高中数学第一章三角函数.任意角和弧度制..任意角导学案(无答案)新人教A版()

合集下载

高中数学 1.1.1任意角导学案 新人教A版必修2

高中数学 1.1.1任意角导学案 新人教A版必修2

第一章 §1.1.1 任意角【学习目标】1.理解任意角的概念,学会在平面内建立适当的坐标系讨论任意角.2.能在0º到360º范围内,找出一个与已知角终边相同的角,并判定其为第几象限角.3.能写出与任一已知角终边相同的角的集合.【学习重点】任意角的概念,终边相同的角的表示.【知识链接】问题1:在初中我们是如何定义一个角的?角的范围是什么?问题2:(1)手表慢了5分钟,如何校准,校准后,分针转了几度?(2)手表快了10分钟,如何校准,校准后,分针转了几度?【基础知识】一、任意角的概念1.任意角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边.说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角.说明:零角的始边和终边重合.3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例如:30,390,330-都是第一象限角;300,60-是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90,180,270等等.说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.二、终边相同的角的集合由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同. 从而得出一般规律: 所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈, 即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和.说明:终边相同的角不一定相等,相等的角终边一定相同.三、等分角若α是第三象限角,那么2α是第几象限角?你能用作图表示吗?规律是什么?【例题讲解】例1 在0与360范围内,找出与/012950-终边相同的角,并判断它们是第几象限角?例2 写出终边在y 轴上的角的集合.例3 写出终边在直线x y =上的角的集合S ,并把S 中适合不等式00720360-<≤β的元素β写出来.例4如图所示,试分别表示出终边落在阴影区域内的角.说明:区间角是指终边落在坐标系的某个区域的角,其写法可分三步:(1)先按逆时针的方向找到区域的起始和终止边界;(2)按由小到大分别标出起始、终止边界对应的0°到360°范围内的角α,β,写出最简区间{x |α<x <β};(3)再加上起始、终止边界对应角α,β出现的k 倍的周期,即得区间角的集合.【达标检测】1. 若时针走过2小时40分,则分针走过的角是多少?(A )终边相同的角一定相等。

高中数学 第一章 三角函数 1.2.1 任意角的三角函数(一)导学案 新人教A版必修4

高中数学 第一章 三角函数 1.2.1 任意角的三角函数(一)导学案 新人教A版必修4

1.2.1 任意角的三角函数(一)学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等.知识点一 任意角的三角函数使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=yr ,cos α=x r ,tan α=y x.思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变?答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x. 梳理 (1)单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ;②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二正弦、余弦、正切函数的定义域思考对于任意角α,sin α,cos α,tan α都有意义吗?答案由三角函数的定义可知,对于任意角α,sin α,cos α都有意义,而当角α的终边在y轴上时,任取一点P,其横坐标x都为0,此时yx无意义,故tan α无意义.梳理三角函数的定义域知识点三正弦、余弦、正切函数值在各象限的符号思考根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=yx.当α为第一象限角时,y>0,x>0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理记忆口诀:“一全正,二正弦,三正切,四余弦”.知识点四诱导公式一思考当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案它们的终边重合.由三角函数的定义知,它们的三角函数值相等.梳理诱导公式一类型一 三角函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9. 又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010,tan θ=31=3. 当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3. 反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应地三角函数值.②在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=yr,cos α=xr.当已知α的终边上一点求α的三角函数值时,用该方法更方便. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值. 解 r =(-3a )2+(4a )2=5|a |.①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则x =k ,y =-3k ,r = k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r=-3k10k=-31010,1cos α=r x =10k k =10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角,sin α=y r =-3k -10k =31010,1cos α=r x =-10k k=-10, ∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.反思与感悟 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a ,b ),则对应角的三角函数值分别为sin α=b a 2+b2,cos α=a a 2+b2,tan α=ba. 跟踪训练2 已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值. 解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点, 则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32, cos α=a 2a =12,tan α=3aa= 3.若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3.类型二 三角函数值符号的判断例3 (1)若α是第二象限角,则点P (sin α,cos α)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 D解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴点P 在第四象限,故选D. (2)确定下列各三角函数值的符号. ①sin 182°;②cos(-43°);③tan 7π4.解 ①∵182°是第三象限角, ∴sin 182°是负的,符号是“-”. ②∵-43°是第四象限角,∴cos(-43°)是正的,符号是“+”. ③∵7π4是第四象限角,∴tan 7π4是负的,符号是“-”.反思与感悟 角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦.跟踪训练3 (1)已知点P (tan α,cos α)在第三象限,则α是第 象限角. 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. (2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3·cos 4·tan 5. 解 ①∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. ②∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0. 类型三 诱导公式一的应用 例4 求下列各式的值.(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.反思与感悟 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值. (1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+tan 765°-cos 360°. 解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4 =cos π3+tan π4=12+1=32.(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.1.已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C.-35D.-45答案 D解析 由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.故选D.2.cos(-11π6)等于( )A.12B.-12C.32D.-32答案 C解析 cos(-11π6)=cos(-2π+π6)=cos π6=32.3.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A.-34B.34C.43D.-43答案 D 解析 ∵cos α=332+y 2=35, ∴32+y 2=5,∴y 2=16, ∵y <0,∴y =-4,∴tan α=-43.4.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A.1B.0C.2D.-2答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.5.已知角α的终边上有一点P (24k ,7k ),k ≠0,求sin α,cos α,tan α的值. 解 当k >0时,令x =24k ,y =7k , 则有r =(24k )2+(7k )2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.当k <0时,令x =24k ,y =7k ,则有r =-25k ,∴sin α=y r =-725,cos α=x r =-2425,tan α=y x =724.1.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或比值为函数值的函数.2.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”.3.终边相同的三角函数值一定相等,但两个角的某一个函数值相等,不一定有角的终边相同,更不一定有两角相等.课时作业一、选择题1.sin(-1 380°)的值为( ) A.-12B.12C.-32D.32答案 D解析 sin(-1 380°)=sin(-360°×4+60°) =sin 60°=32. 2.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A. 3 B.± 3 C.- 2D.- 3答案 D解析 ∵cos α=x r=x x 2+5=24x , ∴x =0或2(x 2+5)=16,∴x =0或x 2=3,∴x =0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 3.已知sin θ<0,且tan θ<0,则θ为( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案 D4.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.4π3D.11π6答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限, 且tan α=cos2π3sin2π3=-33,∴角α的最小正值为2π-π6=11π6. 5.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t 等于( )A.-916B.916C.34D.-34答案 A解析 sin(2k π+α)=sin α=-35<0,则α的终边在第三或第四象限.又点P 的横坐标为正数,所以α是第四象限角,所以t <0.又sin α=4t 9+16t2,则4t9+16t 2=-35,所以t =-916.6.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ) A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 A解析 由三角函数定义可得Q ⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,cos 2π3=-12,sin 2π3=32.7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角.8.若角α的终边在直线y =-2x 上,则sin α等于( ) A.±15B.±55C.±255D.±12答案 C 二、填空题9.tan 405°-sin 450°+cos 750°= . 答案32解析 tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 10.使得lg(cos αtan α)有意义的角α是第 象限角. 答案 一或二解析 要使原式有意义,需cos αtan α>0, 即需cos α,tan α同号,所以α是第一或第二象限角.11.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .答案 2解析 ∵y =3x 且sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∴|OP |=m 2+n 2=10|m | =-10m =10,∴m =-1,n =-3,∴m -n =2.12.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是 . 答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知,x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0,sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2.故函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题13.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4; (2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°.解 (1)原式=sin 32π+cos π2+cos π+1 =-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan(3×360°+45°)=a 2+b 2+2ab tan 45°=a 2+b 2+2ab =(a +b )2.四、探究与拓展14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,则sin θ+cos θ= .答案 0或- 2解析 ∵θ的终边过点P (x ,-1)(x ≠0),∴tan θ=-1x. 又tan θ=-x ,∴x 2=1,即x =±1.当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.15.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝ ⎛⎭⎪⎫35,m ,求m 的值及sin α的值. 解 (1)∵1|sin α|=-1sin α, ∴sin α<0.①∵lg(cos α)有意义,∴cos α>0.② 由①②得角α在第四象限.(2)∵点M (35,m )在单位圆上, ∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,∴m <0,∴m =-45. 由三角函数定义知,sin α=-45.。

