中考数学试题及答案
中考题数学试题及答案
中考题数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根等于它本身,这个数可能是?A. 0B. 1C. -1D. 2答案:A4. 以下哪个表达式的结果不是偶数?A. 4 × 6B. 5 × 3C. 7 × 8D. 9 × 2答案:B5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9答案:C7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C8. 以下哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = 1/2答案:A9. 一个数的立方根等于它本身,这个数可能是?A. 1B. -1C. 0D. 8答案:A10. 以下哪个是不等式的解集?A. x > 3B. x < 3C. x = 3D. x ≠ 3答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是________。
答案:±412. 一个数的倒数是1/2,这个数是________。
答案:213. 一个数的相反数是-5,这个数是________。
答案:514. 一个数的立方是27,这个数是________。
答案:315. 如果一个角是直角的一半,那么这个角的度数是________。
答案:45°16. 一个数的平方根是4,这个数是________。
答案:1617. 一个数的绝对值是10,这个数可能是________。
答案:±1018. 一个数的平方是9,这个数是________。
初中数学试题及答案中考
初中数学试题及答案中考一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.33333D. π答案:B2. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是:A. 3B. 5C. 8D. 13答案:C3. 如果一个二次方程的解为x1=2和x2=-3,那么这个二次方程可以表示为:A. x^2 - 5x + 6 = 0B. x^2 + x - 6 = 0C. x^2 - x - 6 = 0D. x^2 + 5x + 6 = 0答案:A4. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14答案:A5. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 菱形D. 不规则多边形答案:C6. 一个圆的半径为5cm,那么这个圆的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C8. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是:A. 8cm³B. 12cm³C. 24cm³D. 36cm³答案:C9. 下列哪个选项是正确的不等式?A. 2x > 3xB. 5x ≤ 2xC. 3x < 6xD. 4x ≥ 8答案:D10. 一个角的补角是它的余角的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是________或________。
答案:5 或 -512. 一个等差数列的首项是3,公差是2,那么第5项的值是________。
答案:1113. 如果一个三角形的内角和为180°,其中一个角是60°,另一个角是75°,那么第三个角的度数是________。
初中中考数学试题及答案
初中中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正整数?A. -2B. 0C. 1D. 2.5答案:C2. 一个数的相反数是-3,这个数是?A. 3B. -3C. 0D. 6答案:A3. 计算下列哪个表达式的结果为正数?A. \(-2^2\)B. \((-2)^2\)C. \(-(-2)^2\)D. \(-2 \times (-2)\)答案:B4. 哪个分数是最简分数?A. \(\frac{4}{8}\)B. \(\frac{3}{9}\)C. \(\frac{5}{10}\)D. \(\frac{7}{14}\)答案:D5. 一个圆的半径是5厘米,它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C6. 一个等腰三角形的底角是45度,它的顶角是多少度?A. 45度B. 60度C. 90度D. 135度答案:C7. 下列哪个选项是不等式?A. \(2x + 3 = 7\)B. \(2x + 3 > 7\)C. \(2x + 3 < 7\)D. \(2x + 3 \leq 7\)答案:B8. 一个数加上5等于15,这个数是多少?A. 10B. 20C. 5D. 15答案:A9. 一个数的3倍减去6等于12,这个数是多少?A. 6B. 8C. 10D. 12答案:B10. 一个数的4倍加上8等于32,这个数是多少?A. 6B. 8C. 10D. 12答案:A二、填空题(每题3分,共15分)11. 一个数的平方是36,这个数是_6_或_-6_。
12. 一个数的立方是-27,这个数是_-3_。
13. 一个三角形的内角和是_180_度。
14. 一个数的绝对值是5,这个数可以是_5_或_-5_。
15. 一个数除以-2等于-3,这个数是_6_。
三、解答题(每题5分,共25分)16. 计算表达式 \((-3) \times (-2) + 4 \div 2\) 的值。
2024年河南中考数学试题
2024年河南省中考数学试题及答案一、选择题(每题4分,共40分)1. 下列选项中,既是有理数又是无理数的是()A. √2B. -3C. 1.414D. 0.333…答案:B2. 如果一个数列的前三项分别是1,3,5,那么它的第10项是()A. 18B. 20C. 22D. 24答案:B3. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = 2x答案:B4. 在三角形ABC中,a=3,b=4,C=60°,那么三角形ABC的面积是()A. 3√3B. 4√3C. 6D. 8答案:A5. 下列关于x的不等式中,有解的是()A. x² < 0B. x² > 0C. x² = 0D. x² ≠ 0答案:B6. 一个二次函数的图像开口向上,且顶点坐标为(-1,-4),那么该二次函数的一般形式是()A. y = (x + 1)² - 4B. y = (x - 1)² + 4C. y = (x + 1)² + 4D. y = (x - 1)² - 4答案:A7. 下列关于x的方程中,有实数解的是()A. x² + 1 = 0B. x² - 1 = 0C. x² + 2 = 0D. x² - 2 = 0答案:B8. 下列关于x的不等式组中,有解的是()A.\[\begin{cases}x < 2 \\x > 3\end{cases} \]B.\[\begin{cases} x \leq 1 \\ x \geq 2\end{cases} \]C.\[\begin{cases} x \geq 1 \\ x \leq 2\end{cases} \]D.\[\begin{cases}x > 2 \\x < 3\end{cases}\]答案:C9. 一个正方体的表面积是54cm²,那么它的体积是()A. 27cm³B. 36cm³C. 54cm³D. 72cm³答案:A10. 下列关于三角形ABC的说法中,正确的是()A. 如果a² + b² = c²,那么三角形ABC是直角三角形B. 如果a² + b² > c²,那么三角形ABC是锐角三角形C. 如果a² + b² < c²,那么三角形ABC是钝角三角形D. 如果a² - b² = c²,那么三角形ABC是直角三角形答案:A二、填空题(每题4分,共40分)11. 如果一个数列的前三项分别是2,4,6,那么它的第n项是_________。
最新中考数学试题及答案
