点主要是抽象符号y = /(%)的理解,尤其对/的意义的理解。

函数说课稿人教版版

函数说课稿人教版版

函数说课稿人教版版一、说课背景与目标本次说课的内容为人教版高中数学教材中的函数章节。

函数作为数学中的一个核心概念,是高中数学教学的重要组成部分。

通过本章节的学习,学生将能够理解函数的基本概念、性质和应用,掌握函数的图象和变换,提高解决实际问题的能力。

二、教学内容与分析1. 函数的基本概念首先,我们将介绍函数的定义,包括函数的表达式、定义域和值域。

通过实例讲解,帮助学生理解函数是如何将输入值(自变量)映射到输出值(因变量)的。

此外,还将讨论常函数、一次函数、二次函数等常见函数类型的特点和性质。

2. 函数的图象在这一部分,我们将学习如何通过图象来表示函数,包括坐标系中的点和线。

通过绘制函数图象,学生可以直观地理解函数的性质,如单调性、奇偶性和周期性。

此外,还将介绍如何通过图象判断函数的交点、零点和极值点。

3. 函数的变换函数的变换是本章节的重点之一。

我们将讲解水平变换、垂直变换、伸缩变换和对称变换等基本变换规则,并通过实例演示如何应用这些规则来得到新的函数表达式和图象。

通过这部分的学习,学生将能够灵活地处理函数的变换问题。

4. 函数的应用最后,我们将探讨函数在实际问题中的应用,如物理中的运动规律、经济学中的成本和收益分析等。

通过解决实际问题,学生可以加深对函数概念的理解,并提高运用数学知识解决实际问题的能力。

三、教学方法与策略1. 启发式教学在讲解函数概念时,我们将采用启发式教学方法,通过提问和讨论引导学生自主思考和探索。

这种方法可以激发学生的学习兴趣,培养他们的批判性思维能力。

2. 案例分析通过分析具体的函数案例,学生可以更好地理解函数的性质和应用。

案例分析也有助于学生将理论知识与实际问题相结合,提高他们的实践能力。

3. 分组合作在探讨函数变换和应用时,我们将组织学生进行分组合作。

通过小组讨论和合作解决问题,学生可以相互学习,提高团队协作能力。

四、教学评价与反馈1. 课堂提问与小测在教学过程中,我们将通过课堂提问和小测来检测学生对函数概念的理解程度。

函数的说课稿

函数的说课稿

函数的说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“函数”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析“函数”是中学数学中的重要概念之一,它不仅是数学学科的基础,也是解决实际问题的有力工具。

本节课选自人教版数学教材必修一,函数这一内容在教材中起着承上启下的作用。

函数的概念是在初中函数的基础上进行了深化和拓展,为后续学习指数函数、对数函数、幂函数等具体函数的性质和应用奠定了基础。

同时,函数的思想方法也贯穿于整个高中数学的学习中,对于培养学生的数学思维和解决问题的能力具有重要意义。

二、学情分析授课对象是高一年级的学生,他们在初中已经接触过函数的概念,对函数有了初步的认识。

但对于函数的本质和抽象概念的理解还存在一定的困难。

这个阶段的学生思维活跃,具有较强的好奇心和求知欲,但抽象思维能力和逻辑推理能力还有待提高。

因此,在教学中需要通过具体的实例和直观的图像,引导学生逐步理解函数的概念。

三、教学目标1、知识与技能目标理解函数的概念,能准确判断两个变量之间是否构成函数关系。

掌握函数的定义域、值域的求法。

会用区间表示函数的定义域和值域。

2、过程与方法目标通过对具体实例的分析和归纳,培养学生的观察、分析和概括能力。

经历函数概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。

通过合作探究,培养学生的团队合作精神和创新意识。

四、教学重难点1、教学重点函数的概念。

函数的定义域和值域的求法。

2、教学难点对函数概念中“唯一确定”的理解。

函数符号的理解和运用。

五、教法与学法1、教法启发式教学法:通过设置问题,引导学生思考,激发学生的学习积极性。

讲授法:对重点和难点知识进行详细讲解,使学生能够准确理解。

实例教学法:结合生活中的实际例子,让学生感受到函数的广泛应用,提高学生的学习兴趣。

高中数学函数的说课稿(精选5篇)

高中数学函数的说课稿(精选5篇)