高中数学第一章三角函数.任意角和弧度制..任意角导学案新人教A版

高中数学第一章三角函数.任意角和弧度制..任意角导学案新人教A版

1.1.1 任意角1.了解任意角的概念,能区分各类角的概念.2.掌握象限角的概念,并会用集合表示象限角.3.理解终边相同的角的含义及表示,并能解决有关问题.1.角(1)定义:平面内一条射线绕着从一个位置旋转到另一个位置所成的图形称为角,所旋转射线的端点叫做角的,开始位置的射线叫做角的,终止位置的射线叫做角的.如图所示.(字母前面要写“∠”),其中中间字母表示角的顶点,如∠AOB,∠DEF,….(1)确定任意角的大小要明确其旋转方向和旋转量;(2)零角的始边和终边重合,但始边和终边重合的角不一定是零角,如周角等;(3)角的范围由0°~360°推广到任意角后,角的加减运算类似于实数的加减运算;(4)画图表示角时,应注意箭头的方向不可丢掉,箭头方向代表角的正负.【做一做1】将射线OM绕端点O按逆时针方向旋转120°所得的角为( )A.120°B.-120°C.60°D.240°2.象限角使角的顶点与重合,角的始边与轴的非负半轴重合.那么,角的(除原点外)在第几象限,就说这个角是第几,即象限角的终边在第一或第二或第三或第四象限内,不与重合.如果角的终边在坐标轴上,就说这个角不属于任何象限.【做一做2】-30°是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.终边相同的角(1)研究终边相同的角的前提条件是:角的顶点与原点重合,角的始边与x轴的非负半轴重合.(2)终边相同角的集合:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.理解集合S={β|β=α+k·360°,k∈Z}要注意以下几点:(1)式中角α为任意角;(2)k∈Z这一条件必不可少;(3)k·360°与α之间是“+”,如k·360°-30°应看成k·360°+(-30°),即与-30°角终边相同;(4)当α与β的终边相同时,α-β=k·360°(k∈Z).反之亦然.【做一做3-1】与95°角终边相同的角是( )A.-5°B.85°C.395°D.-265°【做一做3-2】与210°角的终边相同的角连同210°角在内组成的角的集合是________.答案:1.(1)端点顶点始边终边(2)逆顺旋转【做一做1】 A2.原点x终边象限角坐标轴【做一做2】 D3.(2)α+k·360°【做一做3-1】 D【做一做3-2】 {β|β=210°+k·360°,k∈Z}1.象限角与轴线角(终边在坐标轴上的角)的集合表示剖析:若α,β的终边相同,则它们的关系为:将角α终边旋转(逆时针或顺时针)k(k∈Z)周即得β,所以α,β的数量关系为β=k·360°+α(k∈Z),即α,β的大小相差360°的整数k倍,所以α与β不一定相等.所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.3.锐角、0°~90°的角、小于90°的角、第一象限角的区别剖析:(1).(2)图表示,如图所示.由(1)(2)可知锐角是0°~90°的角,是小于90°的角,是第一象限角;0°~90°的角是小于90°的角,不一定是第一象限角;小于90°的角不一定是第一角限角,第一象限角不一定是小于90°的角、锐角、0°~90°的角.例如390°是第一象限角,但390°不是小于90°的角、锐角或0°~90°的角.题型一在坐标系中画出任意角【例1】在坐标系中画出下列各角:(1)210°;(2)-230°.分析:先确定旋转的方向,再确定旋转量.反思:在坐标系中画出任意角α:(1)当α>0°时,将x轴的非负半轴绕原点按逆时针方向旋转α;(2)当α<0°时,将x轴的非负半轴绕原点按顺时针方向旋转|α|;(3)当α=0°时,将x轴的非负半轴绕原点不作任何旋转.题型二判断象限角【例2】在0°~360°之间,求出一个与下列各角终边相同的角,并判断下列各角是哪个象限的角.(1)908°28′;(2)-734°.反思:判断角α的终边所在位置的步骤是:(1)当0°≤α<360°时,依据下表来判断.(2)当αβ<360°),转化为判断β终边所在的位置.题型三终边相同的角的表示【例3】若角α的终边在函数y=-x的图象上,试写出角α的集合.分析:(思路一)函数y=-x的图象是第二、四象限的平分线,可以先在0°~360°范围内找出满足条件的角,进一步写出满足条件的所有角,并注意化简.(思路二)结合图形,α与135°相差180°的整数倍,由此写出集合.反思:写出终边落在某条过原点的直线上的角的集合有两种方法:一是分别写出每条终边所代表的角的集合,再取并集;二是在其中一条终边上找出一个角,然后再加上180°的整数倍.答案:【例1】解:在坐标系中画出各角如图所示.【例2】解:(1)908°28′=188°28′+2×360°,则188°28′即为所求角,因为188°28′是第三象限角,故908°28′也是第三象限角;(2)-734°=346°-3×360°,则346°即为所求角,因为346°是第四象限角,故-734°也是第四象限角.【例3】解法一:由于y=-x的图象是第二、四象限的平分线,故在0°~360°范围内所对应的两个角分别为135°及315°,从而角α的集合为S={α|α=k·360°+135°或α=k·360°+315°,k∈Z}={α|α=2k·180°+135°或α=(2k+1)·180°+135°,R∈Z},∴S={α|α=k·180°+135°,k∈Z}.解法二:如图所示.∵角α的终边在函数y=-x的图象上,∴角α的集合为S={α|α=k·180°+135°,k∈Z}.1.-215°是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.在-360°~720°之间,与-367°角终边相同的角是.3.若角α的终边在函数y=x的图象上,则角α组成的集合为S=________.4.在坐标系中画出下列各角:(1)-180°;(2)1 070°.5.已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.答案:1.B 由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.-7°,353°,713°与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.3.{α|α=k ·180°+45°,k ∈Z }4.解:在坐标系中画出各角如图所示,5.解:(1)∵-1 910°=-6×360°+250°, ∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k ·360°(k ∈Z ).∵-720°≤θ<0°,∴-720°≤250°+k ·360°<0°, 解得9736-≤k <2536-,∴k =-1或k =-2.∴θ=250°-360°=-110°,或θ=250°-2×360°=-470°.。

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制导学案(2)

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制导学案(2)

1.1 任意角和弧度制导学案2、掌握终边相同角的表示方法,并能解决一些简单问题。

【重点、难点】:1、将0°—360°范围的角推广到任意角,终边相同的角的集合;2、用集合来表示终边相同的角.25体操跳水比赛中有“转体720º”,“翻腾转体两周半”这样的动作名称,720º在这里表示什么?任务二、新课导学※探索新知问题1:在初中我们是如何定义一个角的?角的范围是什么?问题2:(1)手表慢了5分钟,如何校准,校准后,分针转了几度?(2)手表快了10分钟,如何校准,校准后,分针转了几度?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角α,点O是角OA OB分别是角α的终边、始边.的顶点,射线,2.角的分类:按____________方向旋转形成的角叫做;按方向旋转形成的角叫做__________ ;如果____________________________,我们称它形成了一个零角;综上,我们把角的概念推广到__________,任意角包括_____________________。