最新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. √2C. 2/3D. 3.14答案:B2. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5和-5D. 以上都不是答案:C3. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是:A. 16B. 17C. 18D. 19答案:A4. 如果一个函数的图像是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 无法确定答案:A5. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 4D. 2答案:A6. 一个数的平方是25,那么这个数是:A. 5B. -5C. ±5D. 25答案:C7. 一个圆的半径是3,那么这个圆的面积是:A. 9πB. 18πC. 27πD. 36π答案:C8. 一个直角三角形的两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 8答案:A9. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A10. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(2x)答案:D二、填空题(每题4分,共20分)1. 一个数的平方是16,那么这个数是______。
答案:±42. 一个数的绝对值是7,那么这个数是______。
答案:±73. 一个等腰三角形的底边长为8,两腰长为10,那么这个三角形的周长是______。
答案:284. 一个圆的半径是4,那么这个圆的面积是______。
答案:16π5. 一个直角三角形的两直角边长分别为6和8,那么斜边长是______。
答案:10三、解答题(每题10分,共50分)1. 已知一个直角三角形的两直角边长分别为3和4,求斜边长。
答案:根据勾股定理,斜边长为√(3²+4²)=√(9+16)=√25=5。
中考初三数学试题及答案
中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 一个等腰三角形的顶角为40°,那么它的底角是:A. 70°B. 40°C. 50°D. 60°答案:D4. 下列哪个方程是一元二次方程?A. 2x + 3 = 0B. x² - 4x + 4 = 0C. 3x - 2 = 0D. x² - 2xy + y² = 0答案:B5. 一个数的平方根是2,那么这个数是:A. 4C. 2D. -2答案:A6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B7. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是:A. 5B. 7C. 6答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数是________。
答案:±712. 一个数的平方是16,这个数是________。
答案:±413. 一个数的立方根是-2,这个数是________。
答案:-814. 一个三角形的内角和是________。
答案:180°15. 一个等差数列的首项是2,公差是3,那么它的第5项是________。
答案:1716. 一个等比数列的首项是3,公比是2,那么它的第4项是________。
答案:4817. 一个二次函数y = ax² + bx + c的顶点坐标是(-2, 3),那么a 的值是________。
标准数学中考试题及答案
标准数学中考试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 2/3D. 3答案:B2. 一个二次函数的图像开口向上,且经过点(1,0),则该二次函数的一般形式为:A. y = a(x-1)^2 + kB. y = a(x+1)^2 + kC. y = a(x-1)^2 - kD. y = a(x+1)^2 - k答案:A3. 下列哪个选项是等腰三角形?A. ∠A = 30°, ∠B = 45°, ∠C = 105°B. ∠A = 45°, ∠B = 45°, ∠C = 90°C. ∠A = 50°, ∠B = 60°, ∠C = 70°D. ∠A = 60°, ∠B = 60°, ∠C = 60°答案:B4. 已知一个圆的半径为5,那么这个圆的周长是:A. 10πB. 20πC. 25πD. 30π答案:B5. 一个等差数列的首项为3,公差为2,那么这个数列的第5项是:A. 13B. 11C. 9D. 7答案:A6. 一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是:A. 5B. 7C. 9D. 12答案:A7. 下列哪个函数是奇函数?A. y = x^2B. y = x^3C. y = x^2 + 1D. y = x + 1答案:B8. 一个长方体的长、宽、高分别为2、3、4,那么这个长方体的体积是:A. 24B. 26C. 28D. 32答案:A9. 一个样本数据为:2, 3, 4, 5, 6, 7,那么这个样本的中位数是:A. 4B. 4.5C. 5D. 6答案:C10. 一个扇形的圆心角为60°,半径为4,那么这个扇形的面积是:A. 4πB. 8πC. 12πD. 16π答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的相反数是-5,那么这个数是 _______。
中考数学试题试卷及答案
中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。
答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。
答案:5或-513. 一个正数的平方根是2,那么这个数是_________。
答案:414. 一个数除以-1/2等于乘以_________。
中考数学试题及答案
中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 22/7答案:B2. 一个长方形的长是宽的两倍,若宽为x,则长为多少?A. 2xB. x/2C. x^2D. 2x^2答案:A3. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 1答案:A4. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 15C. 17D. 19答案:A5. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3 - 2x答案:B6. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π cmB. 20π cmC. 30π cmD. 40π cm答案:B7. 一个三角形的三个内角之和是多少?A. 90°B. 180°C. 360°D. 720°答案:B8. 一个数的立方根是3,这个数是多少?A. 27B. 81C. 243D. 729答案:A9. 一个直角三角形的两条直角边分别是3和4,那么斜边是多少?A. 5B. 7C. 9D. 12答案:A10. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的绝对值是5,这个数可能是_________。
答案:±512. 如果一个数的平方是16,那么这个数可能是_________。
答案:±413. 一个等腰三角形的底边长是6,两腰长分别是5,那么这个三角形的周长是_________。
答案:1614. 一个数除以2余1,除以3余2,除以5余4,这个数最小是_________。
答案:2915. 一个圆的面积是25π平方厘米,那么这个圆的半径是_________。
2024年北京市中考真题数学试卷含答案解析
2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
中考数学试题真题含答案试题
中考数学试题真题含答案试题一、选择题1. 已知a、b是实数,下列哪个选项是正确的?A. a² + b² = 0B. a² + b² ≥ 0C. a² + b² < 0D. a² + b² > 0答案:B解析:实数的平方总是非负的,所以a² + b² ≥ 0。