高中数学函数的说课稿(精选5篇)高中数学函数的说课稿(精选5篇)作为一名教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。

那么大家知道正规的说课稿是怎么写的吗?下面是小编帮大家整理的高中数学函数的说课稿(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学函数的说课稿1一、教材说明本节课是人教版高中数学必修I第一章《集合与函数概念》1.2.2函数的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列表法,以及应用函数的表示方法解决一些实际问题1.教材所处低位和作用学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及的问题,而且是加深理解函数的概念的过程。

特别是在信息技术的环境下面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是向学生渗透数形结合方法的重要过程。

2.学情分析学生的年龄特点和认知特点学生已具备的基本知识与技能二、教学目标知识与技能1.进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表法,图像法2. 能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初步培养学生实际问题转化为数学问题的能力过程与方法1. 通过三种方法的学习,渗透数形结合的思想2.在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学生运用数学的意识情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习兴趣三、教学重点,难点重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数的三种不同表示方法)难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难把握)四、教法分析与学法指导本着以“学生发展为本”。

引导学生主动参与学习,指导学生学会学习方法,培养学生积极探索的精神,学生为主,教师指导。

整个教学过程主要用启发式教学方法,体现“分析”——“研究”——“总结”的学习环节,并以多媒体为教辅手段。

通过创设问题情境,营造学习氛围,组织学生讨论,让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也完成情感目标的教育五、教学过程教学环节教学环节与教学内容设计意图引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回顾函数解析法,图像法,列表法的定义;并给出一些众所周知的例子。

函数的概念说课稿3人教课标版(优秀教案)

函数的概念说课稿3人教课标版(优秀教案)

《函数的概念》说课稿阳泉二中张涛各位评委:大家好!我说课的内容是高中新课标必修1中函数的概念。

我将从背景分析、教学目标设计、教法与学法选择、教学过程设计以及教学评价设计五个方面来汇报我对这节课的教学设想。

一、背景分析.教材分析函数是中学数学一个重要的基本概念,函数思想也是整个高中数学最重要的数学思想之一,它不仅对所学过的集合作了巩固和发展,而且也是学好后继知识的基础和工具。

函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。

.学情分析从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。

从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。

二、教学目标设计【教学目标】知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x) 的意义,会求一些简单函数的定义域。

过程与方法:让学生通过合作探究,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。

情感态度价值观:通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,深化函数概念,体会数学形成和发展的一般规律,培养学生的辨证思想。

同时感受数学的抽象性和简洁美,激发学生学习数学的热情。

[ 设计意图] :教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。

【教学难重点】重点:理解函数的概念;难点:理解函数符号()的含义。

[ 设计意图] :首先通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。

三、教法与学法选择.问题式教学法:根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现两个变量的关系,让学生归纳、概括出函数概念的本质。

高一数学《函数的单调性》说课稿模板(通用7篇)

高一数学《函数的单调性》说课稿模板(通用7篇)

高一数学《函数的单调性》说课稿模板(通用7篇)高一数学《函数的单调性》模板篇1下面是小编整理的高一数学《函数的单调性》说课稿模板,希望对大家有所帮助。

一、教材分析1 、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1) 突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

2024《函数的图象》说课稿范文

2024《函数的图象》说课稿范文

2024《函数的图象》说课稿范文明年我将要讲授的内容是《函数的图象》,下面我将从以下几个方面进行阐述。

一、说教材1、《函数的图象》是人教版高中数学选修1教材中的一部分。

它是在学生已经学习了函数基本概念和函数图像的基础上进行教学的,是高中数学领域中的重要知识点,而且函数的图象在实际问题中有着广泛的应用。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解函数图象的基本特征,掌握函数图象与函数关系的变化规律。

②能力目标:在函数图象的绘制和分析中,培养学生观察、推理和问题解决的能力。

③情感目标:在函数图象的学习中,让学生体会数学在实际问题中的应用和意义。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解函数图象的基本特征,掌握函数图象与函数关系的变化规律。