说明:零角的始边和终边重合.例1.能以同一条射线为始边作出下列角吗?210º-150º-660º990º3.象限角和轴线角在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30,390,330-ooo都是第一象限角;300,60-oo是第四象限角. (2)轴线角:如角的终边在坐标轴上,就认为这个角不属于任何象限. 例如:90,180,270ooo等等.说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.问题:上述四个角分别是第几象限角,那些终边在坐标轴上,其中哪些角的终边相同.例2.在0º到360º的范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角: (1)650º (2)-150º (3)-990º15¹【探索——终边相同角的表示】阅读课本第4页上端内容,将课文补充完整,并回答下面的问题: 1、在直角坐标系中标出210°,-150°,570o 角的终边,你有什么发现?它们之间有何数量关系?2、所有与角α终边相同的角,连同角α在内,怎样用一个集合表示出来?即任一与角α终边相同的角,都可以表示成 _________________________________。

高中数学第一章三角函数第1节任意角和弧度制(第1课时)任意角教案(含解析)新人教A版必修4

高中数学第一章三角函数第1节任意角和弧度制(第1课时)任意角教案(含解析)新人教A版必修4

高中数学第一章三角函数第1节任意角和弧度制(第1课时)任意角教案(含解析)新人教A版必修4[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P5的内容,回答下列问题.(1)阅读教材P2“思考”的内容,你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25个小时,你应当如何将它校准?在你调整的过程中,分针转动的方向有什么区别?提示:当手表慢了5分钟时,通常将分针顺时针旋转进行调整;当手表快了1.25小时时,通常将分针逆时针旋转进行调整.故在调整的过程中两种情形分针的转动方向相反.(2)体操中有“转体720°”(即“转体2周”),“转体1 080°”(即“转体3周”)这样的动作名称,而旋转的方向也有顺时针与逆时针的不同;又如图是两个齿轮旋转的示意图,被动轮随着主动轮的旋转而旋转,而且被动轮与主动轮有相反的旋转方向.这样,OA 绕O旋转所成的角与O′B绕O′旋转所成的角就会有不同的方向.利用我们以前学过的0°~360°范围的角,还能描述以上现象吗?提示:要准确地描述这些现象,不仅要知道角形成的结果,而且要知道角形成的过程,即必须既要知道旋转量,又要知道旋转方向.故利用0°~360°范围的角,无法描述以上现象.(3)阅读教材P3“探究”的内容,请思考:对于直角坐标系内任一条射线OB,以它为终边的角是否唯一?如果不唯一,那么这些终边相同的角有什么关系?提示:不唯一.它们之间相差360°的整数倍,即相差k·360°(k∈Z).2.归纳总结,核心必记(1)角的有关概念有关概念描述定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形图示其中O为顶点,OA为始边,OB为终边记法角α或∠α,或简记为α①②按角的终边位置(ⅰ)角的终边在第几象限,则此角称为第几象限角;(ⅱ)角的终边在坐标轴上,则此角不属于任何一个象限.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[问题思考](1)你能说出角的三要素吗?提示:角的三要素是顶点、终边、始边.(2)如果一个角的终边与其始边重合,这个角一定是零角吗?提示:不一定,零角的终边与始边重合,但终边与始边重合的角不一定是零角,如360°,-360°等.(3)一条射线绕端点旋转,旋转的圈数越多,则这个角越大,这样说对吗?提示:不对,如果一条射线绕端点按顺时针方向旋转,则它形成负角,旋转的圈数越多,则这个角越小.(4)在坐标系中,将y轴的正半轴绕坐标原点顺时针旋转到x轴的正半轴形成的角为90°,这种说法是否正确?提示:不正确,在坐标系中,将y轴的正半轴绕坐标原点旋转到x轴的正半轴时,是按顺时针方向旋转的,故它形成的角为-90°.(5)当角的始边和终边确定后,这个角就被确定了吗?提示:不是的.虽然始、终边确定了,但旋转的方向和旋转量的大小并没有确定,所以角也就不能确定.(6)初中我们学过对顶角相等.依据现在的知识试判断一下图中角α,β是否相等?提示:不相等.角α为逆时针方向形成的角,α为正角;角β为顺时针方向形成的角,β为负角.[课前反思](1)角的概念:;(2)角的分类:;(3)终边相同的角: .终边相同的角及区域角的表示知识点1[思考1] 终边相同的角一定是相等的角吗?它们之间有什么关系?如何把这一类角表示出来?名师指津:不一定.相等的角的终边一定相同,但终边相同的角不一定相等,它们相差360°的整数倍.可以用集合{β|β=α+k·360°,k∈Z}表示.[思考2] 区域角是指终边落在坐标系的某个区域的角,区域角如何表示?名师指津:区域角可以看作是某一范围内的终边相同角的集合.故可把区域的起始、终止边界表示出来,然后组成集合即可.讲一讲1.(1)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(2)分别写出终边在下列各图所示的直线上的角的集合.(3)写出终边落在图中阴影部分(包括边界)的角的集合.[尝试解答] (1)与角α=-1 910°终边相同的角的集合为{β|β=-1 910°+k ·360°,k ∈Z }.∵-720°≤β<360°,∴-720°≤-1 910°+k ·360°<360°,31136≤k <61136. 故k =4,5,6,k =4时,β=-1 910°+4×360°=-470°.k =5时,β=-1 910°+5×360°=-110°.k =6时,β=-1 910°+6×360°=250°.(2)①在0°~360°范围内,终边在直线y =0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S 1={β|β=0°+k ·360°,k ∈Z },而所有与180°角终边相同的角构成集合S 2={β|β=180°+k ·360°,k ∈Z },于是,终边在直线y =0上的角的集合为S =S 1∪S 2={β|β=k ·180°,k ∈Z }.②由图形易知,在0°~360°范围内,终边在直线y =-x 上的角有两个,即135°和315°,因此,终边在直线y =-x 上的角的集合为S ={β|β=135°+k ·360°,k ∈Z }∪{β|β=315°+k ·360°,k ∈Z }={β|β=135°+k ·180°,k ∈Z }.③终边在直线y =x 上的角的集合为{β|β=45°+k ·180°,k ∈Z },结合②知所求角的集合为S ={β|β=45°+k ·180°,k ∈Z }∪{β|β=135°+k ·180°,k ∈Z }={β|β=45°+2k ·90°,k ∈Z }∪{β|β=45°+(2k +1)·90°,k ∈Z }={β|β=45°+k ·90°,k ∈Z }.(3)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z }={α|α=135°+k ·360°,k ∈Z },终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z }.故阴影部分角的集合可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.类题·通法(1)在0°~360°范围内找与给定角终边相同的角的方法①把任意角化为α+k·360°(k∈Z且0°≤α<360°)的形式,关键是确定k.可以用观察法(α的绝对值较小),也可用除法.②要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.(2)区域角的写法可分三步①按逆时针方向找到区域的起始和终止边界;②由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角;③用不等式表示区域内的角,组成集合.练一练1.已知角α=2 018°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.解:(1)由2 018°除以360°,得商为5,余数为218°,∴取k=5,β=218°,α=5×360°+218°.(2)与2 018°角终边相同的角为k·360°+2 018°(k∈Z).令-360°≤k·360°+2 018°<720°,k∈Z,∴k取-6,-5,-4,将k的值代入k·360°+2 018°中,得角θ的值为-142°,218°,578°.象限角的判断知识点2[思考1] 若α为第一象限角,则α的顶点、始边、终边各有什么特点?提示:若α为第一象限角,则α的顶点为坐标原点、始边与x轴的正半轴重合,终边处在第一象限.[思考2] 如何判定象限角?提示:(1)根据图形判定;(2)根据终边相同的角的概念判定.讲一讲2.已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[尝试解答] 作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.类题·通法给定角α所处象限的判定方法法一:第一步,将α写成α=k ·360°+β(k ∈Z,0°≤β<360°)的形式.第二步,判断β的终边所在的象限.第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.法二:在坐标系中画出相应的角,观察终边的位置,角的终边落在第几象限,此角就是第几象限角.练一练2.(1)已知下列各角:①-120°;②-240°;③180°;④495°.其中是第二象限角的是( )A .①②B .①③C .②③D .②④(2)若β是第四象限角,则180°-β是第________象限角.解析:(1)-120°角是第三象限角;-240°角是第二象限角;180°角不在任何一个象限内;495°=360°+135°,所以495°角是第二象限角.(2)因为β是第四象限角,所以取β=-20°,则180°-β=200°,为第三象限角. 答案:(1)D (2)三知识点3nα或αn 所在象限的判定 讲一讲3.若α是第二象限角,则2α,α2分别是第几象限的角? [尝试解答] (1)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴180°+k ·720°<2α<360°+k ·720°,∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z ). 法一:①当k =2n (n ∈Z )时,45°+n ·360°<α2<90°+n ·360°(n ∈Z ),即α2是第一象限角;②当k =2n +1(n ∈Z )时,225°+n ·360°<α2<270°+n ·360°(n ∈Z ), 即α2是第三象限角. 