2. 已知函数f(x) = 2x + 1,下列哪个选项是正确的?A. f(1) = 1B. f(0) = 1C. f(1) = 2D. f(2) = 3答案:B解析:将x = 0代入函数f(x) = 2x + 1,得到f(0) = 20 + 1 = 1。
3. 已知等差数列{an}的公差为2,首项为1,下列哪个选项是正确的?A. a2 = 3B. a3 = 5C. a4 = 7D. a5 = 9答案:C解析:等差数列的通项公式为an = a1 + (n1)d,将a1 = 1,d = 2代入,得到an = 1 + (n1)2。
将n = 4代入,得到a4 = 1 + (41)2 = 7。
4. 已知圆的半径为5,下列哪个选项是正确的?A. 圆的面积是25πB. 圆的周长是10πC. 圆的直径是10D. 圆的面积是10π答案:C解析:圆的直径是半径的两倍,所以圆的直径是52 = 10。
5. 已知正方形的边长为4,下列哪个选项是正确的?A. 正方形的面积是16B. 正方形的周长是16C. 正方形的对角线长度是8D. 正方形的面积是8答案:A解析:正方形的面积是边长的平方,所以正方形的面积是44 = 16。
二、填空题1. 已知a、b是实数,且a² + b² = 0,求a和b的值。
答案:a = 0,b = 0解析:由于a² + b² = 0,且a²和b²都是非负的,所以a和b都必须为0。
2. 已知函数f(x) = 3x 2,求f(5)的值。
数学中考试题及答案精选全文
可编辑修改精选全文完整版数学中考试题及答案一、选择题1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )A .B .C .D .2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==3.定义一种新运算:1an n nbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .254.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D .5.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .53B 25C 5D .236.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-7.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 8.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,39.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .10.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .1811.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+12.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3B.154C.5D.152二、填空题13.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)14.在函数3yx=-的图象上有三个点(﹣2,y1),(﹣1,y2),(12,y3),则y1,y2,y3的大小关系为_____.15.使分式的值为0,这时x=_____.16.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.17.分式方程32xx2--+22x-=1的解为________.18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000出芽种子数961654919841965A发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).19.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为83,求AC的长.22.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.23.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩24.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.25.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1) (2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】解:A .不是轴对称图形,是中心对称图形,不符合题意; B .既是轴对称图形,也是中心对称图形,符合题意; C .不是轴对称图形,是中心对称图形,不符合题意; D .不是轴对称图形,也不是中心对称图形,不符合题意. 故选B .2.A解析:A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.4.C解析:C 【解析】 【分析】按照题中所述,进行实际操作,答案就会很直观地呈现. 【详解】 解:将图形按三次对折的方式展开,依次为:.故选:C . 【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.5.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 3AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6.C解析:C 【解析】 【分析】 【详解】 ∵A (﹣3,4),∴, ∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8, 故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k-,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.7.C解析:C 【解析】 【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积. 【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2). 故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.9.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.10.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.11.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A.考点:由实际问题抽象出分式方程.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.14.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法16.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC 的周长为24,∴ED+DC+EC=24,①∵△ABC 与四边形AEDC 的周长之差为12,∴(AB+AC+BC )-(AE+ED+DC+AC )=(AB+AC+BC )-(AE+DC+AC )-DE=12,∴BE+BD-DE=12,②∵BE=CE ,BD=DC ,∴①-②得,DE=6.考点:线段垂直平分线的性质.17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.18.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确 解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题21.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED 与 O 相切时,由切线长定理知EC=ED ,则∠ECD=∠EDC ,那么∠A 和∠DEC 就是等角的余角,由此可证得AE=DE ,即E 是AC 的中点.