难点是:能够准确地绘制函数的图象,能够通过观察函数图象来推断函数关系的性质。

二、说教法学法根据学生的特点和教学目标,我将采用探究式教学法和问题解决法。

通过引导学生自主探索和思考,培养学生解决问题的能力。

学法是:自主学习法,合作学习法。

三、说教学准备在教学过程中,我将使用多媒体辅助教学,以图像和实例的形式呈现教学素材。

同时,准备了足够的绘图工具和实例问题,以便学生进行练习和探究。

四、说教学过程新课标要求教学活动是师生互动的过程,为了落实这一要求,我设计了如下教学环节。

环节一、谈话引入,导入新课。

课堂伊始,我会通过展示几张函数图象的问题给学生,让学生观察和分析这些图象的特点。

我会适时追问:你们从这些图象中能得到什么信息?这里运用了什么知识?让学生感知函数图象是函数关系的可视化表达方式。

由此引入今天的课题:函数的图象。

设计意图:以问题引入的方式,既激发了学生的好奇心,又调动了学生主动思考的欲望。

环节二、检验课前自学成果。

在课前我会布置一道问题让学生自主学习。

问题是:如何根据函数的表达式绘制函数的图象?我会在课堂上让学生交流和讨论他们的学习成果。

人教版高中数学必修1《1函数概念》说课稿

人教版高中数学必修1《1函数概念》说课稿

人教版高中数学必修1《1函数概念》说课稿各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国xxxx年4月份非典疫情统计:日期222324252627282930新增确诊病例数10610589103113126981521013.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f|x∈A}叫做函数的值域(range).注意:○1“y=f”是函数符号,可以用任意的字母表示,如“y=g”;○2函数符号“y=f”中的f表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

人教版函数的概念说课稿

人教版函数的概念说课稿

人教版函数的概念说课稿一、说课背景与目标在高中数学课程中,函数的概念是一个核心知识点,它是理解许多后续数学概念的基础。

本次说课的内容是人教版高中数学必修一中的“函数的概念”一章。

本章节的主要目标是让学生理解函数的定义、性质和基本的函数类型,为后续学习函数的图像、性质以及应用打下坚实的基础。

二、教学内容与学情分析1. 教学内容概述本节课的教学内容主要包括以下几个方面:- 函数的定义:介绍函数的数学定义,即一个从非空数集X到非空数集Y的映射。

- 函数的表示方法:包括函数的表达式、图像、表格等表示方式。

- 函数的基本概念:如定义域、值域、单调性、奇偶性等。

- 基本初等函数:包括一次函数、二次函数、指数函数、对数函数等。

2. 学情分析高中生已经具备了一定的数学基础,能够理解集合、映射等基本概念,但函数作为一个新的概念,对学生来说可能比较抽象。

因此,在教学过程中需要结合实际例子和图形,帮助学生形象地理解函数的概念和性质。

三、教学目标1. 知识与技能目标学生能够准确理解函数的定义,掌握函数的基本表示方法,了解函数的基本概念,如定义域、值域、单调性、奇偶性等,并能够识别和分析基本初等函数。