故α2是第一或第三象限角. 法二:∵45°+k ·180°表示终边为一、三象限角平分线的角,90°+k ·180°(k ∈Z )表示终边为y 轴的角,∴45°+k ·180°<α2<90°+k ·180°(k ∈Z )表示如图中阴影部分图形.即α2是第一或第三象限角. 类题·通法(1)nα所在象限的判断方法确定nα终边所在的象限,先求出nα的范围,再直接转化为终边相同的角即可.(2)αn 所在象限的判断方法已知角α所在象限,要确定角αn 所在象限,有两种方法:①用不等式表示出角αn 的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n 除余n -1.从而得出结论.②作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.练一练 3.若角α是第一象限角,则-α,2α,α3分别是第几象限角? 解:∵α是第一象限角,∴k ·360°<α<k ·360°+90°(k ∈Z ).(1)-k ·360°-90°<-α<-k ·360°(k ∈Z ),∴-α所在区域与(-90°,0°)范围相同,故-α是第四象限角.(2)2k ·360°<2α<2k ·360°+180°(k ∈Z ),∴2α所在区域与(0°,180°)范围相同,故2α是第一、二象限角或终边落在y 轴非负半轴上的角.(3)法一(分类讨论):k ·120°<α3<k ·120°+30°(k ∈Z ). 当k =3n (n ∈Z )时, n ·360°<α3<n ·360°+30°,∴α3是第一象限角; 当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°,∴α3是第二象限角; 当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°,∴α3是第三象限角. 综上可知,α3是第一、第二或第三象限角. 法二(几何法):如图,先将各象限分成3等份,再从x 轴的正向的上方起,依次将各区域标上1,2,3,4,则标有1的区域即为α3角的终边落在的区域,故α3为第一、第二或第三象限角.[课堂归纳·感悟提升]1.本节课的重点是象限角的判断、终边相同角及区域角的表示,难点是nα及αn 所在象限的判定.2.本节课要重点掌握以下规律方法(1)求终边相同的角及区域角的表示,见讲1;(2)象限角及nα、αn所处象限的判断,见讲2和讲3.3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的角,再写出0°~360°内符合条件的角的范围,最后都加上k·360°,得到所求.课下能力提升(一)[学业水平达标练]题组1 终边相同的角及区域角的表示1.与-457°角的终边相同的角的集合是( )A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}解析:选C 由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k ∈Z}.2.若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系中正确的是( )A.A=B=C B.A=B∩CC.A∪B=C D.A⊆B⊆C解析:选D ∵90°∈C,90°∉B,90°∉A,∴选项A,C错误;又∵180°∈C,180°∈B,180°∉A,∴选项B错误.故选D.3.若α=n·360°+θ,β=m·360°-θ,m,n∈Z,则α,β终边的位置关系是( )A.重合 B.关于原点对称C.关于x轴对称 D.关于y轴对称解析:选C 由α=n·360°+θ,n∈Z可知α与θ是终边相同的角,由β=m·360°-θ,m∈Z可知β与-θ是终边相同的角.因为θ与-θ两角终边关于x轴对称,所以α与β两角终边关于x轴对称.4.已知角α的终边在图中阴影所表示的范围内(不包括边界),那么α∈________.解析:在0°~360°范围内,终边落在阴影内的角α满足30°<α<150°或210°<α<330°,所以所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k+1)180°+30°<α<(2k+1)·180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.答案:{α|n·180°+30°<α<n·180°+150°,n∈Z}5.(1)写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤α<720°的元素α写出来:①60°;②-21°.(2)试写出终边在直线y=-x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:(1)①S={α|α=60°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-300°,60°,420°;②S={α|α=-21°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-21°,339°,699°.(2)终边在直线y=-x上的角的集合S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=k·180°+135°,k∈Z},其中适合不等式-180°≤α<180°的元素α为:-45°,135°.题组2 象限角的判断6.-1 120°角所在象限是( )A.第一象限 B.第二象限C.第三象限 D.第四象限解析:选D 由题意,得-1 120°=-4×360°+320°,而320°在第四象限,所以-1 120°角也在第四象限.7.下列叙述正确的是( )A.三角形的内角必是第一、二象限角B.始边相同而终边不同的角一定不相等C.第四象限角一定是负角D.钝角比第三象限角小解析:选B 90°的角是三角形的内角,它不是第一、二象限角,故A 错;280°的角是第四象限角,它是正角,故C 错;-100°的角是第三象限角,它比钝角小,故D 错.8.若α是第四象限角,则180°+α一定是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B ∵α是第四象限角,∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°.∴180°+α在第二象限,故选B.题组3 nα或αn 所在象限的判定9.已知角2α的终边在x 轴上方,那么α是( )A .第一象限角B .第一或第二象限角C .第一或第三象限角D .第一或第四象限角解析:选C 由条件知k ·360°<2α<k ·360°+180°,(k ∈Z ),∴k ·180°<α<k ·180°+90°(k ∈Z ),当k 为偶数时,α在第一象限,当k 为奇数时,α在第三象限.10.若角α是第三象限角,则角α2的终边所在的区域是如图所示的区域(不含边界)( )A .③⑦B .④⑧C .②⑤⑧D .①③⑤⑦解析:选A ∵α是第三象限角,∴k ·360°+180°<α<k ·360°+270°(k ∈Z ),∴k ·180°+90°<α2<k ·180°+135°(k ∈Z ). 当k =2n (n ∈Z )时,n ·360°+90°<α2<n ·360°+135°,对应区域③;当k =2n +1(n ∈Z )时,n ·360°+270°<α2<n ·360°+315°,对应区域⑦.∴角α2的终边所在的区域为③⑦. [能力提升综合练]1.已知集合A ={α|α小于90°},B ={α|α为第一象限角},则A ∩B =( )A .{α|α为锐角}B .{α|α小于90°}C .{α|α为第一象限角}D .以上都不对解析:选D 小于90°的角包括锐角及所有负角,第一象限角指终边落在第一象限的角,所以A ∩B 是指锐角及第一象限的所有负角的集合,故选D.2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .若α是第一象限角,则2α是第二象限角D .钝角比第三象限角小解析:选B -330°角是第一象限角,但不能作为三角形的内角,故A 错;若α是第一象限角,则k ·360°<α<k ·360°+90°(k ∈Z ),所以2k ·360°<2α<2k ·360°+180°(k ∈Z ),所以2α不一定是第二象限角,故C 错;-135°是第三象限角,135°是钝角,而135°>-135°,故D 错.3.终边与坐标轴重合的角的集合是( )A .{α|α=k ·360°,k ∈Z }B .{α|α=k ·180°,k ∈Z }C .{α|α=k ·90°,k ∈Z }D .{α|α=k ·180°+90°,k ∈Z }解析:选C 终边在x 轴上的角的集合M ={α|α=k ·180°,k ∈Z },终边在y 轴上的角的集合P ={α|α=k ·180°+90°,k ∈Z },则终边与坐标轴重合的角的集合S =M ∪P ={α|α=k ·180°,k ∈Z }∪{α|α=k ·180°+90°,k ∈Z }={α|α=2k ·90°,k ∈Z }∪{α|α=(2k +1)·90°,k ∈Z }={α|α=n ·90°,n ∈Z },故选C.4.角α与角β的终边关于y 轴对称,则α与β的关系为( )A .α+β=k ·360°,k ∈ZB .α+β=k ·360°+180°,k ∈ZC .α-β=k ·360°+180°,k ∈ZD .α-β=k ·360°,k ∈Z解析:选B 法一:特殊值法:令α=30°,β=150°,则α+β=180°.法二:直接法:∵角α与角β的终边关于y 轴对称,∴β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .5.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.解析:将钟表拨快10分钟,则时针按顺时针方向转了10×360°12×60=5°,所转成的角度是-5°;分针按顺时针方向转了10×360°60=60°,所转成的角度是-60°.答案:-5 -606.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=________.解析:∵角5α与α具有相同的始边与终边,∴5α=k·360°+α,k∈Z.得 4α=k·360°,当k=3时,α=270°.答案:270°7.写出终边在如下列各图所示阴影部分内的角的集合.解:先写出边界角,再按逆时针顺序写出区域角,则得(1){α|30°+k·360°≤α≤150°+k·360°,k∈Z};(2){α|150°+k·360°≤α≤390°+k·360°,k∈Z}.8.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①∵α-β=670°+k·360°,k∈Z,α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。

