智能控制设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

caymi
图4.5 速度 x 的隶属度函数

图4.6 输出变量
第 10 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
4.2 设计模糊规则库
这里选取 T-S 的控制器,控制器根据这 4 个输入变量,综合得出 作用于小车的控制信号。 然后,列出每种输入所对应的输出量的模糊规则,共计设置了 16 条规则:
F x m G x ma x
''
F Ma 1 Ma 2
d 2x d2 l sin m dt 2 dt 2 d 2x d 2 d M m 2 ml sin cos 2 dt dt dt M m
第 11 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
(in4 is in4mf2) then (out is mf8) (1)

9. If (in1 is in1mf2) and (in2 is in2mf1) and (in3 is in3mf1) and
(in4 is in4mf1) then (out is mf9) (1)
第 1 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
1 背景分析
倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行 控制理论教学及开展各种控制实验的理想实验平台。 对倒立摆系统的 研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问 题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制, 用 来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能 力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中 都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的 垂直度控制和卫星飞行中的姿态控制等。 正是由于倒立摆系统的特殊性,许多不同领域的专家学者在检验 新提出理论的正确性和实际可行性时, 都将倒立摆系统作为实验测试 平台。 再将经过测试后的控制理论和控制方法应用到更为广泛的领域 中去。现代控制理论已经在工业生产过程、军事科学、航空航天等许 多方面都取得了成功的应用。 例如极小值原理可以用来解决某些最优 控制问题; 利用卡尔曼滤波器可以对具有有色噪声的系统进行状态估 计;预测控制理论可以对大滞后过程进行有效的控制。但是它们都有 一个基本的要求:需要建立被控对象的精确数学模型。 随着科学技术的迅猛发展,各个领域对自动控制控制精度、响应 速度、系统稳定性与适应能力的要求越来越高,所研究的系统也日益 复杂多变。然而由于一系列的原因,诸如被控对象或过程的非线性、 时变性、 多参数间的强烈耦合、 较大的随机干扰、 过程机理错综复杂、
3 建立控制模型
首先假设: ①摆杆为刚体; ②忽略摆杆与支点之间的摩擦; ③忽略小车与导轨之间的摩擦。
第 4 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
一级倒立摆系统可抽象成小车与匀质杆组成的系统,假设:M 为 小车的质量;m 为摆杆质量; l 为摆杆转动轴心到杆质心的长度;
I 为摆杆惯量;U 为加在小车上的力; x 为小车位置;θ为摆杆与垂 直向上方向的夹角。应用 Newton 第二定律的方法可得到系统 x 方向 的运动方程为
(in4 is in4mf2) then (out is mf4) (1)

5. If (in1 is in1mf1) and (in2 is in2mf2) and (in3 is in3mf1) and
(in4 is in4mf1) then (out is mf5) (1)

6. If (in1 is in1mf1) and (in2 is in2mf2) and (in3 is in3mf1) and
智能控制理论及应用
课程设计报告
题 院
目: 系:
基于 matlab 的倒立摆模糊控制 西北民族大学电气工程学院 10 级自动化(3)班 蔡 余 敏 P101813455 刁 晨
专业班级: 学生姓名: 学 号:
指导教师:
2013.10
I
基于 MATLAB 的倒立摆模糊控制
caymi
基于 MATLAB 的倒立摆模糊控制
M m
d 2 d F ml sin ml cos 2 d 2x dt dt 2 M m dt
2
3 3
4 设计模糊控制器
4.1 确定输入输出变量
以摆角θ、摆角角速度 、小车位移 x 、速度为状态变量 x 。将 这些状态变量作为控制器输入量, 以作用在小车的力 F 作为模糊控制 器输出量。所以分别在四个输入变量的空间建立相应的隶属度函数。
第 2 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
各种不确定性以及现场测量手段不完善等, 难以建立被控对象的精确 模型。 虽然常规自适应控制技术可以解决一些问题, 但范围是有限的。 对于像二级倒立摆这样的非线性、多参数、强耦合的被控对象,使用 传统控制理论难以达到良好的控制性能。 而模糊控制理论能够克服这 些困难,达到实际设计要求。 所以说,对倒立摆系统控制理论的研究不仅具有理论研究价值, 也具有相当的实际工程应用价值。
(in4 is in4mf2) then (out is mf6) (1)
ຫໍສະໝຸດ Baidu
7. If (in1 is in1mf1) and (in2 is in2mf2) and (in3 is in3mf2) and
(in4 is in4mf1) then (out is mf7) (1)