2. 过程与方法目标通过观察、比较、归纳等方法,培养学生的抽象思维能力和逻辑推理能力。

通过解决实际问题,提高学生运用函数知识解决实际问题的能力。

3. 情感态度与价值观目标激发学生对数学学习的兴趣,培养学生的数学探究精神和合作学习的意识。

四、教学重点与难点1. 教学重点- 函数的定义和基本概念。

- 函数的表示方法和基本性质。

- 基本初等函数的识别和性质。

2. 教学难点- 函数概念的抽象性,学生可能难以理解。

- 函数性质的理解和应用,尤其是对于函数图像的解读。

五、教学方法与手段1. 启发式教学法:通过提问引导学生思考,激发学生的好奇心和探究欲。

2. 直观教学法:利用图像、表格等直观材料帮助学生理解函数的概念。

3. 讨论式教学法:组织学生进行小组讨论,通过交流和合作深化对函数概念的理解。

人教版高中函数说课稿

人教版高中函数说课稿

人教版高中函数说课稿尊敬的各位评委、老师,大家好!今天,我将为大家说课人教版高中数学中的函数部分。

函数作为高中数学的核心概念之一,对于培养学生的抽象思维能力和逻辑推理能力具有重要意义。

接下来,我将从教材分析、教学目标、教学重点与难点、教学方法、教学过程及板书设计等方面进行详细阐述。

一、教材分析本次说课的内容位于人教版高中数学必修一的第一章,主要介绍了函数的概念、表示方法以及基本性质。

教材首先通过实际问题引出函数的定义,然后通过图象、表格等多种方式帮助学生理解函数的含义。

此外,教材还介绍了函数的几种常见类型,如一次函数、二次函数和指数函数等,并探讨了它们的图像和性质。

二、教学目标1. 知识与技能目标:使学生理解函数的定义,掌握函数的表示方法,能识别和描述常见的函数类型。

2. 过程与方法目标:培养学生通过观察、比较、归纳等方法探索函数性质的能力。

3. 情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的数学审美和创新意识。

三、教学重点与难点1. 教学重点:函数的定义及其表示方法,函数的基本概念如定义域、值域、单调性和奇偶性。

2. 教学难点:函数图像的绘制和解析,特别是对于复杂函数的理解与应用。

四、教学方法1. 启发式教学法:通过问题引导学生主动思考,自主探索函数的定义和性质。

2. 探究式教学法:组织学生进行小组讨论,通过实际问题的解决来深化对函数概念的理解。

3. 示范教学法:通过教师的板书和PPT演示,向学生展示函数图像的绘制过程和解析方法。

五、教学过程1. 导入新课:通过生活中的例子,如速度与时间的关系,引出函数的概念。

2. 讲解新知:详细讲解函数的定义、表示方法,并结合实例进行说明。

3. 学生活动:让学生自己动手绘制函数图像,通过实际操作加深理解。

4. 课堂小结:总结函数的基本概念和性质,强调教学重点和难点。

5. 布置作业:设计相关习题,让学生在课后巩固所学知识。

六、板书设计板书设计应清晰、有条理,主要包括以下内容:1. 函数的定义:x→y,f(x)的表达方式。

函数的说课稿

函数的说课稿

函数的说课稿一、说教材本文是高中数学课程中函数部分的教学内容,函数作为现代数学的核心概念之一,在数学体系中具有举足轻重的地位。

它不仅是连接代数与几何的桥梁,而且是研究现实世界变化规律的重要数学模型。

在本课中,我们将系统学习函数的基本概念、性质以及其应用。

(1)作用与地位函数部分的学习,旨在帮助学生建立完整的数学观念,培养他们的逻辑思维能力和解决实际问题的能力。

它是整个数学学习过程中的一个关键节点,对于学生理解数学的本质,提高数学素养具有重要意义。

(2)主要内容本节课主要围绕以下内容展开:1. 函数的定义:通过实例引出函数的概念,强调函数是一种特殊的关系,即每个输入值对应唯一的输出值。

2. 函数的性质:介绍函数的单调性、奇偶性、周期性等基本性质,并通过图像加深理解。

3. 函数的应用:通过实际例子,让学生体会函数在现实生活中的应用,激发他们的学习兴趣。

二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解函数的定义,能够准确描述函数的基本概念;(2)掌握函数的基本性质,能够分析并判断函数的单调性、奇偶性、周期性等;(3)能够运用函数解决简单的实际问题。

2. 过程与方法:(1)通过实例分析,培养学生观察、抽象、概括的能力;(2)通过图形表示,培养学生直观想象和空间思维能力;(3)通过小组合作,培养学生合作交流的能力。

3. 情感态度与价值观:(1)激发学生对函数学习的兴趣,培养他们勇于探索、积极进取的精神;(2)使学生认识到数学与现实生活的紧密联系,提高他们的数学应用意识。

三、说教学重难点本节课的教学重点是函数的定义和性质,难点是函数性质的判断和应用。

1. 教学重点:(1)函数的定义:让学生准确理解函数的概念,明确输入值与输出值之间的关系;(2)函数的性质:使学生掌握函数的基本性质,并能运用性质分析函数。

2. 教学难点:(1)函数性质的判断:指导学生通过观察函数图像和解析式,判断函数的单调性、奇偶性、周期性等;(2)函数的应用:引导学生运用所学知识解决实际问题,提高他们的应用能力。