高中数学第一章三角函数1.2任意角的三角函数1.2.1任意角的三角函数导学案(无答案)新人教A版必修4

高中数学第一章三角函数1.2任意角的三角函数1.2.1任意角的三角函数导学案(无答案)新人教A版必修4

oyx1P(a,b)yo x(-)(-)(+)(+)yo x(-)(-)(+)(+)yox(-)(-)(+)(+)高中数学第一章三角函数1.2任意角的三角函数1.2.1任意角的三角函数导学案(无答案)新人教A版必修4一、学习目标:1.借助单位圆理解任意角三角函数(正、余、正切)的定义;2.从任意角三角函数的定义认识其定义域,函数值的符号;3.根据定义理解公式一;4.能初步应用定义分析和解决与三角函数值有关的一些简单问题.二、学习重点、难点:重点:任意角的三角函数的定义;难点:用单位圆上点的坐标刻画三角函数.三、学习任务:阅读教材P11——15(到例5前止)完成下列问题:问题(一):Ⅰ. 观察三角函数定义的“进化”过程,完成填空.sinα=_____ sinα=______ sinα=______ sinα=______三角函数定义需要经历一个逐步化归的过程,即由直角三角形中____________到直角坐标系中_____________再到用单位圆上点的________定义三角函数.Ⅱ. 完成下列问题:1. 任意角的三角函数设α是一个任意角,它的始边与x轴的非负半轴重合,顶点在原点,终边与单位圆的交点为P(x,y).(1) y叫做α的正弦,记作____________,即_____________;(2) x叫做α的余弦,记作____________,即_____________;(3)xy叫做α的正切,记作____________,即_____________.2.3. 三角函数值在各象限的符号____________ ____________ ____________4. 公式一终边相同的角的同一三角函数的值____________,即sin()παk2+=_________;cos()παk2+=_________;tan()παk2+=_________. 其中Zk∈Ⅳ.判断正误1. sinα就是sin与α的乘积 .2. 在三角函数定义中,实数α(弧度) 对应于点P的纵坐标y ——正弦,实数α(弧度) 对应于点P的横坐标x ——余弦.3. 公式一揭示的规律是:角的终边绕原点每转动一周,函数值都重复出现 .Ⅴ.若θ的终边与单位圆的交点为)23,21(-,则sinθ=________,cosθ=_________,tanθ=__________.Ⅵ.做15P 3题.Ⅶ.做15P 1题.思考:已知α终边上一点P(x,y),且OP=r (P不是角的顶点,也不是与单位圆的交点),如何用简单的方法确定sinα,cosα,tanα的值?Ⅷ.做15P 2题.Ⅸ. 已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=2x上,求cosθ.Ⅹ. 求α的三角函数值,只需已知α终边上任一点(除原点)的 _____________.问题(二):完成下列任务Ⅰ. 做15P 4题Ⅱ. 做15P 5题Ⅲ. 做15P 16(1)题Ⅳ. 已知P(tanα, cosα )在第三象限,则角α的终边在第几象限.归纳:确定三角函数值的符号,关键是抓住________________________________________________.四、达标检测1. 设α终边过一点(3m,4m) (0≠m), 则下列式子中正确的是()A. sin54=α, B. cos53=α, C. tan34=α D. tan34-=α2. 若tan0>α且sinα+cos0<α,则α是_____________象限角.五、归纳总结:1.你本节课学到了什么知识?2.掌握本节课知识的关键是什么?。

高中数学 1.1.1 任意角教案 新人教A版必修4

高中数学 1.1.1 任意角教案 新人教A版必修4

第一章 三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境: “转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

高中数学第一章三角函数.任意角和弧度制..2弧度制导学案新人教A版

高中数学第一章三角函数.任意角和弧度制..2弧度制导学案新人教A版

1.1.2 弧度制课程目际•I K£ CHEE^G MU BIAO YIN HANG^1. 了解弧度制,明确1弧度的含义2. 能进行弧度与角度的互化.3. 掌握弧度数的计算公式及其应用垦础如识-1. 弧度制(1) 定义:以为单位度量角的单位制叫做弧度制⑵度量方法:长度等于 ________ 的弧所对的圆心角叫做1弧度的角.如图所示,圆0的半径为r, AB的长等于r,/ AOB就是1弧度的角.名师点拨)一定大小的圆心角a的弧度数是所对弧长与半径的比值,是唯一确定的,与半径大小无关.(3)记法:弧度单位用符号_______ 表示,或用“弧度”两个字表示.在用弧度制表示角时,单位通常省略不写.【做一做1】下列表述中正确的是()A. —弧度是一度的圆心角所对的弧B. 一弧度是长度为半径的弧C. 一弧度是一度的弧与一度的角之和D. 一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位2. 弧度数一般地,正角的弧度数是一个 ________ 数,负角的弧度数是一个______ 数,零角的弧度数是____ .飞果半径为r的圆的圆心角a所对弧的长为I,那么角a的弧度数的绝对值是I a |知识拓展(1) 弧长公式:I = | a | r.1 1 2(2) 扇形面积公式:S= q lr = ^I a | r .【做一做2】已知半径为10 cm的圆上,有一条弧的长是40 cm,则该弧所对的圆心角的弧度数是_________ .3. 弧度制与角度制的换算(1) 角度转化为弧度:360°= _______ rad,180 ° = ____ rad , 1°= _____ rad 〜0.017 45 rad.(2) 弧度转化为角度: 2 n rad = ______ ,n rad = ______ , 1 rad = ( ___ ) °~ 57.30 ° = 57° 18'.角都有唯一的一个 ____ (即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个(即弧度数等于这个实数的角 )与它对应•【做一做 3 — 1】把50°化为弧度为( )518 9 000 A.50B.匚二 nC.—D-185 nn2【做一做3 — 2] 把尹rad 化为度为( )A. 52°B.36 °C.72°D.90°答案:1. (1)弧度 (2)半径长 (3)rad 【做一做1】D 2. 正负0 L r【做一做2】4 n3.(1)2 n n (2)360 °180°1802 n (4) 一一对应 实数角 【做一做3 — 1】B 【做一做3 — 2】C1.用弧度制表示象限角与轴线角 剖析:(1)象限角的表示:(2180n nnn 2 n 3 n 5 n(3)—--- ------ ------- ------ n')643 2 34 67t2.剖析:主要从定义、意义、换算、写法等方面考虑•(1)从定义上:弧度制是以“弧度”为单位度量角的单位制,角度制是以“度”为单位度量角的单位制.因此弧度制和角度制一样,都是度量角的方法(2) 从意义上:1弧度是等于半径长的圆弧所对的圆心角(或该弧)的大小,而1°是圆的1 I周长的360所对的圆心角(或该弧)的大小;任意圆心角a的弧度数的绝对值| a 1=7,其中I是以角a作为圆心角时所对的圆弧长,r为圆的半径•仆80 \ n(3) 从换算上:1 rad = 丿,1°=面rad.(4) 从写法上:用弧度为单位表示角的大小时,“弧度”两字可以省略不写,这时弧度数在形式上虽是一个不名数,但我们应当把它理解为名数;如果以度“。