在证明时,可连接OD ,证OD ⊥DE 即可.【详解】(1)在Rt △ACB 中,∵AC=3cm ,BC=4cm ,∠ACB=90°,∴AB=5cm ;连接CD ,∵BC 为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A ,∠ADC=∠ACB ,∴Rt △ADC ∽Rt △ACB ; ∴,∴;(2)当点E 是AC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △ADC 的中线;∴ED=EC ,∴∠EDC=∠ECD ;∵OC=OD ,∴∠ODC=∠OCD ;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED ⊥OD ,∴ED 与⊙O 相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114, 2;x y =⎧⎨=⎩223,3. xy=⎧⎨=⎩所以原方程组的解是114, 2;x y =⎧⎨=⎩223,3. xy=⎧⎨=⎩【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.24.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,3223+33()=6,∵sin∠DBF=31 =62,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=332 DFDO DO==,∴DO=23,则FO=3,故图中阴影部分的面积为:260(23)13333236022ππ⨯-⨯⨯=-.【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.25.(1)﹣3m+3;(2)【解析】【分析】(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.【详解】(1)原式=2(m2﹣2m+1)﹣(2m2﹣2m+m﹣1)=2m2﹣4m+2﹣2m2+2m﹣m+1=﹣3m+3;(2)原式=(﹣)÷==.【点睛】本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.。
初中数学中考试题及答案
初中数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -2B. 0C. 3D. -52. 计算下列哪个表达式的结果为负数?A. 3 - 2B. 2 - 3C. 4 - 1D. 5 - 53. 哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 44. 一个数的平方是9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是5. 圆的周长公式是?A. C = πrB. C = 2πrC. C = πdD. C = 2πd6. 一个三角形的两边长分别为3cm和4cm,第三边的长度范围是?A. 1cm到7cmB. 1cm到5cmC. 3cm到7cmD. 3cm到5cm7. 下列哪个选项是不等式3x - 5 > 2的解?A. x > 2B. x < 2C. x > 3D. x < 38. 计算下列哪个表达式的结果为0?A. 5 + (-5)B. 5 - (-5)C. 5 × (-5)D. 5 ÷ (-5)9. 一个直角三角形的两个直角边长分别为3cm和4cm,斜边的长度是?A. 5cmB. 6cmC. 7cmD. 8cm10. 一个数的立方是-8,这个数是?A. 2B. -2D. -8二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是______。
12. 一个数除以-2等于3,这个数是______。
13. 一个数的相反数是-4,这个数是______。
14. 一个数的倒数是2,这个数是______。
15. 一个数的平方根是3,这个数是______。
三、解答题(每题5分,共55分)16. 计算表达式:(-3) × (-2) + 4 ÷ 2。
17. 解方程:5x - 3 = 2x + 8。
18. 计算一个数的平方,如果这个数是-4。
19. 一个长方形的长是6cm,宽是4cm,求它的周长和面积。
2024年北京市中考数学试题含参考答案
2024年北京市初中学业水平考试数学试卷考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=°,则EOB ∠大小为( )A. 29°B. 32°C. 45°D. 58°3. 实数a ,b 在数轴上对应点的位置如图所示,下列结论中正确的是( )A. 1b >−B. 2b >C. 0a b +>D. 0ab > 4. 若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( )A. 16−B. 4−C. 4D. 165. 不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( ) A. 34 B. 12 C. 13 D. 146. 为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410×Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的的的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A. 16810×B. 17210×C. 17510×D. 18210×7. 下面是“作一个角使其等于AOB ∠”的尺规作图方法. (1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A ′′,以点O ′为圆心,OC 长为半径画弧,交O A ′′于点C ′;以点C ′为圆心,CD 长为半径画弧,两弧交于点D ';(3)过点D '作射线O B ′′,则A O B AOB ′′′∠=∠.上述方法通过判定C O D COD ′′′△≌△得到A O B AOB ′′′∠=∠,其中判定C O D COD ′′′△≌△的依据是( )A. 三边分别相等的两个三角形全等B. 两边及其夹角分别相等的两个三角形全等C. 两角及其夹边分别相等的两个三角形全等D. 两角分别相等且其中一组等角的对边相等的两个三角形全等8. 如图,在菱形ABCD 中,60BAD ∠=°,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90°得到菱形A B C D ′′′′,两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ′′给出下面四个结论: ①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
中考题数学试题及答案
中考题数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. 2/3C. πD. 0.33333...答案:C2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 函数y=2x+3中,当x=2时,y的值是?A. 7B. 5C. 4D. 3答案:A4. 一个直角三角形的两条直角边长分别为3和4,斜边的长度是?A. 5B. 7C. 8D. 9答案:A5. 下列哪个方程是一元二次方程?A. x+2=0B. x^2+2x+1=0C. 2x-3=0D. x^2-4x+4=(x-2)^2答案:B6. 一个数的立方等于-8,这个数是?A. -2B. 2C. -1D. 1答案:A7. 一个等腰三角形的底角为70°,顶角的度数是?A. 40°B. 70°C. 80°D. 110°答案:A8. 一个圆的半径为5,它的面积是多少?B. 50πC. 75πD. 100π答案:C9. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 下列哪个选项是正比例函数?A. y=3x+2B. y=-2xC. y=x^2D. y=1/x答案:B二、填空题(每题3分,共15分)11. 一个数的相反数是-3,这个数是____。