人教版19.1函数说课稿

人教版19.1函数说课稿

人教版19.1函数说课稿一、说课背景本次说课的内容是人教版高中数学必修一中的“函数”这一章节。

函数作为数学中的一个基本概念,对于培养学生的抽象思维能力和逻辑推理能力具有重要意义。

本章节位于高中数学课程的起始阶段,旨在为后续的学习打下坚实的基础。

二、教学目标1. 知识与技能目标:使学生理解函数的概念,掌握函数的表示方法,了解函数的基本概念,如定义域、值域、单调性、奇偶性等,并能够解决一些基础的函数问题。

2. 过程与方法目标:培养学生通过观察、归纳、抽象等方法学习数学的能力,训练学生运用函数知识解决实际问题的能力。

3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学探究精神和合作学习的意识。

三、教学重点与难点1. 教学重点:函数的定义、函数的表示方法、函数的基本概念(定义域、值域、单调性、奇偶性)。

2. 教学难点:函数概念的抽象性,函数性质的理解与应用。

四、教学方法与手段1. 教学方法:采用启发式教学法和探究式学习法,通过问题引导学生自主学习,通过实例讲解和课堂讨论,帮助学生理解和掌握知识点。

2. 教学手段:运用多媒体课件展示函数图像,利用网络资源查找相关函数知识的应用实例,组织小组合作探究活动,增强学生的实践操作能力。

五、教学过程1. 导入新课- 通过实际问题引出函数的概念,例如,介绍速度与时间的关系,从而引出函数的定义。

- 通过图像展示,让学生直观感受函数的表现形式。

2. 讲解新知- 定义函数的概念,解释函数的符号表示方法。

- 介绍函数的定义域和值域,并通过实例加深理解。

- 讲解函数的单调性和奇偶性,通过图像和具体函数表达式进行说明。

3. 课堂练习- 设计基础题目,让学生练习求解函数的定义域和值域。

- 通过对比不同函数的图像,让学生识别函数的单调性和奇偶性。

4. 拓展延伸- 探讨函数在实际生活中的应用,如经济学中的成本函数、物理学中的速度函数等。

- 引导学生思考函数与其他数学知识(如方程、不等式)的联系。

高中数学函数说课稿

高中数学函数说课稿

高中数学函数说课稿尊敬的各位领导、老师、亲爱的同学们:大家好!今天我给大家讲解高中数学——函数的知识。

我的主题是《函数与它的应用》。

一、情境导入我们生活中处处都是函数。

比如,当我们开车时,速度与时间的关系就可以用函数来表示;当我们购买东西时,价格与数量的关系也可以用函数来表达。

而这些函数的应用也是我们学习数学函数的重要目的。

二、教学目标通过学习,我希望大家能够:1. 掌握函数的概念和性质;2. 理解函数的图象与实际问题之间的关系;3. 学会利用函数解决实际问题;4. 提高分析、解决问题的能力。

三、教学内容1. 函数的概念函数是一种对应关系,它把一个集合的每个元素都唯一地对应到另一个集合中的一个元素上。

函数由定义域、值域和对应关系三个部分组成。

2. 函数的性质(1)定义域:函数的自变量取值范围;(2)值域:函数的因变量所有可能取值的范围;(3)单调性:函数随着自变量增大或减小而增大或减小的性质;(4)奇偶性:函数的奇偶对称性;(5)周期性:函数具有重复出现的周期性。

3. 函数的图象与实际问题之间的关系使用函数的图象来描述实际问题,可以更加直观地理解问题的本质,提高问题解决的效率。

4. 利用函数解决实际问题通过实际问题,引导同学们理解并建立函数模型,运用函数的性质求解实际问题,提高数学应用能力。

四、教学方法1. 讲授与演示相结合。

在讲解函数的概念和性质时,通过具体实例进行演示,帮助同学们理解。

2. 案例分析法。

引入一些实际问题,利用函数解决这些问题,培养同学们运用数学知识解决实际问题的能力。

3. 互动式教学。

在讲解中适时加入一些问题,鼓励同学们积极思考并参与讨论。

五、板书设计(板书内容)1.函数的概念:函数 = 定义域 + 值域 + 对应关系2.函数的性质:定义域、值域、单调性、奇偶性、周期性3.函数的图象与实际问题之间的关系4.实际问题与函数求解(板书效果)(图片)六、教学过程1. 引入:生活中的函数2. 函数的概念和性质的讲解与演示3. 实际问题引导与函数的建模4. 案例分析与实际问题解答5. 总结与思考七、课堂设计本节课大约45分钟,我将通过授课、互动和讨论相结合的方式进行教学,力求使同学们在愉快的氛围中掌握函数的概念、性质,并运用函数求解实际问题。