高中数学 第一章 三角函数 1.1 任意角和弧度制 1.1.2

高中数学 第一章 三角函数 1.1 任意角和弧度制 1.1.2

1.1.2 弧度制课堂导学三点剖析1.理解弧度的意义,角度与弧度的换算【例1】设角α1=-570°,2α=750°,β1=35π弧度,β2=π37-弧度. (1)将α1,2α用弧度表示出来,并指出它们各自所在的象限; (2)将β1、β2用角度制表示出来,并在-720°—0°之间找出与它们有相同终边的所有角. 思路分析:涉及到角度与弧度的互化关系和终边相同的角的概念,其基本公式360°=2π弧度在解题中起关键作用.解:(1)∵180°=π弧度,∴-570°=-ππ619180570-=. ∴α1=-2×2π+65π, 同理2α=2×2π+6π, ∴α1在第二象限,2α在第一象限. (2)∵5353=π×180°=108°, 设θ=k·360°+β1(k∈Z ),由-720°≤θ<0°,∴-720°≤k·360°+108°<0°,∴k=-2或k=-1,∴在-720°—0°之间与β1有相同终边的角是-612°和-252°.同理 β2=-360°-60°=-420°,且在-720°—0°间与β2有相同的终边的角是-420°和-60°.温馨提示迅速进行角度与弧度的互化,准确判明角所在的象限是学习三角函数知识的必备基本功.若需要在某一指定范围内求具有某种特性的角,通常可象上例一样化为解不等式去求对应的k 值.2.弧度制的概念及与角度的关系【例2】一条弦的长度等于半径r,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧所组成的弓形的面积.思路分析:由已知可知圆心角的大小为3π,然后用公式求解. 解:(1)如下图所示,半径为r 的⊙O 中弦AB=r,则△OAB 为等边三角形,所以∠AOB=3π,则弦AB 所对的劣弧长为3πr.(2)∵S △AOB =21×|AB|×|OD|=21×r×43232r r = S 扇形OAB =21lr=21×3r π×r=62r π ∴S 弓形=S 扇形OAB -S △AO B =6πr 2-243r =(6π-43)r 2. 3.弧度制表示角及终边相同的角【例3】 集合M={x|x=2πk +4π,k∈Z },N={x|x=4πk +2π,k∈Z },则有( ) A.M=N B.M N C.M N D.M∩N=∅ 思路分析:本题是考查用弧度制表示角的集合之间的关系.可以用取特殊值法分别找到集合M 、N 所表示的角的终边的位置.解:对集合M 中的整数k 依次取0,1,2,3,得角4π,43π,45π,47π.于是集合M 中的角与上面4个角的终边相同,如图(1)所示.同理,集合N中的角与0,4π,2π,43π,π,45π,23π,47π,2π角的终边相同,如下图(2)所示.故M N.∴选C.答案:C温馨提示在今后表示角时,常常使用弧度制.但要注意,弧度制与角度制不能混用,例如α=2kπ+30°(k∈Z),β=k·360°+π23(k∈Z )都不正确. 各个击破类题演练1(1)把112°30′化成弧度(精确到0.001);(2)把112°30′化成弧度(用π表示);(3)把-125π化成度. 解:(1)①n=112°30′,π=3.141 6;②n=6030112=112.5 ③α=180π≈0.017 5 ④α=na=1.968 75α≈1.969 rad (2)112°30′=(2252)°=2252×180π=85π (3)-125π=-(125π×π180)°=-75° 变式提升1判断下列各角所在的象限:(1)9;(2)-4;(3)51999π-. 解:(1)因为9=2π+(9-2π),而2π<9-2π<π,所以9为第二象限角. (2)因为-4=-2π+(2π-4),而2π<2π-4<π,所以-4为第二象限角. (3) 51999π-=-200×2π+π5,所以51999π-为第一象限角. 温馨提示(1)角度数的单位不能省略、弧度数的单位可以省略.(2)一般情况下没有精确度要求,保留π即可,不必将π化成小数.(3)判断α所在的象限时,一般是把α表示成α=2kπ+α′,k∈Z ,α′∈[0,2π)的形式,根据α和α′角终边相同作出判断. 类题演练2一个半径为r 的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?扇形的面积是多少?解:设扇形的圆心角是θ弧度,则扇形的弧长是rθ,扇形的周长是2r+rθ.由题意可知2r+rθ=πr.∴θ=π-2(弧度).扇形的面积为S=21r 2θ=21r 2(π-2). 变式提升2一扇形周长为20 cm ,问扇形的半径和圆心角各取什么值时,才能使扇形面积最大? 解:设扇形中心角为θ,半径为r ,则2r+θr=20,θ=r r 220-. S 扇形=21θr 2 =12·rr 220-·r 2 =(10-r)r=10r-r 2.当r=)1(210-⨯-=5时,S 扇形最大=25,此时θ=2.答:扇形的半径为5 cm ,圆心角为2 rad 时,扇形面积最大,最大值为25 cm 2.类题演练3已知α角的终边与3π的终边相同,在[0,2π)内哪些角的终边与3α角的终边相同? 解:∵α角的终边与3π的终边相同, ∴α=2kπ+3π(k∈Z ). ∴3α=2k 3π+π9(k∈Z ).又0≤3α<2π, ∴0≤32πk +9π<2π(k∈Z ).当k=0、1、2时,有3α=9π、97π、913π,它们满足条件. ∴9π、97π、913π为所求.变式提升3若α是第四象限角,则π-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解法1:∵α为第四象限角.∴2kπ-2π<α<2kπ,k∈Z .∴-2kπ<-α<-2kπ+2π,k∈Z .∴-2kπ+π<π-α<-2kπ+23π,k∈Z .∴π-α是第三象限角.解法2:∵角α与角-α的终边关于x 轴对称,又∵角α的终边在第四象限, ∴角-α终边在第一象限,又角-α与π-α的终边关于原点对称,∴角π-α的终边在第三象限.答案:C。