答案:312. 一个数的倒数是1/4,这个数是____。
答案:413. 一个等差数列的首项是2,公差是3,第5项的值是____。
14. 一个等比数列的首项是2,公比是2,第3项的值是____。
答案:815. 一个二次函数y=ax^2+bx+c的顶点坐标是(1, -4),且过点(0, 3),那么a的值是____。
答案:-1三、解答题(每题10分,共40分)16. 已知一个二次函数y=ax^2+bx+c,它的图像经过点(1, 0)和(-1, 0),且顶点在y轴上,求这个二次函数的解析式。
数学中考试题及答案
数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 2C. x = 3D. x = 4答案:A2. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C3. 一个三角形的两边长分别为5cm和12cm,第三边的长度至少为:A. 7cmB. 8cmC. 9cmD. 10cm答案:B4. 已知一个圆的直径为10cm,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A5. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 一个等腰三角形的底角为45度,那么顶角的度数是:A. 90度B. 45度C. 60度D. 120度答案:A7. 函数y = 3x + 2的图象经过点(-1,1),那么函数y = 3x - 1的图象经过点:A. (-1,-2)B. (-1,-4)C. (-1,2)D. (-1,1)答案:A8. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B9. 一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是:A. 5cmB. 6cmC. 7cmD. 8cm答案:A10. 一个数的倒数是1/2,那么这个数是:A. 1/2B. 2C. -1/2D. -2答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是______。
答案:92. 一个数的相反数是-5,那么这个数是______。
答案:53. 一个数的绝对值是8,那么这个数可能是______。
答案:8或-84. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数的倒数是2/3,那么这个数是______。
答案:3/2三、解答题(每题10分,共50分)1. 解方程:3x - 5 = 10。
中考试题及答案解析数学
中考试题及答案解析数学一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax + b答案:A解析:二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c是常数,且a≠0。
2. 计算下列哪个表达式的结果为0?A. 3x - 2xB. 4y + 5yC. 7z - 7zD. 6a - 5a答案:C解析:7z - 7z = 0,因为任何数减去它自己都等于0。
3. 以下哪个分数是最简分数?A. 3/6B. 8/12C. 5/10D. 7/9答案:D解析:最简分数是指分子和分母没有公因数的分数。
选项A、B和C都可以进一步简化,而选项D的分子和分母互质,因此是最简分数。
4. 如果一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B解析:圆的面积公式是A = πr^2,其中r是半径。
将半径5厘米代入公式,得到面积为25π平方厘米。
5. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A解析:解不等式2x - 3 > 5,首先将3加到不等式的两边,得到2x > 8,然后将两边都除以2,得到x > 4。
6. 计算下列哪个表达式的结果为负数?A. (-3) × (-2)B. (-3) × 2D. 3 × 2答案:B解析:负数乘以正数得到负数,所以(-3) × 2 = -6,结果是负数。
7. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 22答案:A解析:完全平方数是指一个整数的平方。
16是4的平方,因此是完全平方数。
2024年天津市中考 数学试题及答案
2024年天津市初中学业水平考试试卷数学第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()33--的结果等于( ) A .—6B .0C .3D .62.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .3的值在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( ) A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61-o 的值等于( )A .0B .1C .12- D 17.计算3311x x x ---的结果等于( ) A .3B .xC .1x x - D .231x - 8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则312,,x x x 的大小关系是( ) A .123x x x << B .132x x x <<C .321x x x <<D .213x x x <<9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( ) A . 4.50.51y x x y -=⎧⎨-=⎩ B . 4.50.51y x x y -=⎧⎨+=⎩ C . 4.51x y x y +=⎧⎨-=⎩ D . 4.51x y y x +=⎧⎨-=⎩10.如图,Rt ABC △中,90,40C B ∠∠==oo,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60oB .65oC .70oD .75o11.如图,ABC △中,30B ∠=o ,将ABC △绕点C 顺时针旋转60o 得到DEC △,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD ∠∠=B .AC DE ∥C .AB EF =D .BF CE ⊥12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t tt =-≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0B .1C .2D .3第II 卷二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______. 14.计算86x x ÷的结果为______.15.计算)11的结果为______.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第三、第一象限,则k 的值可以是______(写出一个..即可).17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(I )线段AE 的长为______;(II )若F 为DE 的中点,则线段AF 的长为______.18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(I )线段AG 的长为______;(II )点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC 上.请用无刻度...的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19.(本小题8分) 解不等式组213, 317. x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答. (I )解不等式①,得______; (II )解不等式②,得______;(III )把不等式①和②的解集在数轴上表示出来:(IV )原不等式组的解集为______.20.