函数定义说课稿人教版

函数定义说课稿人教版

函数定义说课稿人教版一、教学目标本节课的教学目标旨在使学生理解函数的定义,掌握函数的基本概念和表示方法,并能够通过实际例子来识别和描述函数关系。

同时,培养学生的抽象思维能力和数学建模意识。

二、教学内容1. 函数的概念2. 函数的表示方法3. 函数的图像4. 函数的简单性质三、教学重点与难点1. 教学重点:函数的定义及其表示方法。

2. 教学难点:函数概念的抽象性,以及如何从实际问题中抽象出函数关系。

四、教学方法采用讲授法与互动讨论相结合的方式,通过实例引导学生理解和掌握函数的定义和性质。

五、教学过程1. 引入新课通过生活中的例子,如银行存款利息计算、物体自由落体的距离与时间的关系等,引出函数的概念,并提出问题:“这些现象中存在什么样的数学关系?”2. 函数的定义明确给出函数的定义:“设两个变量X和Y,如果对于X的每一个取值,Y都有唯一确定的值与之对应,那么称Y是X的函数。

”并通过实例加深理解。

3. 函数的表示方法介绍函数的常用表示方法,如公式法(y=f(x))、图像法(函数图象)、表格法(函数表)等,并分别举例说明。

4. 函数的图像讲解函数图像的概念,展示几种基本初等函数的图像,如一次函数、二次函数、指数函数等,并指导学生如何从图像中读取信息。

5. 函数的性质讨论函数的简单性质,如单调性、奇偶性等,并结合具体函数进行分析。

6. 课堂练习设计相关练习题,让学生在课堂上进行练习,以巩固所学知识。

7. 总结与作业课堂结束前,总结本节课的主要内容,并布置适量的作业,以便学生复习和巩固。

六、板书设计合理规划板书内容,将函数的定义、表示方法、性质等关键信息清晰地展示在黑板上,以便于学生记录和回顾。

七、教学反思课后,教师应根据学生的反馈和练习情况,对教学效果进行评估,并思考如何改进教学方法,以提高学生的学习效果。

通过本节课的教学,学生应能够理解并掌握函数的基本概念和性质,为后续学习更复杂的函数知识打下坚实的基础。

函数的应用说课稿

函数的应用说课稿

函数的应用说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“函数的应用”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“函数的应用”是高中数学课程中的重要内容,它不仅是函数知识的延续和深化,更是培养学生数学应用意识和解决实际问题能力的重要途径。

本节课所选用的教材是人民教育出版社出版的普通高中课程标准实验教科书《数学》必修 1。

在教材中,函数的应用通过实际问题的引入,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。

同时,教材中提供了丰富的例题和习题,帮助学生掌握函数应用的方法和技巧。

二、学情分析授课对象是高一年级的学生,他们已经学习了函数的基本概念和性质,具备了一定的函数知识储备。

但是,学生在将函数知识应用到实际问题中时,往往会遇到困难,缺乏解决实际问题的思路和方法。

此外,高一学生的思维正处于从形象思维向抽象思维过渡的阶段,在教学中需要注重引导学生从实际问题中抽象出数学模型,培养学生的抽象思维能力。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)学生能够理解函数在实际问题中的应用,掌握建立函数模型解决实际问题的一般步骤。

(2)学生能够运用常见的函数模型(如一次函数、二次函数、指数函数、对数函数等)解决简单的实际问题。

2、过程与方法目标(1)通过实际问题的探究,培养学生观察、分析、归纳、概括的能力,提高学生的数学思维能力。

(2)让学生经历从实际问题中建立函数模型,求解模型,检验模型的过程,体会数学建模的思想方法。

3、情感态度与价值观目标(1)让学生感受数学与生活的密切联系,激发学生学习数学的兴趣和积极性。

(2)培养学生的创新意识和应用意识,提高学生解决实际问题的能力,增强学生的自信心。

四、教学重难点1、教学重点(1)建立函数模型解决实际问题的一般步骤。

(2)常见函数模型在实际问题中的应用。

函数的概念说课稿(精选)

函数的概念说课稿(精选)

函数的概念说课稿(精选)篇一:《函数概念》说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:一、背景分析1、学习任务分析2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。

二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;⑤会求一些简单函数的定义域。

2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

三、课堂结构设计为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识,小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。