最新人教版高中数学《任意角和弧度制及任意角的三角函数》导学案

最新人教版高中数学《任意角和弧度制及任意角的三角函数》导学案

高中数学《任意角和弧度制及任意角的三角函数》导学案【学习目标】1、 通过课前预习,学生掌握角度和弧度的概念,熟悉弧度与角度的互化,熟悉弧长和扇形的面积公式;2、 通过课堂探究,熟练掌握运用任意角三角函数的定义进行化简和求值。

【重、难点】三角函数的定义及应用是考察的重难点。

1.-870°的终边在第几象限 ( )A .一B .二C .三D .四【知识点链接】 第一象限角的集合可以表示为{α| },第二象限角的集合可以表示为{α| },第三象限角的集合可以表示为{α| },第四象限角的集合可以表示为{α| }.2.已知角α的终边经过点(3,-1),则角α的最小正值是 ( )A.2π3B.11π6C.5π6D.3π4【知识点链接】若α与β是终边相同的角,则β可用α表示为S ={β|= }(或{β|β= }).3.若sin α<0且tan α>0,则α是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【知识点链接】四个象限的符号可用口诀来表示:4.弧长为3π,圆心角为135°的扇形半径为________,面积为________.【知识点链接】(1)角度与弧度的换算:①1°= rad ;②1 rad = .(2)弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,又l =r α,则扇形的面积为S = .= .5.=34cos π . 【知识点链接】sin(α+k ²2π)= cos(α+k ²2π)= tan(α+k ²2π)=【知识脉络】角的概念→角度与弧度的转化→扇形半径和面积公式【考点一】角的集合的表示[例1] (1)如果α是第三象限的角,那么-α,2α的终边落在何处?(2)写出终边在直线y =3x 上的角的集合.变式:若角β的终边与60°角的终边相同,则在0°~360°范围内,终边与角β3的终边相同的角为________.小结:(1)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z}判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(2)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出这个角的终边相同的所有角的集合, 然后通过对集合中的参数k 赋值来求得所需角.【考点二】三角函数的定义[例2]已知角α的终边经过点P(m ,-3),且cos α=-45,则m 等于 ( ) A .-114 B.114 C .-4 D .4变式:角θ的终边上有一点(a ,a),a ∈R 且a≠0,则sin θ的值是 ( ) A.22 B .- 22 C.22或-22D .1变式:已知角α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫x ,32,则tan α= ( ) A. 3 B .± 3 C.33 D .±33小结:定义法求三角函数值的两种情况:(1)已知角α终边上一点P 的坐标;(2)已知角α的终边所在的直线方程;分别思考如何来求解?【考点三】 扇形的弧长、面积公式及其应用[例3](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?变式:已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是 ( )A.23B.32C.23πD.32π变式:圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为 ( )A.π3B.2π3C. 3 D .2小结:1.在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.2.记住下列公式:①l =αR ;②S =12lR ;③S =12αR2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.1.若角α和角β的终边关于x 轴对称,则角α可以用角β表示为( )A .2kπ+β(k∈Z)B .2kπ-β(k∈Z)C .kπ+β(k∈Z)D .kπ-β(k∈Z)2.已知扇形的周长是6 cm ,面积是2 cm2,则扇形的圆心角的弧度数是( )A .1或4B .1C .4D .83.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]4. 在直角坐标系中,O 是原点,A(3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.5. 若β的终边所在直线经过点P ⎝⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________,tan β=________.【课外延申】已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.。

高中数学人教A版必修4第一章任意角和弧度制与任意角的三角函数导学案

高中数学人教A版必修4第一章任意角和弧度制与任意角的三角函数导学案
掌握“1”的妙用、“切割化弦”的解题思想
三、例题精析
【例题1】
已知角 的终边经过点 ,求 的正弦、余弦、正切值.
【思考】若角 的终边经过点 ,求 .
【例题2】
取什么值时, 有意义.
.
【例题3】
确定下列三角函数的符号:
(1) ;
(2) ;
(3)
【例题4】
已知 ,求角 的集合
【例题5】
(1)若 ,确定 的范围;
7.时钟经过一小时,时针转过了( )
A. rad B.- rad C. rad D.- rad
8.两个圆心角相同的扇形的面积之比为1∶2,则两个扇形周长的比为( )
A.1∶2 B.1∶4 C.1∶ D.1∶8
【拔高】
1.设 是第一象限角,试探究:
(1) 一定不是第几象限角?(2) 是第几象限角?
.
2.若扇形的周长为定值 ,则该扇形的圆心角为多大时,扇形的面积最大?
3.设 是第三、四象限角, ,则 的取值范围是_____
4.确定下列三角函数值的符号:
(1) ;(2) ;(3) ;(4) .
5.求下列各角的正弦、余弦、正切值:
(1) ;(2) ;(3) .
6.已知角 的终边上一点 ,且 ,求 的值。

7.在 内,使 成立的x的取值范围是()
A. B. C. D.
教 师
高 学生
上课时间
阶 段
基础(√) 提高( ) 强化( )
课时计划
共 次课 第 次课
教学课题
任意角,弧度制,任意角的三角函数
教学目标
1.了解任意角的概念;正确理解正角、零角、负角的概念;
2.正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示.

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制教案

人教A版高中数学必修4第一章 三角函数1.1 任意角和弧度制教案

任意角与弧度制任意角与弧度制【教学目标】(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;【教学重点难点】重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.【学前准备】:多媒体,预习例题电脑、三角板2.象限角3.终边与角α相同的角 α+K×360°,K ϵZ五.布置作业完成课后习题六.教学反思弧度制【教学目标】1.理解1弧度的角、弧度制的定义。

2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算。

3.熟记特殊角的弧度数【教学重难点】教学重点:弧度制的概念,弧度制与角度制的互化; 教学难点:弧度制概念的建立与理解. 【学前准备】:多媒体,预习例题 教学课程 第一课教学环节导案/学案师生互动//随堂测试备注一、复习引入(5分钟) 1. 有一个扇形的篱笆,半径为3m ,圆心角为135°,则篱笆的弧长和面积分别是多少?2. 有一个扇形的篱笆,若已知其周长为10m ,求扇形的面积最大时圆心角的大小?a. 置角的顶点于原点b. 始边重合于X 轴的非负半轴c. 终边落在第几象限就是第几正角:射线按逆时针方向旋转所形成的角 负角:射线按顺时针方向旋转形成的角 零角:射线不作旋转形成的角二..探究新知(25分钟)1.在角度制下,扇形的弧长公式180n Rlπ=看上去有点繁琐,能不能想办法简化?形成概念,构建知识2. 这样我们就有180=πo,依次类推360=290=60=23πππo o o L,,,,我们发现了衡量角度大小的另一种单位.那么这种度量角的公式是怎么样的?3. 这样定义合理吗,这个角会不会随着圆的半径变化而变化呢?4、即1lnR=.同时会思考,这样一个定义的合理性,对于这个问题,通过代数上的公式变形及几何上的相似比的显示,都可以验证定理的合理性.那么1弧度的角是怎样定义的呢?它有什么特殊含义?若1R=,即单位圆的圆心角的弧度数跟弧长。