(本小题8分)为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(I )填空:a 的值为______,图①中m 的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(II )求统计的这组学生每周参加科学教育的时间数据的平均数;(III )根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h 的人数约为多少?21.(本小题10分)已知AOB △中,30,ABO AB ∠=o为O e 的弦,直线MN 与O e 相切于点C .(I )如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(II )如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.22.(本小题10分)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45o ,测得桥塔底部A 的俯角(CDA ∠)为6o ,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31o .(I )求线段CD 的长(结果取整数); (II )求桥塔AB 的高度(结果取整数). 参考数据:tan310.6,tan60.1≈≈oo.23.(本小题10分)已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题: (I )①填表:②填空:张华从文化广场返回家的速度为______;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(II )当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)24.(本小题10分)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==o.(I )填空:如图①,点C 的坐标为______,点B 的坐标为______;(II )若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC Y 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).25.(本小题10分)已知抛物线()2,,,0y ax bx c a b c a =++>为常数的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1,m O >为坐标原点. (I )当1,1a c ==-时,求该抛物线顶点P 的坐标;(II )当2OM OP ==时,求a 的值; (III )若N 是抛物线上的点,且点N 在第四象限,90,MDN DM DN ∠==o,点E 在线段MN 上,点F在线段DN 上,NE NF +=,当DE MF +a 的值.2024年天津市初中学业水平考试数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.D 2.B 3.C 4.C 5.C 6.A 7.A8.B9.A10.B11.D12.C二、填空题(本大题共6小题,每小题3分,共18分)13.31014.2x 15.1016.1(答案不唯一,满足0k >即可)17.(I )2;(II18.(I (II )如图,根据题意,切点为M ;连接ME 并延长,与网格线相交于点1M ;取圆与网格线的交点D 和格点H ,连接DH 并延长,与网格线相交于点2M ;连接12M M ,分别与,AB AC 相交于点,N P ,则点,,M N P 即为所求.三、解答题(本大题共7小题,共66分)19.(本小题8分) 解:(I )1x ≤; (II )3x ≥-;(III )(IV )31x -≤≤. 20.(本小题8分) 解:(I )50,34,8,8. (II )观察条形统计图,63778179151088.36,3717158x ⨯+⨯+⨯+⨯+⨯==++++Q∴这组数据的平均数是8.36.(III )Q 在所抽取的样本中,每周参加科学教育的时间是9h 的学生占30%, ∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9h 的学生占30%,有50030%150⨯=.∴估计该校八年级学生每周参加科学教育的时间是9h 的人数约为150.21.(本小题10分)解:(I )AB Q 为O e 的弦,OA OB ∴=.得A ABO ∠∠=.AOB Q △中,180A ABO AOB ∠∠∠++=o ,又30ABO ∠=o ,1802120AOB ABO ∠∠∴=-=o o .Q 直线MN 与O e 相切于点,C CE 为O e 的直径,CE MN ∴⊥.即90ECM ∠=o .又AB MN ∥,90CDB ECM ∠∠∴==o .在Rt ODB △中,9060BOE ABO ∠∠=-=o o .12BCE BOE ∠∠=Q ,30BCE ∠∴=o .(II )如图,连接OC .同(I ),得90COB ∠=o .CG AB ⊥Q ,得90FGB ∠=o .∴在Rt FGB △中,由30ABO ∠=o ,得9060BFG ABO ∠∠=-=o o .60CFO BFG ∠∠∴==o .在Rt COF △中,tan ,3OC CFO OC OA OF∠===, 3tan tan60OC OF CFO ∠∴===o. 22.(本小题10分)解:(I )设CD x =,由36DE =,得36CE CD DE x =+=+.EC AB ⊥Q ,垂足为C ,90BCE ACD ∠∠∴==o .在Rt BCD △中,tan ,45BC CDB CDB CD∠∠==o , tan tan45BC CD CDB x x ∠∴=⋅=⋅=o .在Rt BCE △中,tan ,31BC CEB CEB CE∠∠==o , ()tan 36tan31BC CE CEB x ∠∴=⋅=+⋅o .()36tan31x x ∴=+⋅o .得36tan31360.6541tan3110.6x ⨯⨯=≈=--o o . 答:线段CD 的长约为54m .(II )在Rt ACD △中,tan ,6AC CDA CDA CD∠∠==o , tan 54tan6540.1 5.4AC CD CDA ∠∴=⋅≈⨯≈⨯=o .5.45459AB AC BC ∴=+≈+≈.答:桥塔AB 的高度约为59m .23.(本小题10分)解:(I )①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-.(II )1.05km .24.(本小题10分)解:(I )((,.(II )①由折叠知,60,OO C AOC O P OP t ∠∠==='''=o ,则2OO t '=. Q 点()3,0A ,得3OA =.23AO OO OA t ∴'=='--.Q 四边形OABC 为平行四边形,2,AB OC AB OC ∴==∥.得60O AB AOC ∠∠=='o .AO E ∴'△为等边三角形.有23AE AO t '==-.BE AB AE =-Q ,即()22352BE t t =--=-,25BE t ∴=-+,其中t 的取值范围是3522t <<.S ≤≤ 25.(本小题10分)解:(I )20,1a b a +==Q ,得22b a =-=-.又1c =-,∴该抛物线的解析式为221y x x =--.()222112y x x x =--=--Q , ∴该抛物线顶点P 的坐标为()1,2-.(II )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===o.在Rt MOH △中,由222,HM OH OM OM +==, 221m ∴+=⎝⎭.解得1233,22m m ==-(舍). ∴点M 的坐标为3,12⎛⎫ ⎪⎝⎭. 20a b +=Q ,即12b a-=. ∴抛物线22y ax ax c =-+的对称轴为1x =.Q 对称轴与x 轴相交于点D ,则1,90OD ODP ∠==o .