8. If (in1 is in1mf1) and (in2 is in2mf2) and (in3 is in3mf2) and
作者:蔡余敏 指导老师:刁晨
摘要:倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且 使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后, 系统能克服随机扰动而保持稳定的位置。 本文主要针对较为简单的单 级倒立摆控制系统而进行的设计分析。通过建立微分方程模型,求出 相关参数,设计出对应的模糊控制器,并运用 MATLAB 软件进行系统 模型的软件仿真,从而达到预定控制效果。目前,一级倒立摆的研究 成果应用于火箭发射推进器和控制卫星的飞行状态等航空航天领域。 关键词:单级倒立摆;微分方程;模糊控制;MATLAB 仿真
3 - 1
规定逆时针方向的力矩为正,以摆与小车的连接点为原点,列出 摆的力矩方程:考虑到摆的惯性力矩,求得系统的运动方程为(未考 虑摆旋转的摩擦阻力矩)
d 2 d 2x m l cos mgl sin dt 2 dt 2 4 J m 2 ml 2 3 2 4 d d 2x l g sin 2 cos 3 dt 2 dt J

1. If (in1 is in1mf1) and (in2 is in2mf1) and (in3 is in3mf1) and
(in4 is in4mf1) then (out is mf1) (1)

2. If (in1 is in1mf1) and (in2 is in2mf1) and (in3 is in3mf1) and

10. If (in1 is in1mf2) and (in2 is in2mf1) and (in3 is in3mf1) and
(in4 is in4mf2) then (out is mf10) (1)

11. If (in1 is in1mf2) and (in2 is in2mf1) and (in3 is in3mf2) and
(in4 is in4mf1) then (out is mf13) (1)

14. If (in1 is in1mf2) and (in2 is in2mf2) and (in3 is in3mf1) and
(in4 is in4mf2) then (out is mf14) (1)

15. If (in1 is in1mf2) and (in2 is in2mf2) and (in3 is in3mf2) and
(in4 is in4mf2) then (out is mf2) (1)

3. If (in1 is in1mf1) and (in2 is in2mf1) and (in3 is in3mf2) and
(in4 is in4mf1) then (out is mf3) (1)

4. If (in1 is in1mf1) and (in2 is in2mf1) and (in3 is in3mf2) and


第 6 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
图 4.1 四输入变量单级倒立摆
以下分别在 MATLAB 的仿真图中来说明情况。 确定摆角θ的论域 [-0.3 , 0.3], 将其划分为两个语言变量 “大” 和“小” ,隶属度函数如图 4.2;摆角角速度 的论域 [-1 ,1],划 分两个语言变量为“快”和“慢” ;隶属度函数如图 4.3;小车位移 x 的论域 [-3,3],划分两个语言变量为“远”和“近” ;隶属度函数 如图 4.4; 速度 x 的论域 [-3, 3], 划分两个语言变量为 “快” 和 “慢” ; 隶属度函数如图 4.5;输出变量的论域为[ -10,10],如图 4.6。


第 7 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
图4.2 摆角θ的隶属度函数
第 8 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
图4.3 摆角角速度 的隶属度函数

图4.4 位移 x 的隶属度函数
第 9 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
3 - 2
由式(3-1)和式(3-2)可得
第 5 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
caymi
2 1 d g sin ml sin 2 F cos dt d 2 2 2 4 dt l ml cos 2 M m 3
2 提出控制问题
倒立摆控制问题是展示智能控制方法由于传统控制方法的典型 范例。一级倒立摆的背景源于火箭发射助推器;二级倒立摆于双足机 器人控制有关。这里只讨论一级倒立摆的控制问题。 有一个倒立摆控制系统如图 2.1 所示。
图 2.1 倒立摆控制系统
第 3 页 共 24 页
基于 MATLAB 的倒立摆模糊控制
(in4 is in4mf1) then (out is mf11) (1)

12. If (in1 is in1mf2) and (in2 is in2mf1) and (in3 is in3mf2) and
(in4 is in4mf2) then (out is mf12) (1)

13. If (in1 is in1mf2) and (in2 is in2mf2) and (in3 is in3mf1) and
caymi
它由小车和倒立摆构成,小车在控制器的作用下,沿滑轨在水平 方向运动,使倒立摆在垂直平面内稳定。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置, 并且使 之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后, 系 统能克服随机扰动而保持稳定的位置。 倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期 望值, 计算机在每一个采样周期中采集来自传感器的小车与摆杆的实 际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经 数模转换驱动直流电机实现倒立摆的实时控制。 直流电机通过皮带带 动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为 轴心使摆杆能在垂直的平面上自由地摆动。 作用力平行于铁轨的方向 作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁 轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向 下) 。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控 制力,使其在轨道上被往前或朝后拉动。
相关文档
最新文档