高一上学期数学人教A版 必修第一册5.1.1《任意角》导学案

高一上学期数学人教A版 必修第一册5.1.1《任意角》导学案

高一数学必修一5.1.1任意角导学案【学习目标】:1.理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角;2.能在指定范围内,找到一个与已知角终边相同的角,并判定其为第几象限角;3.能写出与任一已知角终边相同的角的集合;4、熟练掌握象限角与轴线角的集合表示;5.会写出某个区间上角的集合.【学习重点】:任意角的概念;区间角的表示.把终边相同的角用集合和符号语言正确表示出来;区间角的表示.活动一 角的概念的推广///////////课前准备///////////情境1:请同学们向右转90°,再向左转90°,再转180°情境2:在初中,我们已经学习过的角有哪些?它们的范围是多少?情境3:在体操、跳水运动中,有“转体720°”“翻腾两周半”这样的动作名称,“720°”在这里也是用来表示旋转程度的一个角,那么“720°”是怎样的一个角?///////////数学建构///////////1.角的定义:一个角可看做平面内一条射线绕着 从 旋转到 所形成的图形, 称为角的顶点,射线旋转的 和 称为角的始边和终边.2.角的分类:正角:按 方向旋转形成的角叫做正角;负角:按 方向旋转形成的角叫做负角;零角: .3.象限角:为了研究方便今后我们常以角的顶点为 ,角的始边为 建立直角坐标系,这样角的终边在第几象限就说这个角是 .例如:30,390,330-都是第一象限角;300,60-是第四象限角.轴线角:若角的终边在 ,就认为这个角不属于任何象限.例如:90,180,270等等.4.终边相的角的集合: .活动二 知识运用例1、在0与360范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角?(1)650 (2)150- (3)99015'-例2、根据角α的终边所在位置,写出角α的集合:1(1)在y 轴的非负半轴上: .(2)在第二象限的角平分线上: .2(1)在y 轴上:(2)在一、三象限的角平分线上: .(3)在坐标轴上: .3(1)在第一象限: .(2)在第一和第三象限: .例3、如图,α,β分别为终边落在OM 、ON 位置上的两个角,且30α=︒,300β=︒(1)终边落在阴影部分,且在区间[]0,300︒︒时所有角的集合;(2)求终边落在阴影部分(含边界)时所有角的集合。

人教A版 高中数学 必修4 第一章 《三角函数》 第一节《任意角》导学案设计(无答案)

人教A版 高中数学 必修4 第一章 《三角函数》 第一节《任意角》导学案设计(无答案)

课题:1.1.1任意角【学习目标】1.理解角的概念推广的必要性,理解任意角的概念,根据角的终边旋转方向,能判定正角、负角和零角。

2.学会建立直角坐标系来讨论任意角,理解象限角的定义,掌握终边相同的角的表示方法。

【重点难点】重点:任意角的概念,象限角的概念。

难点:终边相同的角的集合的表示法。

【自主学习】阅读课本第3到第7页后完成1.潮汐现象、地球公转与自转、单摆的摆动等都是。

2.角的概念的推广:角可以看成是平面内的一条射线绕着从一个位置到另一个位置所形成的图形。

3.角的分类:正角: .负角: .零角: .4.象限角与轴线角:在直角坐标系中讨论角,使角的顶点与重合,角的始边与重合,角的终边在第几象限,就把这个角叫做,如果终边在坐标轴上,就认为这个角不属于任何象限,称这个角为轴线角。

5.与α终边相同的角的集合一般地,所有与角α终边相同的角,连同在α内,可构成一个集合S= 。

6.试一试:(1)在直角坐标系中,作出下列各角。

(分别画在四个坐标系中。

)2400, 3900, -1200, -4200。

(2)判定下列各角是第几象限的角:(阅读教材第4页例1后完成)2900, 330026′, 3750 -2200, -250。

【合作探究】例1 在直角坐标系中,写出终边在x轴上的角的集合(用00~3600的角表示). (阅读教材第4页例2后完成)例2写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β≤3600的元素β写出来。

(阅读例3后完成)(1)-1200 (2)6600 (3)-950008′【训练】1. 判定列命题的正误:(1) 若角是锐角,则其终边落在第一象限;(2) 终边落在第一象限的角都是锐角;(3) 时间经过3小时,时针转过900;(4) 小于900的角都是锐角。

2.在-3600~3600之间,与-2600角终边相同的角有 个,它们分别是 。

3.若α是第一象限角,则下列各角中是第四象限角的是( )A.900-αB.900+αC.3600-αD.1800-α4.若角2α与角2400的终边相同,则α是( )A.1200+k ·3600, k ∈ZB.1200+k ·1800, k ∈ZC.2400+k ·3600, k ∈ZD.2400+k ·1800, k ∈Z【拓展延伸】 已知α是第一象限角,试求2a所在的象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1任意角
教学目标:理解任意角、象限角的概念,并会用集合来表示终边相同的角。

知识链接:
复习1、回忆初中所学的角是如何定义?角的范围?
复习2、举例实际生活中是否有些角度超出初中所学的范围?
二、自主学习:
1、学习教科书P2-P3 (探究之上)的内容,掌握下面的内容:
⑴角的分类(按旋转方向):
(2)任意角:
⑶象限角的概念
①请分别写出一个第一、二、三、四象限的角
② 角的终边在坐标轴上,属于哪一个象限?
2、终边相同的角:
学习教科书P3(探究)-PP4(例1之上)的内容
一般地,我们有:
所有与角a终边相同的角,连同角a在内,可构成一个集合:__________________________________
三、合作探究:
1、在0。

〜360。

间,找出与下列角终边相同的角,并判断它是第几象限角。

(1) 1040°; (2)- 940°
2、(1)写出终边在x轴非负半轴上的角的集合
(2)写出终边在x轴非正半轴上的角的集合
⑶写出终边在y轴非负半轴上的角的集合
(4)写出终边在y轴非正半轴上的角的集合
(5)写出终边在x轴上的角的集合
(6)写出终边在坐标轴上的角的集合
3、写出终边在y =x上的角的集合S,并把S中适合不等式一360 ° < 3 < 720 °的元素B写出来。

四、思维拓展:
1. 分别写出终边在第一、二、三、四象限角的集合
2. 写出终边落在阴影部分内的角的集合(不包含边界)
Ot
3. 已知角二是第二象限角,求:(1)角一是第几象限的角;(2)角2\终边的位置。

2
330
75 0
225 0
集合 B={ R |k 3 600 _4 50 £pw k 36 0°
+45°
, k ^Z} 求:(1) A 宀 B ( 2) AB
课堂练习:A 组
1、下列角中终边与 330 °相同的角是( )
A. 30 ° B . -30 ° C .
630 ° D . -630
2、
460 是( )
A. 第一象限角
B. 第二象限角
C. 第三象限角
D.
第四象限角 3、 卜列说法中,
正确的是(
)
A.第一象限的角是锐角 B •锐角是第一象限的角 C.小于90°的角是锐角 D .终边相同的角一定相等
4、把—1485 °转化为 a + k • 360°( 0°< a < 360 ° , k € Z )的形式是(
)
A. 45° — 4X 360° B .—45°— 4X 360°
C.— 45°— 5 X 360 ° D
.315°— 5X 360°
4. 右集合 A ={
| k 1 80 0
讦30 0
:.• :• :k
0 0
1 80
亠9 0 ,k 三Z }
5、 一 1120°角所在象限是( )
A.第一象限B •第二象限C •第三象限D •第四象限 6、 在0°〜360°范围内,与_60终边相同的角是() A. 30
B. 60 D. 300 D. 330
7、 一个角为30 °,其终边按逆时针方向旋转一周后的角的度数为 _____________ 。

8、 __________________________________________________________________________ 写出-720 °至^ 720°之间与-1068 °终边相同的角的集合 ___________________________________ 9、 在0。

〜720。

间,找出与下列各角终边相同的角,并判定它们是第几象限角 (1)— 120° (2) 760°
2、 集合 姑{ a =k 90o , k € Z }中,各角的终边都在 _________________ 。

3、 与/900终边相同的角的集合是 ________________________ ______________________________ ,它 们是第 ____ 象限的角,其中最小的正角是 _______________ ,最大负角是 ____________ 。

B 组:
1、若a 是一个任意角,则 A .关于坐标原点对称 C .关于直线y=x 对称
a 与-a 的终边是()
B .关于x 轴对称
D .关于y 轴对称。

相关文档
最新文档