在Rt OPD △中,由222,OD PD OP OP +== 221PD ∴+=⎝⎭.解得32PD =. 由0a >,得该抛物线顶点P 的坐标为31,2⎛⎫- ⎪⎝⎭. ∴该抛物线的解析式为()2312y a x =--. Q 点3,12M ⎛⎫ ⎪⎝⎭在该抛物线上,有2331122a ⎛⎫=-- ⎪⎝⎭. 10a ∴=.(III )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===o . 1DH OH OD m ∴=-=-.∴在Rt DMH △中,()222211DM DH HM m =+=-+.过点N 作NK x ⊥轴,垂足为K ,则90DKN ∠=o .90,MDN DM DN ∠==o Q ,又90DNK NDK MDH ∠∠∠=-=o , NDK DMH ∴≌△△.得点N 的坐标为()2,1m -.在Rt DMN △中,45DMN DNM ∠∠==o ,22222MN DM DN DM =+=,即MN =.根据题意,NE NF +=,得ME NF =.在DMN △的外部,作45DNG ∠=o ,且NG DM =,连接GF ,得90MNG DNM DNG ∠∠∠=+=o .GNF DME ∴≌△△.有GF DE =.DE MF GF MF GM ∴+=+≥.当满足条件的点F 落在线段GM 上时,DE MF +取得最小值,即GM = 在Rt GMN △中,22223GM NG MN DM =+=,223DM ∴=.得25DM =.()2115m ∴-+=.解得123,1m m ==-(舍). ∴点M 的坐标为()3,1,点N 的坐标为()2,2-.Q 点()()3,1,2,2M N -都在抛物线22y ax ax c =-+上,得196,244a a c a a c =-+-=-+.1a ∴=.。
2024年山东烟台市中考数学卷试题真题及答案详解(精校打印)
2024年烟台市初中学业水平考试数学试题注意事项:1.本试卷共8页,共120分;考试时间120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号填写在试卷和答题卡规定的位置上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.写在试卷上或答题卡指定区域外的答案无效.6.考试过程中允许考生进行剪、拼、折叠等实验.一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.下列实数中的无理数是()A.|B. 3.14C.V15D.^642.下列运算结果为/的是()A.q2.q3B.*2*2C.q3+q3D.何2)33.下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走()A.①B.②C.③D.④4.实数S b,。
在数轴上的位置如图所示,下列结论正确的是()b-3-2-1012345A.力+c>3B.6?—c<0C.|"|>IdD.—2q<—2Z>5.目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是N4纸厚度的六分之一,已知1毫米=1百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为()A.0.15X103纳米B. 1.5x104纳米C.15xl0~5纳米D. 1.5xl0~6纳米6.射击运动队进行射击测试,甲、乙两名选手的测试成绩如下图,其成绩的方差分别记为临和昌,则麟和的大小关系是()A.临〉员B.端〈晨C.临=昌D.无法确定7.某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线"8.如图,在正方形,8CQ中,点、E,歹分别为对角线助,,C的三等分点,连接4E并延长交CQ于点G,连接EE,FG,若匕4GH=a,则ZFAG用含q的代数式表示为()9.《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织,问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同.第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?A. 45 尺B. 88尺C. 90尺D. 98尺10.如图,水平放置的矩形如CQ 中,展= 6cm, 8C = 8cm,菱形EEGH 的顶点E, G 在同一水平线上,点G 与48的中点重合,EF = 2也cm, ZE = 60。
中考数学题目试题及答案
中考数学题目试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 一个数的平方等于16,这个数是:A. 4B. -4C. 4或-4D. 2答案:C3. 以下哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 3C. x = 2D. x = 4答案:A4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A5. 计算下列表达式的值:(3x - 2) + (5x + 6) =A. 8x + 4B. 8x - 4C. 3x + 8D. 5x + 4答案:A6. 一个三角形的两个内角分别是30度和60度,第三个内角是:A. 90度B. 60度C. 30度D. 120度答案:A7. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是10,这个数可以是:A. 10B. -10C. 0D. 10或-10答案:D9. 计算下列表达式的值:(2x^2 - 3x + 1) - (3x^2 - 2x + 4) =A. -x^2 + 5x - 3B. -x^2 + 5x + 3C. -x^2 - 5x + 3D. -x^2 - 5x - 3答案:A10. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -4答案:A二、填空题(每题4分,共20分)1. 一个数的立方是-27,这个数是______。
答案:-32. 一个数的平方根是2,这个数是______。
答案:43. 一个数的倒数是2,这个数是______。
答案:1/24. 一个数的绝对值是5,这个数可以是______。
答案:5或-55. 一个数的平方是25,这个数可以是______。
答案:5或-5三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 11。
答案:3x - 7 = 113x = 18x = 62. 计算:(2x^2 - 3x + 5) / (x - 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ADB C2010年福建省德化县初中毕业班学业质量检查数学试题(满分:150分;考试时间:120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上。
毕业学校____________________ 姓名______________ 考生号____________ 一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应选项涂黑。
选对的得3分,选错,不选或涂黑超过一个的一律得0分。