高中数学函数说课

高中数学函数说课

高中数学函数说课篇一:高中数学函数的概念的说课稿关于函数的概念的说课稿一、说教材1、说教材的地位和作用《函数的概念》是高中新课标标准试验教材必修1第二章第二节第一课时的内容。

在此之前,学生已学习了一次函数,二次函数以及函数的传统定义,函数的后续内容主要有指数函数、对数函数和三角函数,函数是高中数学的主要内容,也是高考的主要内容,还是数学分析,复变函数的内容,在实践中应用广泛,是高中学生必须掌握的重点。

2、教学目标按照《新课程标准》的要求,根据上述对教材的分析,我确定本节课的教学目标是:知识与技能目标:掌握函数的概念;理解构成函数的要素;能求一些简单函数的定义域。

过程与方法目标:通过对具体问题的思考,分析,引导学生抽象概括出函数的概念,培养学生抽象概括的能力。

情感态度价值观目标:通过师生共同探索出函数的概念,总结出函数的要素,激发学生学习数学的兴趣,培养学生刻苦专研的精神。

3、教学重、难点根据上面对教材的分析及教学目标,我确定本节课的教学重点是函数的概念,难点是对函数的概念的理解,对符号y?f?x?的掌握。

二、说学情从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点.三、说教法学法1、本节课采用的方法有:直观教学法、启发教学法、课堂讨论法。

2、采用这些方法的理论依据:我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高一数学函数说课稿两篇专题复习是总复习过程中的一个关键阶段,!各位评委老师,大家好!我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与(小)值》(可以在这时候板书课题,以缓解紧张)。

我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。

恳请在座的专家评委批评指正。

一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。

(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析教必有法而教无定法,只有方法得当才会有效。

新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。

本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析授人以鱼,不如授人以渔,最有价值的知识是关于方法的只是。

学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。

在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x 的图像,并观察函数图象的特点,总结归纳。

通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x 的图像是一个曲线,在(-,0)上是下降的,而在(0,+)上是上升的。

(适当添加手势,这样看起来更自然)2、创设问题,探索新知紧接着提出问题,你能用二次函数f(x)=x 表达式来描述函数在(-,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x 在(0,+)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、例题讲解,学以致用例1主要是对函数单调区间的巩固运用,通过观察函数定义在(5,5)的图像来找出函数的单调区间。

这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。

强调单调区间一般写成半开半闭的形式例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。

这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。

一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。

3、练习巩固讨论学习法这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。

(二)学法本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。

重在动手操作、观察发现和归纳的过程。

由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。

四、教学过程分析(一)教学过程设计(1)创设情境,提出问题。

新课标指出:应该让学生在具体生动的情境中学习数学。

在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。

问题1:下列问题中的函数各有什么共同特征?是否为指数函数?由学生讨论,总结,即可得出:p=w,s=a2,v=a,a=s1/2,v=t1这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:都是自变量的若干次幂的形式。

都是形如的函数。

揭示课题:今天这节课,我们就来研究:幂函数(一)课堂主要内容(1)幂函数的概念①幂函数的定义。

一般地,函数叫做幂函数,其中x是自变量,a是常数。

②幂函数与指数函数之间的区别。

幂函数底数是自变量,指数是常数;指数函数指数是自变量,底数是常数。

(2)几个常见幂函数的图象和性质由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格根据上表的内容并结合图象,总结函数的共同性质。

让学生交流,老师结合学生的回答组织学生总结出性质。

以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。

通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。

教师讲评:幂函数的性质.①所有的幂函数在(0,+)上都有定义,并且图像都过点(1,1).②如果a0,则幂函数的图像通过原点,并在区间〔0,+)上是增函数.③如果a0,则幂函数在(0,+)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+时,图像在x轴上方无限地趋近x轴.④当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。

以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。

同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。

因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。

在教学中,采用从具体到一般,再从一般到具体的安排。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(3)当堂训练,巩固深化例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。

本节课选取主要选取了两道例题。

例1是课本上的例题:证明f(x)=x1/2在(0,+)上是增函数。

这题先从形的角度判断函数的单调区间和单调性,再用到定义从数的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。

例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。

注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1。

3是增函数与y=x5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路(4)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?(二)作业设计作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。

通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.我设计了以下作业:(1)必做题(2)选做题(三)板书设计板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。

我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!。

相关文档
最新文档