1、2-的3倍是( )A 、 6-B 、1C 、6D 、5- 2、下列计算正确的是( )A 、20=102B 、632=⋅ C 、224=- D 3=-3、下列调查方式合适的是( )A 、为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B 、为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C 、为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D 、为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式 4、下列各组线段(单位:㎝)中,成比例线段的是( ) A 、1、2、3、4 B 、1、2、2、4 C 、3、5、9、13 D 、1、2、2、3 5、下列多边形中,不能..铺满地面的是( ) A 、正三边形 B 、正四边形 C 、正五边形 D 、正六边形 6、如图,点B 、C 在⊙O 上,且BO=BC ,则圆周角BAC ∠等于( )A .60︒B .50︒C .40︒D .30︒ 7、已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作AB PE ⊥于点E ,作BC PF ⊥于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( ).二、填空题:(本大题有10小题,每小题4分,共40分)8、计算:32a a ⋅=__________9、某班7名学生的数学考试成绩(单位:分)如下:52,76,80,76,71,92,67 则这组数据的众数..是 分. 10、分解因式:442++a a =_______________11、如图是一个立体图形的三视图,则这个立体图形的名称叫 .12、北京2008年奥运会火炬接力活动的传递总路约为137000000米,这人数据用科学记数法表示为_______米.俯视图 左 视 图 主视图 CF OC BA13、已知圆锥的底面半径是3cm ,母线长为6cm ,则侧面积为________cm 2.(结果保留π) 14、已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为 14、已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为 ㎝2.15、已知关于x 的一元二次方程的一个根是1,写出一个符合条件的方程: . 16、若整数m 满足条件2)1(+m =1+m 且m <52,则m 的值是 .17、如图,直线43y x =与双曲线ky x=(0x >)交于点A .将 直线43y x =向下平移个6单位后,与双曲线ky x=(0x >)交于点B ,与x轴交于点C ,则C 点的坐标为___________;若2AO BC =,则k = .三、解答题(本大题有9小题,共89分)18、(1)(5分)计算: |-2|-(2-3)0+2)21(-- ;(2)(5分)化简:a (a +2)-a 2b b; (3)(5分)计算:)3()2)(2(x x x x -+-+.19、(8分)如图,点A ,B 在数轴上,它们所对应的数分别是3-和xx--21,且点A ,B 到原点的距离相等,求x 的值.20、(9分)如图,在ABC ∆中,90,C P ∠=为AB 上一点,且点P 不与点A 重合,过P 作PE AB ⊥交AC 边于点E ,点E 不与点C 重合,若10,8AB AC ==,设AP 的长为x ,四边形PECB 周长为y . (1)求证:APE ∆∽ACB ∆;(2)写出y 与x 的函数关系式,并在直角坐标系中画出图象.21、(8分)2010年4月1日《××日报》发布了“2009年××市国民经济和社会发展统计公报”,根据其中农林牧渔业产值的情况,绘制了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)2009年全市畜牧业的产值为 亿元; (2)补全条形统计图;(3)××作为全国重点林区之一,市政府大力发展林业产业,计划2011年林业产值达60.5亿元,求2010,2011这两年林业产值的年平均增长率. 22、(8分)有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x ,3。
将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母. (1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解); (2)试求抽取的两张卡片结果能组成分式..的概率.23、(8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.24、(9分)如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC分别交于点E 、F ,且∠ACB=∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若tan ∠ACB=22,BC=2,求⊙O 的半径.甲 乙进价(元/件) 15 35 售价(元/件) 20 45 FEO D CBAx+1 x 325、(12分)在△ABC 中,AB=BC=2,∠ABC=120°,将△ABC 绕点B 顺时针旋转角α(0<α<120°),得△A 1BC 1,交AC 于点E ,AC 分别交A 1C 1、BC 于D 、F 两点.(1)如图①,观察并猜想,在旋转过程中,线段EA 1与FC 有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC 1DA 的形状,并说明理由; (3)在(2)的情况下,求ED 的长.26、(12分)如图1,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示).① 当t=25时,判断点P 是否在直线ME 上,并说明理由;② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.一、选择题:(本大题有7小题,每小题3分,共21分) 1、A 2、B 3、C 4、B 5、C 6、D 7、A二、填空题:(本大题有10小题,每小题4分,共40分)8、5a ; 9、76; 10、2)2(+a 11、三棱柱 12、81037.1⨯; 13、π18;14、24;15、如12=x 等; 16、0; 17、()0,29,12 三、解答题:(本大题有9小题,共89分)18、(1)解:原式=412+-…3分 (2)解:原式=a a a -+2…3分=5 …………5分 =a 2…………5分(3)解:原式=2234x x x -+-…3分=43-x ……………5分19、解:依题意可得,321=--x x解得:25=x ……………6分经检验,25=x 是原方程的解.……………7分答:略…………………………………………8分 20、(1)证明:∵PE ⊥AB ∴∠APE=90°又∵∠C=90° ∴∠APE=∠C 又∵∠A=∠A∴△APE ∽△ACB ……………4分(2)解:在Rt △ABC 中,AB=10,AC=8 ∴BC=68102222=-=-AC AB 由(1)可知,△APE ∽△ACB∴BCPE ACAP ABAE ==∵x AP =,∴x PE 43=,x AE 45= ∴64584310+-++-=x x x y =x 2324- 过点C 作CF ⊥AB 于F ,依题意可得:68211021⨯⨯=⋅⋅CF ∴8.4=CF∴8.443=x ,解得:4.6=x ∴4.60<<x∴y 与x 的函数关系式为:x y 2324-= (4.60<<x ) y 与x 的函数图象如右图:……………9分21、(1) 41; ……………2分(2)如图, ……………………………4分(3) 设今明两年林业产值的年平均增长率为x . 根据题意,得 250(1)60.5x +=解得:10.1x ==10% ,2 2.1x =-(不合题意,舍去) 答:今明两年林业产值的年平均增长率为10%.…8分列表法:(2)32=分式P ………………………………………………………8分 23、解:(1)设甲种商品应购进x 件,乙种商品应购进y 件.根据题意,得 1605101100.x y x y +=⎧⎨+=⎩ 解得:10060.x y =⎧⎨=⎩答:甲种商品购进100件,乙种商品购进60件. ……………4分(2)设甲种商品购进a 件,则乙种商品购进(160-a)件. 根据题意,得1535(160)4300510(160)1260.a a a a +-<⎧⎨+->⎩ 解不等式组,得 65<a <68 . ∵a 为非负整数,∴a 取66,67. ∴ 160-a 相应取94,93.答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一. ……………8分24、解:(1)直线CE 与⊙O 相切。
……………1分证明:∵四边形ABCD 是矩形 ∴BD ∥AD ,∠ACB=∠DAC , 又 ∵∠ACB=∠DCE∴∠DAC=∠DCE,连接OE ,则∠DAC=∠AEO=∠DCE ,∵∠DCE+∠DEC=900 ∴∠AE0+∠DEC=900 ∴∠OEC=900 ∴直线CE 与⊙O 相切。